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Calculating Intervention Distributions by Covariate Adjustment
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Objective

Consider structural causal model C with associated DAG G

Xj = fj(PAj ,Nj), j = 1, . . . ,d

Recall: An intervention is a change of assignments of (some) Xk

Xk = fk(PAj ,Nj) ⇒ Xk = f̃k(P̃Aj , Ñj)

Goal: Compute intervention distributions

pC;do(X=x)
Y (y), X ,Y ∈ {X1, . . . ,Xd}, X ̸= Y .
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Identifiability

Definition
An intervention distribution pC;do(X=x)

Y (y) is identifiable if it can be computed from the
observational distribution, e.g., pC(x1, . . . , xd), and the graph structure G.

The observational distribution involves also conditional distributions pC
Xj
(xj | Xk = xk)

We will consider two different approaches to compute identifiable intervention
distributions:

1. by covariate adjustment

2. by the front-door formula (special case of do-calculus)
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A useful invariance and the manipulation formula

From the definition of structural causal models it follows for an SCM C that

pC (xj | PAj) = pC̃ (xj | PAj)

for any SCM C̃ that is contructed from C by intervening on (some) Xk , k ̸= j.

Using the Markov property and the above invariance we thus obtain

pC;do(Xk :=Ñk)(x1, . . . , xd) =
d∏

j=1
pC;do(Xk :=Ñk)

(
xj | paj

)
= p̃(xk)

∏
j ̸=k

pC
(

xj | paj

)

where p̃ denotes density of Ñk
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Special and important case:

pC;do(Xk :=x)(x1, . . . , xd) =

{∏
j ̸=k pC

(
xj | paj

)
, if xk = x,

0, else.

For so-called “source nodes” ,i.e., nodes with parents we can now show that
intervening is equal to conditioning: Let X1 be a source node, then

pC;do(X1:=x)(x1, . . . , xd) = 1{x}(x1)
∏
j ̸=k

pC
(

xj | paj

)

=
pC(x1 | X1 = x)

∏
j ̸=k pC

(
xj | paj

)
pC(x1 | X1 = x)

= pC(x1, . . . , xd | X1 = x)

7 Björn Sprungk

Covariate Adjustment, Do-Calculus, and Equivalence



Example: Kidney stones

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.

Let Z be size of stone, T kind of treatment, and R the recovery (all binary).

Let us compute
PC;do(T=a)(R = 1), PC;do(T=b)(R = 1)
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We have with Ca := C; do (T = a)

PCa(R = 1) =
∑

t=a,b;z=0,1
PCa(R = 1,T = t,Z = z)

=
∑

z=0,1
PCa(R = 1,T = a,Z = z)

And by the manipulation theorem

PCa(R = 1,T = a,Z = z) = PC(R = 1 | T = a,Z = z) PC(Z = z)

In summary

PCa(R = 1) =
∑

z=0,1
PC(R = 1 | T = a,Z = z) PC(Z = z)
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We can then estimate

PCa(R = 1) ≈ 0.93 · 357
700 + 0.73 · 343

700 = 0.832, PCb(R = 1) ≈ 0.782

Average causal effect

PC;do(T=a)(R = 1)− PC;do(T=b)(R = 1) ≈ 0.05

significantly different from

PC(R = 1 | T = a)− PC(R = 1 | T = b) = 0.78 − 0.83 = −0.0510 Björn Sprungk
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Remark

This simple three-node example illustrates nicely the difference between intervention
and conditioning:

pC;do(X :=x)
R (r) =

∑
z

pC
R(r | X = x,Z = z) pC

Z (z)

̸=
∑

z
pC

R(r | X = x,Z = z) pC
Z (z | X = x)

= pC
R(r | X = x)

We now generalize the observation from the example
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Adjustment formula
Definition
Let C be an SCM over nodes V with a directed path from X to Y , X ,Y ∈ V. The causal
effect from X to Y is called confounded if

pC;do(X=x)
Y (y) ̸= pC

Y (y | X = x) ∀x, y.

Otherwise, it is called unconfounded.

