Skip to main content

During the winter term 2024/25, our research seminar takes place on Wednesdays at 2:30pm in room PRÜ-1104.

DateTopicSpeaker
23.10.2024

Python Environments & Docker

This talk will provide an introduction to Python package management including some best practices for conflict resolution and the effective use of Python virtual environments. We also give an introduction to docker and singularity.

Topics Covered: Environments (Python vs. System), Tools (pip, [Ana]conda, ...), Resolving Conflicts, Python Virtual Environments, Introduction to containerization with Docker and Singularity

Matthias Werner
06.11.2024Surrogate-Accelerated Markov Chain Monte Carlo Methods for Bayesian Inverse Problems

This talk focuses on efficient sampling using Markov chain Monte Carlo (MCMC) methods for Bayesian inversion. The sampling process is based on the Delayed Acceptance Metropolis-Hastings algorithm and accelerated through adaptively constructed surrogate models, while maintaining the asymptotic exactness of the Markov chain. The surrogate models are built using non-intrusive methods; specifically, neural network surrogate models will be discussed. The motivation for the use of the Bayesian approach stems from the need to solve geotechnical inverse problems with uncertainties, such as identifying material parameters based on data from a tunnel sealing experiment or determining fracture apertures. However, the methods are also applicable beyond geosciences. In considered problems, the forward model typically involves solving partial differential equations using numerical methods. Using surrogate-accelerated MCMC methods, the number of required forward model evaluations can be significantly reduced. The resulting MCMC framework is available in the form of a Python package, SurrDAMH (github.com/dom0015/surrDAMH).
Simona Beresova, PhD
(Institute of Geonics)
27.11.2024Bayesian inference of covariate-parameter relationships for population modelling

An important goal in pharmacology is to tailor drug doses to each patient. To this end, one often uses parametrised ODE initial value problems to model the time evolution of drug concentrations in the body after administration. The parameters in these models often cannot be measured directly in clinical settings, and per-patient data may be too sparse to permit reliable parameter inference for each patient. One approach to this problem is to identify a set of covariates that are clinically measurable, e.g. age and weight, and to specify a covariate-parameter relationship, i.e. a function that maps every admissible covariate vector to a parameter vector. This establishes a nonlinear regression problem, where the i-th covariate Xi is the vector of covariates for the i-th patient, the i-th response Yi is a vector of blood drug concentrations collected at finitely many times for the i-th patient, and the forward model depends on an unknown covariate-parameter relationship. The task is then to find the most appropriate covariate-parameter relationship from some admissible class. We show how this task can be tackled for a family of parametrised ODEs, by using a framework for Bayesian nonlinear statistical inverse problems developed by Nickl et al., to show posterior contraction and a Bernstein-von Mises result.
Prof. Han Cheng Lie 
(University of Potsdam)
04.12.2024  
11.12.2024  
08.01.2024  
15.01.2024  
22.01.2024  
29.01.2024  
05.02.2024  

Past Talks

In the summer term 2024, we dealt with the topic of causality and discussed essential parts of the book "Elements of Causal Inference" by Jonas Peters, Dominik Janzing and Berhard Schölkopf (MIT Press, 2017):

DateTopicSpeaker
17.01.2024Zu einer Frage der bedingten AbhängigkeitProf. Hans-Jörg Starkloff
24.04.2024Statistik und KausalitätProf. Hans-Jörg Starkloff
08.05.2024Introduction to Causal InferenceProf. Björn Sprungk
15.05.2024Multivariate Causal ModelsDr. Christoph Brause
29.05.2024Counterfactuals, Markov Property, Faithfulness and Causal
Minimality
Kevin Bitterlich
05.06.2024Covariate Adjustment, Do-Calculus, and EquivalenceProf. Björn Sprungk
12.06.2024Causal Inference with Python (code and slides: here)Matthias Werner
19.06.2024Potential Outcomes & Structure IdentifiabilityKonstantin Ibadullaev
26.06.2024Methods for Structure IdentifiabilityHanyue Gu
03.07.2024SCM and hidden variablesDr. Anna Chekhanova
10.07.2024SCM and time seriesDr. Andreas Wünsche

