

Multivariate Causal Models

Structural Causal Models (SCM) and Interventions

Christoph Brause Institute of Stochastics, TU Bergakademie Freiberg 22. Mai 2024

1. Graph Terminology

2. Structural Causal Models

3. Interventions

Graph Terminology

Christoph Brause Multivariate Causal Models

Graph theoretical terminology

Definition

A digraph $\mathcal{G} = (\mathbf{V}, \mathcal{E})$ consists of a set \mathbf{V} of vertices (nodes) and a set of edges \mathcal{E} with $\mathcal{E} \subseteq \mathbf{V} \times \mathbf{V}$.

• When working with random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$, we assume $\mathbf{V} = \{X_1, X_2, \dots, X_n\}$.

Christoph Brause

4

Multivariate Causal Models

- A digraph without loops, i.e. edges (X_k, X_k) , is a simple digraph, "graph" for short.
- A simple digraph without directed cycles is acyclic, a "DAG" for short.
- A simple digraph without directed cycles of length at least 3 is an partially directed acyclic graph, a "PDAG" for short.

Let $\mathcal{G} = (\mathbf{V}, \mathcal{E})$ be a digraph. The adjacency matrix $A_{\mathcal{G}} = (a_{i,j})_{i,j=1}^d$ is defined by

$$a_{i,j} = egin{cases} 1 & ext{if } (X_i, X_j) \in \mathcal{E}_i \ 0 & ext{else.} \end{cases}$$

For some vertex $x_k \in V$, let $PA_k^{\mathcal{G}}$ and $CH_k^{\mathcal{G}}$ be the set of parents and children of k, respectively, i.e.

$${\it PA}_k^{\mathcal{G}}=\{X_i\in {\it V}: (X_i,X_k)\in \mathcal{E}\} \ \ \, ext{and} \ \ \, {\it CH}_k^{\mathcal{G}}=\{X_i\in {\it V}: (X_k,X_i)\in \mathcal{E}\}.$$

Furthermore, $AN_k^{\mathcal{G}}$ and $DE_k^{\mathcal{G}}$ denote the sets of ancestors and descendants of k, respectively, i.e.

$$\mathbf{AN}_{k}^{\mathcal{G}} = \{X_{i} \in \mathbf{V} : X_{i} = X_{j_{1}} \to X_{j_{2}} \to \ldots \to X_{j_{\ell}} = X_{k}\},\$$
$$\mathbf{DE}_{k}^{\mathcal{G}} = \{X_{i} \in \mathbf{V} : X_{i} = X_{j_{1}} \leftarrow X_{j_{2}} \leftarrow \ldots \leftarrow X_{j_{\ell}} = X_{k}\}.$$

Theorem

If $\mathcal{G} = (\mathbf{V}, \mathcal{E})$ is a digraph, the following assertions are equivalent: (a) \mathcal{G} is a DAG.

- (b) There is a causal ordering (topological ordering), i.e. a permutation $\pi: [d] \to [d]$ such that $\pi(i) < \pi(j)$ for all $X_i \in \mathbf{V}$ and all $X_j \in \mathbf{DE}_i^{\mathcal{G}}$.
- (c) For all $k \in [d]$, $\boldsymbol{AN}_k^{\mathcal{G}} \cap \boldsymbol{DE}_k^{\mathcal{G}} = \emptyset$ and $X_k \notin \boldsymbol{AN}_k^{\mathcal{G}} \cup \boldsymbol{DE}_k^{\mathcal{G}}$.
- (d) The eigenvalues of $A_{\mathcal{G}} + \mathrm{Id}$ are real and positive.
- (e) There is a permutation $\pi \colon [d] \to [d]$ such that $a_{\pi(i),\pi(j)} = 0$ if $i \ge j$.

Let A, B, and S be three pairwise disjoint vertex sets of G. The sets A and B are d-separated by S, denoted by

 $\boldsymbol{A} \perp \!\!\!\perp_{\mathcal{G}} \boldsymbol{B} \mid \boldsymbol{S},$

if, for every undirected $\boldsymbol{A} - \boldsymbol{B}$ -path $P: X_{i_1}X_{i_2}\ldots X_{i_k}$,

- there is a vertex $X_{i_i} \in \boldsymbol{S}$ such that
- (i) $X_{i_{j-1}} \rightarrow X_{i_j} \rightarrow X_{i_{j+1}}$ or (ii) $X_{i_{j-1}} \leftarrow X_{i_j} \leftarrow X_{i_{j+1}}$ or (iii) $X_{i_{j-1}} \leftarrow X_{i_j} \rightarrow X_{i_{j+1}}$ or
- there is a vertex $X_{i_j} \notin S$ such that $X_{i_{j-1}} \to X_{i_j} \leftarrow X_{i_{j+1}}$ and there is no directed $X_{i_j} \leftarrow S$ -path.

