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1. Counterfactuals



Definition (Counterfactuals)

Consider SCM C := (S, PN) over nodes X. Given some observations x, we define a counterfactual
SCM by replacing the distribution of noise variables:

CX=x := (S, PC|X=x
N ), P

C|X=x
N := PN|X=x

The new set of noise variables need not to be jointly independent anymore. Counterfactual statements
can now be seen as do-statements in the new counterfactual SCM.

We restrict counterfactuals to the discrete case, that is, when the noise distribution has a
probability mass function.

The definition can be generalized such that we observe not the full vector X = x but only some of
the variables.

Counterfactual statements depend strongly on the structure of the SCM



Example : Consider the following SCM:

X := NX

Y := X2 +NY

Z := 2 · Y +X +NZ

with NX , NY , NZ ∼ U({−5,−4, . . . , 4, 5}) iid. Now, assume that we observe (X,Y, Z) = (1, 2, 4).

Then P
C|X=x
N puts a point mass on (NX , NY , NZ) = (1, 1,−1) because here all noise terms can be uniquely

reconstructed from the observations.

We therefore have the counterfactual statement (in the context of (X,Y, Z) = (1, 2, 4)): "Z would have been 11
had X been (set to) 2." Mathematically, this means that PC|X=x;do(X:=2)

Z has a point mass on 11.
In the same way, we obtain "Y would have been 5, had X been 2," and "Z would have been 10, had Y been 5."



Example : Let N1, N2 ∼ Ber(0.5) and N3 ∼ U({0, 1, 2}), such that the three variables are jointly independent.
We define two different SCMs.

CA:

X1 := N1

X2 := N2

X3 := (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 ̸=X2 +N3 · 1X1=X2

CB :

X1 := N1

X2 := N2

X3 := (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 ̸=X2 + (2−N3) · 1X1=X2

Both SCMs induce the same graph and entail the same observational distribution as well as the same
intervention distributions (for any possible intervention). But the two models differ in a counterfactual statement.

Suppose, we have an observation (X1, X2, X3) = (1, 0, 0) and we are interested in the counterfactual question:
What would X3 have been if X1 had been 0? Then CA and CB predict different values for X3 (0 and 2, resp.).



Remark:

1. Counterfactual statements are not transitive. Consider first example of this talk. Given observation
(X,Y, Z) = (1, 2, 4):

"Y would have been 5, had X been 2",
"Z would have been 10, had Y been 5",

But
"Z would have not been 10, had X been 2".

2. Humans often think in counterfactuals: "Do you remember our flight to New York on September
11, 2000? Imagine if we would have taken the flight one year later!"



2. Markov Property



Definition (Markov property)

Given a DAG G and a joint distribution PX , this distribution is said to satisfy
(i) the global Markov property with respect to the DAG G if

∀ disjoint vertex sets A,B,C : A ⊥⊥G B|C =⇒ A ⊥⊥ B|C

(ii) the local Markov property with respect to the DAG G if each variable is independent of its
non-descendants (without the parents of the variable) given the parents of the variable

(iii) the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . , xd) =

d∏
j=1

p(xj |paG
j )

For this, we have to assume that PX has a density p.

Theorem (Equivalence of Markov properties)

If PX has a density p, then all Markov properties in the definition above are equivalent.



Example : A distribution PX1,X2,X3,X4 is Markovian with respect to the following graph G

if, according to (i) or (ii),

X2 ⊥⊥ X3|X1 and X4 ⊥⊥ X1|X2, X3

or, according to (iii),

p(x1, x2, x3, x4) = p(x3)p(x1|x3)p(x2|x1)p(x4|x2, x3).



The Markov condition relates statements about graph separation to conditional independences.
We will now see,in which case different graphs encode the exact same set of conditional
independences.

Definition (Markov equivalence of graphs)

We denote by M(G) the set of distributions that are Markovian with respect to G:

M(G) := {P : P satisfies the global (or local) Markov property with respect to G}.

Two DAGs G1 and G2 are Markov equivalent if M(G1) = M(G2). This is the case if and only if G1 and
G2 satisfy the same set of d-separations.

The set of all DAGs that are Markov equivalent to some DAG is called Markov equivalence class of G.
It can be represented by a completed PDAG that is denoted by CPDAG(G) = (V, E).



Definition
Let G = (V, E) be a graph with nodes V and edges E ⊂ V2 with (v, v) /∈ E for any v ∈ V.

Three nodes are called an immorality or a v-structure if one node is a child of the two others that
themselves are not adjacent.
The skeleton of G does not take the directions of the edges into account. It is the graph (V, Ẽ) with
(i, j) ∈ Ẽ , if (i, j) ∈ E or (j, i) ∈ E .

Lemma (Markov equivalence of graphs)

Two DAGs G1 and G2 are Markov equivalent if and only if they have the same skeleton and the same
immoralities.

Example of two Markov equivalent graphs (left and middle) and corresponding CPDAG (right):



Definition (Markov blanket)

Consider a DAG G = (V, E) and a target node Y . The Markov blanket of Y is the smallest set M such
that

Y ⊥⊥G V \ ({Y } ∪M) given M.

