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Objective

» Consider structural causal model ¢ with associated DAG G

X =f6(PA;,N), j=1,...d

* Recall: An intervention is a change of assignments of (some) Xj

Xk = fk(PA/,IV/) =

Xy = f(PA;, N;)
* Goal: Compute intervention distributions

pEeI () XY € (X, X}, X £ Y.

Bjorn Sprungk

Covariate Adjustment, Do-Calculus, and Equivalence

GAK
B

ERZiN

A
eeiper”

2w



Identifiability

An intervention distribution p%“**=)(y) is identifiable if it can be computed from the

observational distribution, e.g., p%(xs, ..., X4), and the graph structure G.

» The observational distribution involves also conditional distributions p)%_ (X | Xk = xk)

» We will consider two different approaches to compute identifiable intervention
distributions:

1. by covariate adjustment

2. by the front-door formula (special case of do-calculus)

5 Bjorn Sprungk
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A useful invariance and the manipulation formula
» From the definition of structural causal models it follows for an SCM ¢ that
p¢ (x| PA)) = p® (x| PA)

for any SCM C that is contructed from & by intervening on (some) X, k # .

» Using the Markov property and the above invariance we thus obtain
~ d ~ N
pc;do(Xk::Nk)(X e Xg) = HPC;do(Xk::Nk) (X/ [ pa,-> _ i)(Xk)HpQ <)(j | paj>
J#k

j=1

where p denotes density of N

Bjorn Sprungk
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» Special and important case:

. p% (x| pa; if X, =X
pé;do(Xk::x)(X1 . 7Xd) — Hﬁékp ( ./ | p j) ’ k s
0, else.

» For so-called “source nodes” ,i.e., nodes with parents we can now show that
intervening is equal to conditioning: Let Xy be a source node, then

pECX= (x L xg) = 1 (X1) I_IIOC (Xj | Pa/)
J#k
PO 1 Xa =) Tl (| Pay)
B pE(x1 | X1 = X)
o, Xy ‘X1 :X)

pE(xi,
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Bjorn Sprungk

Example: Kidney stones

0 1 Patients with Patients with
vera small stones large stones
Treatment a: 78% (273/350)  93% (81/87)  73% (192/263) / \
Open surgery
Treatment b:
Percutancous 83% (289/350)  87% (234/270)  69% (55/80) @ S @
nephrolithotomy

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.

e Let Z be size of stone, T kind of treatment, and R the recovery (all binary).

e Let us compute
PC;do(T:a)(R _ 1), PC;do(T:b)(R _ 1)
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|
* We have with €, := €;do (T = a)

Pe(R=1)= > P2R=1,T=tZ=2)

t=a,b;z=0,1

=Y P%R=1T=aZ=2)

z=0,1
* And by the manipulation theorem
P*(R=1,T=aZ=2z)=P%R=1|T=a2Z=2z)P%Z=2)
* In summary

Pe(R=1)=> PYR=1|T=aZ=2)P%Z=2)
z=0,1

JOAKq,
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Patients with Patients with
small stones large stones
Treatment a:

Open surgery 78% (273/350)  93% (81/87)  73% (192/263) / \
Treatment b:

Pervatancons 83% (289/350) 87% (234/270)  69% (55/80) @ @

Overall

nephrolithotomy

* We can then estimate

357 343
€a = ~ U. - —_ . - — = U. %y = ~ U.
Pe(R=1)~093- 200 +0.73- o0 = 0.832, P%(R = 1) ~ 0.782

» Average causal effect
PQ:;do(T:a)(R _ 1) o PC;do(T:b)(R _ 1) ~ 0.05
significantly different from

Bjorm Sprung P*(R=1|T=a)—-P*(R=1|T=b)=0.78-0.83=-0.05
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Remark

and conditioning:

* This simple three-node example illustrates nicely the difference between intervention

z

PRI = DoPR(r | X = x,.Z = 2) p5(2)

£ Y PR | X =x,Z = 2)pS(z | X =x)

=pa(r| X =x)
* We now generalize the observation from the example

1 1 Bjorn Sprungk
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Adjustment formula

Let € be an SCM over nodes V with a directed path from X to Y, X, Y € V. The causal
effect from X to Y is called confounded if

@;do(X=x)

Py ) # PY(y | X=x)  Wx,y.

Otherwise, it is called unconfounded.

Definition

Let € be an SCM over nodes V and let X, Y € Vwhere Y ¢ PAx. WecallZc V\ {X,Y}a
valid adjustment set for the ordered pair (X, Y) if

Py Oy = YopY(y X =x,Z=2)p5(z)  V¥x.y.
z
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When is an adjustment set valid?
* Forany Z c V\ {X, Y} we have
) = prydi(x Ny, 2)
= Zp“"“ Py | X =x,Z2=2) i3 (x.2)

pido(X =x)
= Zp“‘)(x PNy | X =x,Z2=2) pg " (z)
* Thus, we require
CdoXX(ylxzx’Z:z): (y‘X:X,Z—Z)
€;do(X=x)z(2) _ p%(z)

Py
p%

Bjorn Sprungk
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A sufficient graphical condition

* Recall the augmentation of an SCM € and DAG G by binary “intervention variables” I,
denoting that an intervention Xy = x takes place, i.e.,

Ik = N,, N,, ~ Bernoulli(0.5),
fk(PAkaNk)a if /k =0
X = .
Xk, if lk =1.