- $X_1 \not \perp_{\mathcal{G}} X_5 \mid X_3$
- $X_1 \perp\!\!\!\perp_{\mathcal{G}} X_5 \mid X_3, X_4$

Christoph Brause Multivariate Causal Models

Structural Causal Models

A structural causal model (SCM for short) \mathfrak{C} is a pair $(\boldsymbol{S}, P_{\boldsymbol{N}})$ that consists of

• a set \boldsymbol{S} of d structural assignments

 $X_j := f_j(\mathbf{PA}_j, N_j), \quad j \in [d]$

where

- PA_j is an ℓ_j -tuple $(X_{i_1}, X_{i_2}, \ldots, X_{i_{\ell_j}})$ of ℓ_j pairwise disjoint parents and
- f_i denotes a measurable causal-effect mechanism, and
- a joint distribution $P_N = P_{N_1} \times P_{N_2} \times \ldots \times P_{N_d}$ with "noise" random variables $N_1, N_2 \ldots, N_d$ on measurable spaces $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_d$, respectively.

The (causal) graph \mathcal{G} of an SCM \mathfrak{C} has vertex set $\{X_1, X_2, \ldots, X_d\}$ and edge set

 $\{(X_i, X_j): X_i \in \mathbf{PA}_j\}.$

For $X_i \in \mathbf{PA}_j$, X_i is a direct cause of X_j and X_j is a direct effect of X_i .

- In what follows we assume that the causal graph of an SCM $\mathfrak C$ is a DAG.

Example

$$\mathfrak{C} := (\{(1), (2), (3), (4)\}, P_{N}) \text{ with}
X_{1} := 5 \cdot X_{3} + N_{1}$$
(1)

$$X_{2} := 3 \cdot X_{1} + N_{2}$$
(2)

$$X_{3} := N_{3}$$
(3)

$$X_{4} := X_{2} + X_{3} + N_{4}$$
(4)

$$P_{N} = P_{N_{1}} \times P_{N_{2}} \times P_{N_{3}} \times P_{N_{4}}$$
(4)

$$P_{N} \sim N(\mu_{i}, \sigma_{i}^{2})$$

Benefits

- SCMs are the key for formalizing causal reasoning and causal learning
- SCMs entail observational distribution and intervention distribution and counterfactuals.

J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference, MIT Press, 2017

Entailed Distribution

Proposition

An SCM \mathfrak{C} yields a unique entailed distribution $P_{\mathbf{X}}^{\mathfrak{C}}$ ($P_{\mathbf{X}}$ for short).

Sketch of a proof:

$$\begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{pmatrix} := \begin{pmatrix} f_1((f_2(N_2), f_5(N_5)), N_1) \\ f_2(N_2) \\ \vdots \\ f_d(f_2(N_2), N_1) \end{pmatrix}$$

$$P_{\mathbf{N}} = P_{N_1} \times P_{N_2} \times \ldots \times P_{N_d}$$

Structural minimality

$$\mathfrak{C}' := (\{(1), (2), (3), (4)\}, P_{N}) \text{ with}
X_{1} := 5 \cdot X_{3} + N_{1} (1)
X_{2} := 0 \cdot X_{3} + 3 \cdot X_{1} + N_{2} (2)
X_{3} := N_{3} (3)
X_{4} := X_{2} + X_{3} + N_{4} (4)
P_{N} = P_{N_{1}} \times P_{N_{2}} \times P_{N_{3}} \times P_{N_{4}}
N_{i} \sim N(\mu_{i}, \sigma_{i}^{2})$$

Let \mathfrak{C} be an SCM with structural assignments $X_j := f_j(\mathbf{PA}_j, N_j)$, $j \in [d]$. If, for every $j \in [d]$ and every tuple $\mathbf{PA}_j^* \subsetneq \mathbf{PA}_j$, there is no measurable function g such that

 $f_j({\it PA}_j, {\it N}_j) = g({\it PA}_j^{\star}, {\it N}_j)$ almost surely,

then ${\mathfrak C}$ satisfies structural minimality.

Proposition

Given an SCM \mathfrak{C} , we can uniquely structural minimize \mathfrak{C} .

Convention

Given an SCM C, we assume that C satisfies structural minimality.

• Causal minimality implies structural minimality but not (necessarily) vice versa (↗ talk K. Bitterlich).

