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Graph theoretical terminology

Definition

A digraph G = (V , E) consists of a set V of vertices (nodes) and a set of edges E with
E ⊆ V × V .

X1

X2 X3

X4 X5

X6

X7

When working with random variables X = (X1,X2, . . . ,Xn), we assume
V = {X1,X2, . . . ,Xn}.
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X1

X4 X5

X2 X3 X6

X7

A digraph without loops, i.e. edges (Xk ,Xk), is a simple digraph, “graph” for short.

A simple digraph without directed cycles is acyclic, a “DAG” for short.

A simple digraph without directed cycles of length at least 3 is an partially directed
acyclic graph, a “PDAG” for short.
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Let G = (V , E) be a digraph. The adjacency matrix AG = (ai ,j)
d
i ,j=1 is defined by

ai ,j =

{
1 if (Xi ,Xj) ∈ E ,
0 else.

For some vertex xk ∈ V , let PAG
k and CHG

k be the set of parents and children of k,
respectively, i.e.

PAG
k = {Xi ∈ V : (Xi ,Xk) ∈ E} and CHG

k = {Xi ∈ V : (Xk ,Xi ) ∈ E}.

Furthermore, ANG
k and DEG

k denote the sets of ancestors and descendants of k,
respectively, i.e.

ANG
k = {Xi ∈ V : Xi = Xj1 → Xj2 → . . .→ Xjℓ = Xk},

DEG
k = {Xi ∈ V : Xi = Xj1 ← Xj2 ← . . .← Xjℓ = Xk}.
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Theorem

If G = (V , E) is a digraph, the following assertions are equivalent:

(a) G is a DAG.

(b) There is a causal ordering (topological ordering), i.e. a permutation π : [d ]→ [d ]
such that π(i) < π(j) for all Xi ∈ V and all Xj ∈ DEG

i .

(c) For all k ∈ [d ], ANG
k ∩DEG

k = ∅ and Xk /∈ ANG
k ∪DEG

k .

(d) The eigenvalues of AG + Id are real and positive.

(e) There is a permutation π : [d ]→ [d ] such that aπ(i),π(j) = 0 if i ≥ j .
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Definition

Let A, B, and S be three pairwise disjoint vertex sets of G. The sets A and B are
d-separated by S , denoted by

A ⊥⊥G B | S ,

if, for every undirected A− B-path P : Xi1Xi2 . . .Xik ,

there is a vertex Xij ∈ S such that

(i) Xij−1
→ Xij → Xij+1

or
(ii) Xij−1

← Xij ← Xij+1
or

(iii) Xij−1
← Xij → Xij+1

or

there is a vertex Xij /∈ S such that Xij−1
→ Xij ← Xij+1

and there is no directed
Xij ← S-path.
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X2 X3X4 X6 X5

X1 X7

X1 ̸⊥⊥G X5 | X3

X1 ⊥⊥G X5 | X3,X4
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Structural Causal Models
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Definition

A structural causal model (SCM for short) C is a pair (S ,PN) that consists of

a set S of d structural assignments

Xj := fj(PAj ,Nj), j ∈ [d ]

where

PAj is an ℓj -tuple (Xi1 ,Xi2 , . . . ,Xiℓj
) of ℓj pairwise disjoint parents and

fj denotes a measurable causal-effect mechanism, and

a joint distribution PN = PN1 × PN2 × . . .× PNd
with “noise” random variables

N1,N2 . . . ,Nd on measurable spaces X1,X2, . . . ,Xd , respectively.
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Definition

The (causal) graph G of an SCM C has vertex set {X1,X2, . . . ,Xd} and edge set

{(Xi ,Xj) : Xi ∈ PAj}.

For Xi ∈ PAj , Xi is a direct cause of Xj and Xj is a direct effect of Xi .

In what follows we assume that the causal graph of an SCM C is a DAG.
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Example

C := ({(1), (2), (3), (4)},PN) with

X1 := 5 · X3 + N1 (1)

X2 := 3 · X1 + N2 (2)

X3 := N3 (3)

X4 := X2 + X3 + N4 (4)

PN = PN1 × PN2 × PN3 × PN4

Ni ∼ N(µi , σ
2
i )

X3 X1 X2 X4
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Benefits

SCMs are the key for formalizing causal reasoning and causal learning

SCMs entail observational distribution and intervention distribution and
counterfactuals.

J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference, MIT Press, 2017
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Entailed Distribution

Proposition

An SCM C yields a unique entailed distribution PC
X (PX for short).

Sketch of a proof:


X1

X2
...
Xd

 :=


f1((f2(N2), f5(N5)),N1)

f2(N2)
...

fd(f2(N2),N1)


PN = PN1 × PN2 × . . .× PNd
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Structural minimality

C′ := ({(1), (2), (3), (4)},PN) with

X1 := 5 · X3 + N1 (1)

X2 := 0 · X3 + 3 · X1 + N2 (2)

X3 := N3 (3)

X4 := X2 + X3 + N4 (4)

PN = PN1 × PN2 × PN3 × PN4

Ni ∼ N(µi , σ
2
i )

X3 X1 X2 X4
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Definition

Let C be an SCM with structural assignments Xj := fj(PAj ,Nj), j ∈ [d ]. If, for every
j ∈ [d ] and every tuple PA⋆

j ⊊ PAj , there is no measurable function g such that

fj(PAj ,Nj) = g(PA⋆
j ,Nj) almost surely,

then C satisfies structural minimality.

Proposition

Given an SCM C, we can uniquely structural minimize C.

Convention

Given an SCM C, we assume that C satisfies structural minimality.