* In the augmented DAG G* the I are parentless nodes pointing directly to X
* Then, recall Markov property

YJ_Lg* Ik|Z — YJ_LIk|Z
— pS | Z=2)=pY (v |Z =2k =1)=p§ Ty | Z=2)

1 4 Bjorn Sprungk
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* Thus, let / denote the intervention variable for do (X = x). Then, if
Y Ug- 1| X,Z and Z g1
we have the desired properties

X:X)(

pg;do( y|X:X’z:z):p$(y\X:X,Z:Z), p=

* Example:
g g*
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Special valid adjustments

Parent adjustment

Z = PA,

Bjorn Sprungk
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Back-door adjustment

e Z contains no descendant of X and
» Z blocks all “back-door” paths from X to

Y, i.e., paths that start with an incoming
arrow.
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General adjustment criterion

Proposition (Shpitser et al., 2010)
Let € be an SCM over nodes V and let X, Y € V where Y ¢ PAx. Any Z c V\ {X, Y} with
 Z contains no descendant of any node W # X on a directed path from X to Y

» and Z blocks all non-directed paths from X to Y

is a valid adjustment set for (X, Y).
* This graphical criterion is sufficient and necessary: if Z does not satisfy this criterion,

then there exists SCM with same DAG G where Z is not valid for (X, Y).

» Parent is a special back-door adjustment and back-door is also special case of this

general criterion.

Bjorn Sprungk
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Figure 6.5: Only the path X <+~ A — K — Y is a “backdoor path” from X to Y. The set
Z = {K} satisfies the backdoor criterion (see Proposition 6.41 (ii)); but Z = {F,C.K} is
also a valid adjustment set for (X,Y): see Proposition 6.41 (iii).

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.

1 8 Bjorn Sprungk
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Front-door adjustment and do-calculus
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Motivation

 Often not all variables in a SCM are observable. This limits the application of covariate
adjustment.

- Example: Assume U is not observable, then PY**=%)
(observable) covariate adjustment

is not computable by
(back-door adjustment: Z = {U})

U
Genotype

X V4 Y
Smoking Tar Lung
deposits cancer

Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.
20 Bjorn Sprungk
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Front-door adjusment

* Based on the manipulation formula we have

Py y) = 30 pt IR 2 y) = DYy | U = u.Z = 2) pi(z | X = x) pfy(u)
u,z

u,x,z

= PEz|X=x) Y _py(y | U=uZ=2)pju)

* Now, we apply the back-door adjustment to rewrite

Py ) = S Py | U =u.Z =2) pi(u)

u

 But applying by applying the other back-door adjustment we also have

py (2 Zp V[ X =%Z=2)p§(x)

21 Bjorn Sprungk
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U
Genotype

X VA Y
Smokin, o Tar l Lung
g deposits cancer

Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

* We, thus, obtain the front-door adjustment

Py ) =S pS(y | X =%,Z = 2) p§(X) pS(z | X = X)

zX

 This can be computed from observable variables

22 Bjorn Sprungk
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Definition

Let € be an SCM over nodes V and let X, Y € Vwhere Y ¢ PAx. AsetZc V\ {X,Y}
satisfies the front-door criterion relative to (X, Y) if

1. Z intercepts all directed paths from X to Y.
2. There is no back-door path from X to Z.
3. All back-door paths from Z to Y are blocked by X.

Proposition

If Z satisfies the front-door criterion relative to (X, Y) and if p(cxyz(x, z) > 0 for all x, z, then
the causal effect of X on Y is identifiable and is given by

p&ee=, sz | X =x)) _pYy | X =%Z=2)pg(X)
X
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Example: Smoking

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of
cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

* Tobacco industry: The table proves the beneficial effect of smoking!

e Antismoking lobbyists: Smoking would actually increase your risk of lung cancer,

Tar No tar All subjects
400 400 800
Smokers  Nonsmokers [ Smokers Nonsmokers | Smokers Nonsmokers
380 20 20 380 400 400
No cancer 323 1 18 38 341 39
(85%) (5%) (90%) (10%) (85%) (9.75%)
Cancer 57 19 2 342 59 361
(15%) (95%) (10%) (90%) (15%) (90.25%)

Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

since smoking obviously is building up the chance of tar deposits.

e Who's right?
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Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage
of cancer cases in each smoking-tar category (numbers in thousands)