  • 08.12.2023
    Jun.-Prof. Daniel Walter (HU Berlin)
    Source estimation and optimal sensor placement in spaces of measures 
  • 16.11.2023
    Jannis Chemseddine (TU Berlin)
    When does minimizing the joint error yield good posterior reconstructions?
  • 16.11.2023
    Paul Hagemann (TU Berlin)
    Stability of Conditional Generative Models w.r.t. Observations
  • 20.06.2023 
    Dr. Orkun Furat (U Ulm)
    Virtual materials testing: Workflow from image processing, via stochastic modeling to numerical simulation for establishing structure-property relationships
  • 26.05.2023
    Prof. Marcus Wiens (TU BA Freiberg)
    Measures for criticality and useful redundancy for the design of robust supply networks
     

  • 06.12.2022
    Prof. Rudolf Kruse (U Magdeburg)
    Unsicheres Wissen in der Künstlichen Intelligenz: Methoden und Anwendungen
  • 09.11.2022
    Prof. Dietrich Stoyan (TU BA Freiberg)
    Über den vermeintlichen Beweis der Markt-Hypothese zum Ursprung der Covid-19-Pandemie
  • 28.07.2022
    Prof. Amir Sagiv (Columbia University)
    A Measure Perspective on Uncertainty Propagation
  • 13.07.2022
    Prof. Kengo Kamatani (ISM Osaka)
    Non-reversible guided Metropolis kernel
  • 29.06.2022
    Jun.-Prof. Conrad Jackisch (TU BA Freiberg)
    Unsicherheiten in freier Wildbahn – Erfahrungen aus einem interdisziplinären Forschungsprojekt zu Anpassung an den Klimawandel an der Nordseeküste
  • 14.06.2022
    Prof. Daniel Rudolf (U Passau)
    Slice Sampling
  • 01.06.2022
    Prof. Dietrich Stoyan (TU BA Freiberg)
    Anpassungstests für Daten aus Siebanalysen
  • 11.05.2022
    Prof. Sebastian Schmon (U Durham)
    Optimal scaling of random-walk Metropolis algorithms using Bayesian large-sample asymptotics
  • 15.02.2022
    Kevin Bitterlich (TU BA Freiberg)
    Nichtreversible Metropolis-Hastings Algorithmen
  • 01.02.2022
    Prof. Hans-Jörg Starkloff (TU BA Freiberg)  
    Zur Existenz von Lösungen von zufälligen gewöhnlichen Differentialgleichungen in Skalen von Banachräumen
  • 18.01.2022
    Jun.-Prof. Björn Sprungk (TU BA Freiberg)
    Stability of Uncertainty Quantification and Bayesian Inverse Problems

  • 30.11.2021
    Sebastiano Grazzi (TU Delft)
    The Boomerang sampler
  • 16.11.2021
    Prof. Dietrich Stoyan (TU BA Freiberg)
    Punktprozess-Statistik in der Partikelgrößen-Statistik
  • 02.11.2021
    Dr. Philipp Wacker (FAU Erlangen-Nürnberg)
    Deterministic Dynamics of Ensemble Kalman Inversion
  • 19.10.2021
    Paula Klinger (TU BA Freiberg)
    Monte Carlo-Berechnung von Risikomaßen mit Anwendung in der Energiewirtschaft
  • 13.07.2021
    Viacheslav Natarovskii (GAU Göttingen)
    Slice Sampling
  • 15.06.2021
    Dr. Simon Weissmann (U Heidelberg)
    Analysis of the ensemble Kalman inversion: from discrete to continuous time
  • 01.06.2021
    Markus Dietz (TU BA Freiberg)
    On a stochastic arc furnace model
  • 18.05.2021
    Prof. Dr. Han Cheng Lie (U Potsdam)
    Stochastic optimal control of SDEs for rare events and importance sampling of path functionals
  • 04.05.2021
    Dr. Jonas Latz (U Cambridge)
    Analysis of Stochastic Gradient Descent in Continuous Time
  • 20.04.2021
    Dr. Jeremy Budd (TU Delft)
    Theory and Image Segmentation with Graph MBO and Allen-Cahn