Christoph Brause

Multivariate Causal Models

Sidenote – Linear SCMs whose causal graph is not a DAG

• Let $\mathbf{X} = (X_1, X_2, \dots, X_d)$ and $\mathbf{N} = (N_1, N_2, \dots, N_d)$. The set \mathbf{S} of structural assignments for a linear SCM is described by

$$\boldsymbol{X} := B\boldsymbol{X} + \boldsymbol{N}$$

for some $d \times d$ -matrix B.

• If Id - B is invertible, then

$$\boldsymbol{X} := (\mathrm{Id} - B)^{-1} \boldsymbol{N}$$
 (1)

is a unique solution.

• One way to interpret (1) is to interpret it as a solution to the equilibration process

$$\boldsymbol{X}_t = B\boldsymbol{X}_{t-1} + \boldsymbol{N}$$

with a sequence (\boldsymbol{X}_t) of random variables \boldsymbol{X}_t , $t \geq 1$.

• The sequence (\boldsymbol{X}_t) converges if $B^t \to (0)$ as $t \to \infty$.

Christoph Brause

Interventions

- An intervention is (usually) a change of (one of) the assignments in the SCM
- An intervention typically yields a different distribution different from the unintervened distribution.

	Overall	Patients with small stones	Patients with large stones
Treatment <i>a</i> : Open surgery	78% (273/350)	93% (81/87)	73% (192/263)
Treatment <i>b</i> : Percutaneous nephrolithotomy	83% (289/350)	87% (234/270)	69% (55/80)

Charig et al., Comparison of treatment of renal calculi by [...] British Medical Journal (Clin Res Ed), 292(6254):879–882, 1986.

What happens if the doctors force all patients to take treatment a?

Let $\boldsymbol{X} = (X_1, X_2, \dots, X_d)$ be finitely random variables, and $\mathfrak{C} = (\boldsymbol{S}, P_N)$ and $\tilde{\mathfrak{C}} = (\tilde{\boldsymbol{S}}, \tilde{P}_N)$ be two SCMs on \boldsymbol{X} with acyclic causal graphs.

- We say that the variables whose structural assignments differ in $\mathfrak C$ and $\tilde{\mathfrak C}$ have been intervened.
- If $X_{k_1},\ldots,X_{k_\ell}$ denote the intervened variables, then

$$\mathfrak{C}; do(X_{k_1} := \tilde{f}_{k_1}(\widetilde{\boldsymbol{PA}}_{k_1}, \tilde{N}_{k_1}), \dots, X_{k_\ell} := \tilde{f}_{k_\ell}(\widetilde{\boldsymbol{PA}}_{k_\ell}, \tilde{N}_{k_\ell})) := \tilde{\mathfrak{C}}.$$

- The distribution $P_{\mathbf{X}}^{\tilde{\mathbf{c}}}$ is also known as intervention distribution.
- In what follows, we mainly consider $\widetilde{PA}_{k_i} = PA_{k_i}$ and $\widetilde{PA}_{k_i} = ()$.

• If $\tilde{f}(\widetilde{PA}_{k_i}, \tilde{N}_{k_i})$ sets X_{k_i} to a specific value x, then we write

$$\mathfrak{C}$$
; $do(\ldots, X_{k_i} := x, \ldots)$.

The intervention is called <u>atomic</u> (hard, ideal, structural, surgical, independent, deterministic).

• If $\widetilde{PA}_{k_i} = PA_{k_i}$, then the intervention is called imperfect (soft, parametric, dependent, soft, mechanism change).

$$\mathfrak{C}$$
 := ({(1), (2), (3)}, P_N) with

$$\begin{array}{rcl} X_1 & := & N_1 & (1) \\ X_2 & := & X_3 + N_2 & (2) \\ X_3 & := & X_1 + N_3 & (3) \end{array}$$

$$N_1, N_3 \sim N(0, 1), N_2 \sim N(0, 0.1)$$

•
$$P_{X_3}^{\mathfrak{C};do(X_2:=\tilde{N})} = N(0,2) = P_{X_3}^{\mathfrak{C}}$$
,
i.e. intervene on X_1 does not chance the distribution of X_3 .
• $P_{X_3}^{\mathfrak{C};do(X_1:=\tilde{N})} = P_{\tilde{N}+N_3} \neq P_{N_1+N_3} = P_{X_3}^{\mathfrak{C}}$ assuming $P_{\tilde{N}} \neq P_{N_1}$,
i.e. intervene on X_1 may chance the distribution of X_3 .
• $P_{X_3}^{\mathfrak{C};do(X_2:=x)} = P_{X_3}^{\mathfrak{C}} = N(0,2) \neq P_{X_3|X_2=X_2}^{\mathfrak{C}}$,

i.e. intervention distribution may differ from conditional distribution.

