Skip to main content

Teaching in the winter semester 2023/24:

  • Exercises on Analysis 1, see OPAL
  • Exercises on Analysis 3, see OPAL
  • Exercises on Function Theory, see OPAL
  • Exercises on Mathematics for Engineers, see OPAL
  • Lecture and exercises on Ordinary Differential Equations for Scientists, see OPAL

12. 7. 1975Born in Karl-Marx-Stadt
1982-1990Pestalozzi-OS Limbach-Oberfrohna
1990-1994   Special school Chemnitz, later Johannes-Kepler-Gymnasium
1994-1999Studies of Applied Mathematics at the TU Bergakademie Freiberg
1998-1999Civilian service at the cemetery of Oberfrohna
1999-2005Research assistant at the Institute for Applied Analysis at the TU Bergakademie Freiberg
2001Defense of PhD thesis,  supervisor: Prof. Elias Wegert
2005-2008Research assistant at the TU Munich
since 2008Research assistant at the Institute of Applied Analysis at the TU Bergakademie Freiberg


  • Semmler, G. Nonlinear Riemann-Hilbert problems. TU Bergakademie Freiberg, 2005. [download]

Diploma thesis

  • Semmler, G. Nonlinear Riemann-Hilbert problems with continuous restriction curves. TU Bergakademie Freiberg, 1999.


  • P. Junghanns, G. Semmler, U. Weber and E. Wegert: Nonlinear singular integral equations on a finite interval. Math. Meth. Appl. Sci. 24 (2001) 1275-1288.
  • G. Semmler and E. Wegert: Nonlinear Riemann-Hilbert problems and separation principles. Comput. Methods Funct. Theory 2 (2002) 175-190.
  • E. Wegert and G. Semmler: Nonlinear Riemann-Hilbert problems and boundary interpolation. Comput. Methods Funct. Theory 3 (2003) 179-199.
  • E. Wegert and G. Semmler: On the normality of topological target manifolds for Riemann-Hilbert problems. Topics in Analysis and its Applications (Ed. G.A. Barsegian and H.G.W. Begehr) Nato. Sci. ser. Math. Phys. Chem. 147 (2004) 61-68.
  • E. Wegert and G. Semmler: Boundary interpolation with finite Blaschke products. Comput. Methods Funct. Theory 6 (2006) 493-511.
  • G. Semmler: Complete interpolating sequences, the discrete Muckenhoupt condition, and conformal mapping. Ann. Acad. Sci. Fenn., Math. 35 (2010) 23-46. [download]
  • G. Semmler: Explicit Riemann-Hilbert problems in Hardy spaces. Math. Nachr. 284 (2010) 1099-1117. [download]
  • G. Semmler and E. Wegert: Phase plots of complex functions: a journey in illustration. Notices of the Amer. Math. Soc., 58 (2011) 768-780. [download]
  • B. Forster and G. Semmler: Growth estimates of Korevaar type for entire functions in generalised Bernstein spaces. Proceedings of SAMPTA 2011 (1-4)
  • B. Forster and G. Semmler: Entire functions in generalized Bernstein spaces and their growth behaviour. Sampling theory, a renaissance, 307-329, Appl. Numer. Harmon. Anal., 2015. [download]
  • G. Semmler and E. Wegert: About the Cover: Meromorphic Functions with Doubly Periodic Phase. Comput. Methods Funct. Theory 18 (2018) 1-7. [download]
  • G. Semmler and E. Wegert: Finite Blaschke products with prescribed critical points, Stieltjes polynomials, and moment problems. Analysis and Mathematical Physics 9 (2019) 221-249 [download]
  • U. Daepp, P. Gorkin, G. Semmler and E. Wegert: The Beauty of Blaschke Products In: Sriraman B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham, 2021. [download]