If PX is Markovian with respect to G, then

Y ⊥⊥ V \ ({Y } ∪M) given M.

Proposition (Markov blanket)

Consider a DAG G and a target node Y . Then, the Markov blanket M of Y includes its parents, its
children, and the parents of its children

M = PAY ∪ CHY ∪ PACHY



Example : Consider the follwing graph

Figure 1: Visweswaran, Cooper, Learning Instance-Specific Predictive Models, JMLR, 2010

Y = X6, PAY = {X2, X3}, CHY = {X8, X9} PACHY
= {X5, X7}

=⇒ M = {X2, X3, X5, X7, X8, X9}



Recall Reichenbach’s common cause principle: When X and Y are dependent, there must be a
"causal explanation" for this dependence:

(i) X is causing Y , or
(ii) Y is causing X, or
(iii) there is a (possibly unobserved) common cause Z that causes both X and Y .
But, we have no further specified the meaning of the word "causing". In the following proposition we
use a weak notion of "causing", namely the existence of a directed path.



Proposition (Reichenbach’s common caus principle)

Assume that any pair of variables X and Y can be embedded into a larger system in the following
sense. There exists a correct SCM over the collection X of random variables that contains X and Y
with graph G.
If X and Y are (unconditionally) dependent, then there is

(i) either a directed path from X to Y , or
(ii) from Y to X, or
(iii) there is a node Z with a directed path from Z to X and from Z to Y .



Berkson’s paradox : "Why are handsome men such jerks?" (Ellenberg example).

Figure 2: linkedin.com



Berkson’s paradox : "Why are handsome men such jerks?" (Ellenberg example).

Figure 3: linkedin.com



Proposition (SCMs imply Markov property)

Assume that PX is induced by an SCM with graph G. Then, PX is Markovian with respect to G.

The assumption that a distribution is Markovian w.r.t. the causal graph is sometimes called the
causal Markov condition. For us, causal graphs are induced by the underlying SCM.
For defining intervention distributions, it usually suffices to have knowledge of the observational
distribution and the graph structure (next talk).

Therefore, we define a causal graphical model as a pair that consists of a graph and an observational
distribution s.t. the distribution is Markovian w.r.t. the graph (causal Markov condition).



Definition (Causal graphical model)

A causal graphical model over random variables X = (X1, . . . , Xd) contains a graph G and a collection
of functions fj(xj , xPAG

j
) that integrate to 1:∫

fj(xj , xPAG
j
) dxj = 1.

These functions induce a distribution PX over X via

p(x) = p(x1, . . . , xd) =

d∏
j=1

fj(xj , xPAG
j
)

and thus play the role of conditionals: fj(xj , xPAG
j
) = p(xj |xPAG

j
).

If a distribution PX over X is Markovian with respect to a graph G and allows for a strictly positive,
continuous denisty p, the pair (G, PX) defines a causal graphical model by fj(xj , xPAG

j
) := p(xj |xPAG

j
).

Why primarily work with SCMs and not just with causal graphical models? Because SCMs contain
strictly more information than their corresponding graph and law (e.g. counterfactual statements).



3. Faithfulness and Causal Minimality



Definition (Faithfulness and causal minimality)

Consider a distribution PX and a DAG G.
(i) PX is faithful to the DAG G if

∀ disjoint vertex sets A,B,C : A ⊥⊥ B|C =⇒ A ⊥⊥G B|C

(ii) A distribution satisfies causal minimality w.r.t. G if it is Markovian w.r.t. G, but not to any proper
subgraph of G.

Part (i) posits an implication that is the opposite of the global Markov condition

A ⊥⊥G B|C =⇒ A ⊥⊥ B|C

There might be a distribution that is Markovian but not faithful w.r.t. a given DAG (see next example).



Violation of faithfulness : Consider the follwing figure.

G1 : X := NX ,

Y := aX +NY ,

Z := cX + bY +Nz,

with NX ∼ N (0, σ2
X), NY ∼ N (0, σ2

Y ) and NZ ∼ N (0, σ2
Z) jointly independent. Now if

a · b+ c = 0,

the distribution is not faithful with respect to G1 since we obtain X ⊥⊥ Z, but X ⊥̸⊥G Z | ∅.



In general, causal minimality is weaker than faithfulness.

Proposition (Faithfulness implies causal minimality)

If PX is faithful and Markovian w.r.t. G, then causal minimality is satisfied.

We can also find a statement with equvialence for causal minimality. This is the case, if there is no
node, that is conditionally independent of any of its parents, given the remaining parents.

Proposition (Equivalence of causal minimality)

Consider X = (X1, . . . , Xd) and assume that the joint distribution has a density w.r.t. a product
measure. Suppose, PX is Markovian w.r.t. G. Then: PX satisfies causal minimality w.r.t. G if and only if

∀Xj∀Y ∈ PAG
j : Xj ⊥̸⊥ Y |PAG

j \ {Y }.
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