Definition
Let C be an SCM over nodes V and let X ,Y ∈ V where Y /∈ PAX . We call Z ⊂ V \ {X ,Y} a
valid adjustment set for the ordered pair (X ,Y ) if

pC;do(X=x)
Y (y) =

∑
z

pC
Y (y | X = x,Z = z) pC

Z (z) ∀x, y.
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When is an adjustment set valid?
For any Z ⊂ V \ {X ,Y} we have

pC;do(X=x)
Y (y) =

∑
z

pC;do(X=x)
(Y ,Z) (y, z)

=
∑

z
pC;do(X=x)

Y (y | X = x,Z = z) pC;do(X=x)
(X ,Z) (x, z)

=
∑

z
pC;do(X=x)

Y (y | X = x,Z = z) pC;do(X=x)
Z (z)

Thus, we require

pC;do(X=x)
Y (y | X = x,Z = z) = pC

Y (y | X = x,Z = z),
pC;do(X=x)Z(z) = pC

Z (z)

13 Björn Sprungk

Covariate Adjustment, Do-Calculus, and Equivalence



A sufficient graphical condition
Recall the augmentation of an SCM C and DAG G by binary “intervention variables” Ik
denoting that an intervention Xk = xk takes place, i.e.,

Ik = NIk , NIk ∼ Bernoulli(0.5),

Xk =

{
fk(PAk ,Nk), if Ik = 0
xk , if Ik = 1.

In the augmented DAG G∗ the Ik are parentless nodes pointing directly to Xk

Then, recall Markov property

Y ⊥⊥G∗ Ik | Z =⇒ Y ⊥⊥ Ik | Z

=⇒ pC∗

Y (y | Z = z) = pC∗

Y (y | Z = z, Ik = 1) = pC∗;do(Xk=xk)
Y (y | Z = z)
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Thus, let I denote the intervention variable for do (X = x). Then, if

Y ⊥⊥G∗ I | X ,Z and Z ⊥⊥G∗ I

we have the desired properties

pC;do(X=x)
Y (y | X = x,Z = z) = pC

Y (y | X = x,Z = z), pC;do(X=x)Z(z) = pC
Z (z).

Example:
G

⇒

G∗
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Special valid adjustments
Parent adjustment Back-door adjustment

Z = PAX

Z contains no descendant of X and
Z blocks all “back-door” paths from X to
Y , i.e., paths that start with an incoming
arrow.
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General adjustment criterion

Proposition (Shpitser et al., 2010)
Let C be an SCM over nodes V and let X ,Y ∈ V where Y /∈ PAX . Any Z ⊂ V \ {X ,Y} with

Z contains no descendant of any node W ̸= X on a directed path from X to Y

and Z blocks all non-directed paths from X to Y
is a valid adjustment set for (X ,Y ).

This graphical criterion is sufficient and necessary: if Z does not satisfy this criterion,
then there exists SCM with same DAG G where Z is not valid for (X ,Y ).

Parent is a special back-door adjustment and back-door is also special case of this
general criterion.
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Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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Front-door adjustment and do-calculus
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Motivation
Often not all variables in a SCM are observable. This limits the application of covariate
adjustment.

Example: Assume U is not observable, then PC;do(X=x)
Y is not computable by

(observable) covariate adjustment (back-door adjustment: Z = {U})

Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.
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Front-door adjusment
Based on the manipulation formula we have

pC;do(X=x)
Y (y) =

∑
u,x̃,z

pC;do(X=x)(u, x̃, z, y) =
∑
u,z

pC
Y (y | U = u,Z = z) pC

Z (z | X = x) pC
U(u)

=
∑

z
pC

Z (z | X = x)
∑

u
pC

Y (y | U = u,Z = z) pC
U(u)

Now, we apply the back-door adjustment to rewrite

pC;do(Z=z)
Y (z) =

∑
u

pC
Y (y | U = u,Z = z) pC

U(u)

But applying by applying the other back-door adjustment we also have

pC;do(Z=z)
Y (z) =

∑
x̃

pC
Y (y | X = x̃,Z = z) pC

X (x̃)
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Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

We, thus, obtain the front-door adjustment

pC;do(X=x)
Y (y) =

∑
z,x̃

pC
Y (y | X = x̃,Z = z) pC

X (x̃) pC
Z (z | X = x)

This can be computed from observable variables
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Definition
Let C be an SCM over nodes V and let X ,Y ∈ V where Y /∈ PAX . A set Z ⊂ V \ {X ,Y}
satisfies the front-door criterion relative to (X ,Y ) if
1. Z intercepts all directed paths from X to Y .
2. There is no back-door path from X to Z.
3. All back-door paths from Z to Y are blocked by X .