U
Genotype

Smokers Nonsmokers All subjects
400 400 800
Tar No tar Tar No tar Tar No tar
380 20 20 380 400 400
323 18 1 38 324 56
X Z Y (85%) (90%) (5%) (10%) (81%) (19%)
Smokin > Tar " Lung Cancer 57 2 19 342 76 344
oxing deposits cancer (5% (10%) | 95%) 0% | (19%)  (81%)
Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.
* Let us compute the (average) causal effect of smoking on getting lung cancer!
* By front-door adjustment we have
1 1
PERCENY =1) =Y PZ=2|X=x)) PY(Y=1|X=%Z=2) P (X =X)
z=0 X=0
2OAKq,
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Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage
of cancer cases in each smoking-tar category (numbers in thousands)

U
Genotype

Smokers Nonsmokers All subjects
400 400 800

Tar No tar Tar No tar Tar No tar

380 20 20 380 400 400

No cancer 323 18 1 38 324 56
X Z Y (85%) (90%) (5%) (10%) (81%) (19%)
Smoking — Tal". 1 Lung Cancer 57 2 19 342 76 344
deposits cancer (15%) (10%) (95%) (90%) (19%) (81%)

Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

PEdoX=0)(y — 1) = 0.95[0.9 0.5+ 0.1-0.5] + 0.05[0.95- 0.5+ 0.15-0.5] = 0.5025

pEdeX=N)(y —1)=0.05[0.9-0.5+0.1-0.5] +0.95[0.95-0.5+0.15-0.5] = 0.5475
0.045 = P€;do(X:1)(Y _ 1) - PQ‘;do(X:O)(Y _ 1)
—0755=P5(Y=1|X=1)-P5(Y=1|X=0)
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Do-Calculus

1. “Insertion/deletion of observations™:

pE;Jo(X::x)(y|z_w) _ pi;do(X::x)(y‘w)

if Y and Z are d-separated by X, W in a graph where incoming edges in X
have been removed.

2. “Action/observation exchange™:
pQ“;AIu(X::x,Z:z)(y |W) _ p(E:,du(X::x)(y|ZTW>

if Y and Z are d-separated by X, W in a graph where incoming edges in X
and outgoing edges from Z have been removed.

3. “Insertion/deletion of actions’:

pE;AIu(X::x,Z:z (us do(X::x)(

Jy|w)=p yw)

if Y and Z are d-separated by X, W in a graph where incoming edges in X
and Z(W) have been removed. Here, Z(W) is the subset of nodes in Z that
are not ancestors of any node in W in a graph that is obtained from G after
removing all edges into X.

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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Theorem 6.45 (Do-calculus) The following statements hold.

(i) The rules are complete; that is, all identifiable intervention distributions can
be computed by an iterative application of these three rules [Huang and
Valtorta, 2006, Shpitser and Pearl, 2006].

(ii) In fact, there is an algorithm, proposed by Tian [2002] that is guaranteed
[Huang and Valtorta, 2006, Shpitser and Pearl, 2006] to find all identifiable
intervention distributions.

(iii) There is a necessary and sufficient graphical criterion for identifiability of
intervention distributions [Shpitser and Pearl, 2006, Corollary 3], based on
so-called hedges [see also Huang and Valtorta, 2006].

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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Equivalence and Falsifiability of Causal Models
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Equivalence

* Probabilistic models: able to predict observational distribution of X = (Xj,

- Xd)
* Interventional models: able to predict any interventional distribution of
X =(Xi,...,Xy) (e.9., causal graphical models)

» Counterfactual models: able to predict any counterfactual distribution of
X=(Xi,...,Xq) (e.g., SCM)

We consider two SCM ¢, and ¢, as
probabilistically / interventionally / counterfactually equivalent

if the entail the same observational / observational + intervention / observational +
intervention + counterfactual distributions.

Bjorn Sprungk
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Assume that two SCM ¢; and &, for X = (Xj, ..., Xy) induce strictly positive, continuous
conditional densities

px (x| pay) >0

VX, pa;vj=1,...,dVvi=1,2
and satisfy causal minimality. If

perX=R) _ pea(3-1)

Vj =1,...,d YN, with full support
then, €; and &, are interventionally equivalent.

= Equality of single-node intervention distributions yield interventionally equivalence

31 Bjorn Sprungk
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Proposition
Assume that two SCM ¢ and ¢ share the same noise distributions Py and differ only in the

kth structural assignment
f(Pay, k) = f(Pay, nk)  pa,vny with p(ny) > 0

where PA, c PA,. Then both SCMs are counterfactually equivalent.

= It suffices to consider (counterfactually) equivalent SCM which satisfies causal
minimality.

32 Bjorn Sprungk
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Falsifiability of SCM

* We view SCMs as models for real-world data-generating processes.

* We can then falsify probab. / intervent. models in the following way:
« if the induced observational distribution differs from given data (distribution)

« if some induced interventional distribution differs from the results of a corresponding
randomized experiment.

« Falsification of SCM via counterfactual distributions is, in general, hard in practice.
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