• Intervening on a good predictor for a target variable may leave the target variable unaffected.

Christoph Brause

I: ice cream sales H: heat strokes T: temperature

 $\mathfrak{C} := (\{(1), (2), (3)\}, P_N) \text{ with}$ $T := N_T (4)$ $H := f_H(T, N_H) (5)$ $I := f_I(T, N_I) (6)$

• In
$$\mathfrak{C}$$
; $do(I := ilde{N}_I)$, we have

 $H:=f_H(N_T,N_H),$

which indicates that there is no causal effect from I to H.

Let \mathfrak{C} be an SCM. There is a total causal effect from X_1 to X_2 if and only if, for some random variable \tilde{N}_1 and the SCM $\mathfrak{C}' := \mathfrak{C}$; $do(X_1 := \tilde{N}_1)$, we have

 $X_1 \not\perp X_2.$

Total causal effect

Proposition

Let $\mathfrak C$ be an SCM with causal graph $\mathcal G.$

(i) If there is no directed $X_1 o X_2$ -path in ${\mathcal G}$, then there is no total causal effect.

(ii) If there is a directed $X_1 \rightarrow X_2$ -path in \mathcal{G} , then there might be no total causal effect.

Sketch of the proof:

• Proof for (i): ↗ talk K. Bitterlich:

$$A \perp\!\!\!\perp_{\mathcal{G}} B \mid S \Rightarrow A \perp\!\!\!\perp B \mid S.$$

Furthermore,

$$X_1 \perp\!\!\!\perp_{\mathcal{G}'} X_2 \mid \emptyset$$

in the causal graph \mathcal{G}' of \mathfrak{C} ; $do(X_1:= ilde{N}_1)$.

Multivariate Causal Models

Christoph Brause

• An example for (ii):

 $\mathfrak{C} := (\{(1), (2), (3)\}, P_{N}) \text{ with} \\
X_{1} := N_{1} \qquad (1) \\
X_{2} := a \cdot X_{1} + N_{2} \qquad (2) \\
X_{3} := -ab \cdot X_{1} + b \cdot X_{2} + N_{3} \qquad (3) \\
N_{i} \sim N(0, \sigma_{i}^{2})$

$$X_1 \perp \!\!\perp X_3$$
 but $X_1 \not\perp_{\mathcal{G}} X_3 \mid \emptyset$

Alternative concepts of intervention

Proposition

Given an SCM \mathfrak{C} , the following assertions are equivalent:

- (i) There is a total causal effect from X_1 to X_2 .
- (ii) If \tilde{N}_1 is a random variable whose distribution has full support, then, for the SCM $\mathfrak{C}' := \mathfrak{C}$; $do(X_1 := \tilde{N}_1)$, we have

$$X_1 \not\perp X_2.$$

(iii) There is an x_1 such that $P_{X_2}^{\mathfrak{C};do(X_1:=x_1)} \neq P_{X_2}^{\mathfrak{C}}$ (iv) There is are x_1, x_1' such that $P_{X_2}^{\mathfrak{C};do(X_1:=x_1)} \neq P_{X_2}^{\mathfrak{C};do(X_1:=x_1')}$

In what follows, we describe an alternative approach to formalize intervention (atomic, on a single variable):

- Let \mathfrak{C} be an SCM with causal graph $\mathcal{G}.$
- For each variable X_k , we insert a new variable I_k a parentless variable with an edge to X_k only where

$$\operatorname{Im}(I_k) = \operatorname{Im}(X_k) \cup \{ \mathtt{idle} \}.$$

 $I_k = \text{idle}$ means the variable has not been intervened and $I_k = x_k$ says that X_k is set to x_k .

• Replace $X_k := f_k(\mathbf{PA}_k, N_k)$ by

$$X_k := egin{cases} f_k({oldsymbol{PA}}_k, N_k) & ext{if } I_k = ext{idle}, \ I_j & ext{else} \end{cases}$$

- Add new noises N'_1, \ldots, N'_d such that $N_1, N'_1, \ldots, N_d, N'_d$ are independent.
- For each variable I_k , add a structural assignments $I_j := f'_k(N'_k)$.

Christoph Brause

29

Multivariate Causal Models

Remark

For the obtained SCM C^* , we have

$$\mathcal{P}_{X_j}^{\mathfrak{C},do(X_k:=x_k)} = \mathcal{P}_{X_j|I_k=x_k}^{\mathfrak{C}^\star}.$$