Proposition
If Z satisfies the front-door criterion relative to (X ,Y ) and if pC

(X ,Z(x, z) > 0 for all x, z, then
the causal effect of X on Y is identifiable and is given by

pC;do(X=x)
Y (y) =

∑
z

pC
Z (z | X = x)

∑
x̃

pC
Y (y | X = x̃,Z = z) pC

X (x̃)
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Example: Smoking

Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

Tobacco industry: The table proves the beneficial effect of smoking!

Antismoking lobbyists: Smoking would actually increase your risk of lung cancer,
since smoking obviously is building up the chance of tar deposits.

Who’s right?
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Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

Let us compute the (average) causal effect of smoking on getting lung cancer!

By front-door adjustment we have

PC;do(X=x)(Y = 1) =
1∑

z=0
PC(Z = z | X = x)

1∑
x̃=0

PC(Y = 1 | X = x̃,Z = z) PC(X = x̃)
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Source: Pearl et al. Causal Inference in Statistics. Wiley, 2016.

PC;do(X=0)(Y = 1) = 0.95 [0.9 · 0.5 + 0.1 · 0.5] + 0.05 [0.95 · 0.5 + 0.15 · 0.5] = 0.5025

PC;do(X=1)(Y = 1) = 0.05 [0.9 · 0.5 + 0.1 · 0.5] + 0.95 [0.95 · 0.5 + 0.15 · 0.5] = 0.5475

0.045 = PC;do(X=1)(Y = 1)− PC;do(X=0)(Y = 1)

− 0.755 = PC(Y = 1 | X = 1)− PC(Y = 1 | X = 0)
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Do-Calculus

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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Equivalence and Falsifiability of Causal Models
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Equivalence
Probabilistic models: able to predict observational distribution of X = (X1, . . . ,Xd)

Interventional models: able to predict any interventional distribution of
X = (X1, . . . ,Xd) (e.g., causal graphical models)

Counterfactual models: able to predict any counterfactual distribution of
X = (X1, . . . ,Xd) (e.g., SCM)

Definition
We consider two SCM C1 and C2 as

probabilistically / interventionally / counterfactually equivalent

if the entail the same observational / observational + intervention / observational +
intervention + counterfactual distributions.
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Proposition
Assume that two SCM C1 and C2 for X = (X1, . . . ,Xd) induce strictly positive, continuous
conditional densities

pCi
Xj
(xj | paj) > 0 ∀xj ,paj ∀j = 1, . . . ,d ∀i = 1,2

and satisfy causal minimality. If

PC1;do(Xj=Ñj)
X = PC2;do(Xj=Ñj)

X ∀j = 1, . . . ,d ∀Ñj with full support

then, C1 and C2 are interventionally equivalent.

⇒ Equality of single-node intervention distributions yield interventionally equivalence
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Proposition
Assume that two SCM C and C̃ share the same noise distributions PN and differ only in the
kth structural assignment

fk(pak ,nk) = f̃k(p̃ak ,nk) ∀pak∀nk with p(nk) > 0

where P̃Ak ⊂ PAk . Then both SCMs are counterfactually equivalent.

⇒ It suffices to consider (counterfactually) equivalent SCM which satisfies causal
minimality.
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Falsifiability of SCM

We view SCMs as models for real-world data-generating processes.

We can then falsify probab. / intervent. models in the following way:

if the induced observational distribution differs from given data (distribution)

if some induced interventional distribution differs from the results of a corresponding
randomized experiment.

Falsification of SCM via counterfactual distributions is, in general, hard in practice.
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