Causal minimality implies structural minimality but not (necessarily) vice versa
(↗ talk K. Bitterlich).
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Sidenote – Linear SCMs whose causal graph is not a DAG

Let X = (X1,X2, . . . ,Xd) and N = (N1,N2, . . . ,Nd). The set S of structural
assignments for a linear SCM is described by

X := BX + N

for some d × d-matrix B.

If Id− B is invertible, then
X := (Id− B)−1N (1)

is a unique solution.

One way to interpret (1) is to interpret it as a solution to the equilibration process

X t = BX t−1 + N

with a sequence (X t) of random variables X t , t ≥ 1.

The sequence (X t) converges if B
t → (0) as t →∞.
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Interventions
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An intervention is (usually) a change of (one of) the assignments in the SCM

An intervention typically yields a different distribution – different from the
unintervened distribution.

Charig et al., Comparison of treatment of renal calculi by [. . . ]
British Medical Journal (Clin Res Ed), 292(6254):879–882, 1986.

What happens if the doctors force all patients to take treatment a?
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Definition

Let X = (X1,X2, . . . ,Xd) be finitely random variables, and C = (S ,PN) and
C̃ = (S̃ , P̃N) be two SCMs on X with acyclic causal graphs.

We say that the variables whose structural assignments differ in C and C̃ have been
intervened.

If Xk1 , . . . ,Xkℓ denote the intervened variables, then

C; do(Xk1 := f̃k1(P̃Ak1 , Ñk1), . . . ,Xkℓ := f̃kℓ(P̃Akℓ , Ñkℓ)) := C̃.

The distribution P C̃
X is also known as intervention distribution.

In what follows, we mainly consider P̃Aki = PAki and P̃Aki = ().
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Definition

If f̃ (P̃Aki , Ñki ) sets Xki to a specific value x , then we write

C; do(. . . ,Xki := x , . . .).

The intervention is called atomic (hard, ideal, structural, surgical, independent,
deterministic).

If P̃Aki = PAki , then the intervention is called imperfect (soft, parametric,
dependent, soft, mechanism change).
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C := ({(1), (2), (3)},PN) with

X1 := N1 (1)

X2 := X3 + N2 (2)

X3 := X1 + N3 (3)

N1,N3 ∼ N(0, 1), N2 ∼ N(0, 0.1)

X1 X3 X2

P
C;do(X2:=Ñ)
X3

= N(0, 2) = PC
X3
,

i.e. intervene on X1 does not chance the distribution of X3.

P
C;do(X1:=Ñ)
X3

= PÑ+N3
̸= PN1+N3 = PC

X3
assuming PÑ ̸= PN1 ,

i.e. intervene on X1 may chance the distribution of X3.

P
C;do(X2:=x)
X3

= PC
X3

= N(0, 2) ̸= PC
X3|X2=x2

,
i.e. intervention distribution may differ from conditional distribution.
Intervening on a good predictor for a target variable may leave the target variable
unaffected.
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I: ice cream sales H: heat strokes T: temperature

C := ({(1), (2), (3)},PN) with

T := NT (4)

H := fH(T ,NH) (5)

I := fI (T ,NI ) (6)

In C; do(I := ÑI ), we have
H := fH(NT ,NH),

which indicates that there is no causal effect from I to H.
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Definition

Let C be an SCM. There is a total causal effect from X1 to X2 if and only if, for some
random variable Ñ1 and the SCM C′ := C; do(X1 := Ñ1), we have

X1 ̸⊥⊥ X2.
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Total causal effect

Proposition

Let C be an SCM with causal graph G.
(i) If there is no directed X1 → X2-path in G, then there is no total causal effect.

(ii) If there is a directed X1 → X2-path in G, then there might be no total causal effect.

Sketch of the proof:

Proof for (i): ↗ talk K. Bitterlich:

A ⊥⊥G B | S ⇒ A ⊥⊥ B | S .

Furthermore,
X1 ⊥⊥G′ X2 | ∅

in the causal graph G′ of C; do(X1 := Ñ1).
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An example for (ii):

C := ({(1), (2), (3)},PN) with

X1 := N1 (1)

X2 := a · X1 + N2 (2)

X3 := −ab · X1 + b · X2 + N3 (3)

Ni ∼ N(0, σ2
i )

X1 X2 X3

X1 ⊥⊥ X3 but X1 ̸⊥⊥G X3 | ∅
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Alternative concepts of intervention

Proposition

Given an SCM C, the following assertions are equivalent:

(i) There is a total causal effect from X1 to X2.

(ii) If Ñ1 is a random variable whose distribution has full support, then, for the SCM
C′ := C; do(X1 := Ñ1), we have

X1 ̸⊥⊥ X2.

(iii) There is an x1 such that P
C;do(X1:=x1)
X2

̸= PC
X2

(iv) There is are x1, x
′
1 such that P

C;do(X1:=x1)
X2

̸= P
C;do(X1:=x ′1)
X2
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In what follows, we describe an alternative approach to formalize intervention
(atomic, on a single variable):

Let C be an SCM with causal graph G.
For each variable Xk , we insert a new variable Ik – a parentless variable with an
edge to Xk only – where

Im(Ik) = Im(Xk) ∪ {idle}.

Ik = idle means the variable has not been intervened and Ik = xk says that Xk is
set to xk .

Replace Xk := fk(PAk ,Nk) by

Xk :=

{
fk(PAk ,Nk) if Ik = idle,

Ij else

Add new noises N ′
1, . . . ,N

′
d such that N1,N

′
1, . . . ,Nd ,N

′
d are independent.

For each variable Ik , add a structural assignments Ij := f ′k(N
′
k).
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Remark

For the obtained SCM C⋆, we have

P
C,do(Xk :=xk )
Xj

= PC⋆

Xj |Ik=xk
.
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