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Potential Outcomes. Description & Examples

Potential Outcomes is an alternative approach to causal inference For
the illustration purposes let us consider the Example 3.4

Example 3.4 Eye disease

There exists a rather effective treatment for an eye disease.
For 99% of all patients, the treatment works and the patient gets
cured (B =0);
if untreated, these patients turn blind within a day (B = 1).
For the remaining 1%, the treatment has the opposite effect and they
turn blind (B = 1) within a day. If untreated, they regain normal
vision (B = 0).
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Potential Outcomes. Description & Examples

1 Consider u=1,...n a group of n patients instead of random variables
2 Assign two potential outcomes to each patient u:

▶ Bu(t = 1) = 1 - patient would go blind
if receives treatment (T = 1)

▶ Bu(t = 1) = 0 - patient would
get cured if receives treatment (T = 1)

Analogously :
▶ Bu(t = 0) = 1 - patient would go blind
if receives no treatment (T = 0)

▶ Bu(t = 0) = 0 - patient would
get cured if receives no treatment (T = 0)
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Remarks

Both of these potential outcomes are assumed to be deterministic.

If Bu(t = 1) = 0 or Bu(t = 0) = 1 the treatment has a positive effect
on u

In practice one can not check these assumptions.
According to the “fundamental problem of causal inference” [Holland,
1986], for each unit u we can observe either Bu(t = 1) or Bu(t = 0)
and never both of them at the same time.

One can observe only one of the potential outcomes; the unobserved
quantity becomes a counterfactual.
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Potential Outcomes. Description & Examples

Figure 1: Table for the Example 3.4 using potential outcomes. For each patient u,
we observe only one of the two potential outcomes. The observed information has
a gray background.
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Potential Outcomes. Description & Examples

To justify latter results one needs to fulfill the stable unit treatment
value assumption (SUTVA)

1 The units do not interfere (e.g., the potential outcome of a unit
does not depend on which treatment any other unit received)

2 The potential outcomes do not depend on how or why
the treatment has been received.

SUTVA is satisfied when the data are generated from an SCM
For this example,we have sampled 200 i.i.d. units using Bernoulli
distributions NT ∼ Ber (0.6) and NB ∼ Ber (0.01). The i.i.d. assumption
implies that the units do not interfere with each other and modularity
(intervening on T changes only the structural assignment for T ) yields
that the way the treatment is taken does not influence the result
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Potential Outcomes. Description & Examples

The potential outcomes tell us the effect of a treatment on an individual
basis;

Unit-Level Causal Effect

ULCE = Bu(t = 1) − Bu(t = 0) (1)

Average Causal Effect

CE =
1
n

n

∑
u=1

Bu(t = 1) − Bu(t = 0) (2)
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Potential Outcomes. Description & Examples

The “fundamental problem of causal inference” prevents us from
computing (2) directly.
Assume that in a completely randomized experiment, units
u ∈ Uo ⊂ {1, ...n} received no treatment T=0 and u ∈ U1 = U

C
o

received treatment T=1

Unbiased Estimator for CE

ĈE ∶=
1

#U1
∑
u∈U1

Bu(t = 1) − 1

#U0
∑
u∈U0

Bu(t = 0) (3)
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Remarks

The randomness in ĈE comes from the random assignments
that determine, which of the unit’s two potential outcomes we
observe;

The outcomes themselves are considered hidden, not random.

Note that (3) contains only observed quantities
and can therefore be computed after the study has been conducted
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Relation between Potential Outcomes and SCMs

In SCMs, we can represent potential outcomes using the language of
counterfactuals. Recall the definition of the SCM:

SCM C for the eye disease

T = NT

B = T ⋅NB + (1 − T) ⋅ (1 −NB)

Konstantin Ibadullaev Potential Outcomes & Structure Identifiability 19.06.2024 11 / 29



Relation between Potential Outcomes and SCMs

For example, patient 43 has NT = 1 and NB = 0, while patient 44 has
NT = 0 and NB = 1. That is two terms t = 0 and t = 1 correspond to
interventions on T. Summarizing, we have the following

SCM C for the eye disease

Bu(t = t̃)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

potential outcome

= B in SCM C∣N = nu do(T ∶= t̃)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

counterfactual SCM

where nu characterizes unit u [Pearl, 2009, Equation (3.51)]. Since
in the counterfactual SCM all noise terms are deterministic, the en-
tailed distribution of B is degenerate, too, and B is deterministic (as
required)
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Relation between Potential Outcomes and SCMs

According to Pearl [2009, 7.3.1] and Halpern [2000] if certain
properties(axioms) hold for both SCMs and potential outcomes
frameworks, it can be shown that these properties are complete for
counterfactual SCMs.

We can conclude that any theorem that holds for counterfactual SCMs
holds in the world of potential outcomes and vice versa.
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Relation between Potential Outcomes and SCMs

The two worlds differ in their language. Even if every theorem holds true
in both frameworks, some theorems might be “easier” to prove in one
world than in the other.

Working with settings, in which the average causal effect is zero
but the individual causal effects are non-zero, seems to be easier
for potential outcomes.

The graphical representation of SCMs, on the other hand,
might be beneficial to exploit assumptions on the causal relations
between random variables

Richardson and Robins [2013] propose to use single world
intervention graphs. These graphs allow us to set variables to
certain values and therefore construct graphical correspondences to
counterfactual variables.
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Structure Identifiability

Problem:The class of SCMs is too flexible. Given a distribution PX

over random variables X = (X1, ...,Xd ), can different SCMs entail this
distribution?
Answer: indeed, usually for many different graph structures,
there is an SCM that induces the distribution PX.

Proposition 7.1 (Non-uniqueness of graph structures)

Consider a random vector X = (X1, ...,Xd ) with distribution PX

that has as density with respect to Lebesgue measure and assume it is
Markovian with respect to G. Then there exists an SCM C = (S,PN)
with graph G that entails the distribution PX
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Structure Identifiability

Proposition 4.1 (Non-uniqueness of graph structures)

For every joint distribution PX,Y of two real-valued variables, there
is an SCM

Y = fY (X ,NY ), X ⫫ Y

where fY is a measurable function and NY is a real-valued noise
variable
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Structure Identifiability

If the distribution PX is Markovian and faithful with respect to the
underlying DAG G 0, we have a one-to-one correspondence between
d-separation statements in the graph G 0 and the corresponding conditional
independence statements in the distribution. All graphs outside the correct
Markov equivalence class of G 0 can therefore be rejected because they
impose a set of d-separations that does not equal the set of conditional
independences in PX .
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Structure Identifiability

Since both the Markov condition and faithfulness put restrictions only on
the conditional independences in the joint distribution, we are not able to
distinguish between two Markov equivalent graphs, that is, between two
graphs that entail exactly the same set of conditional independences.

Figure 2: Two Markov equivalent DAGs (left and center) and CPDAG on the
right-hand side
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Structure Identifiability

Lemma 7.2 (Identifiability of Markov equivalence class)

Assume that PX is Markovian and faithful with respect to G
0
. Then,

for each graph G ∈ CPDAG (G
0
), we find an SCM that entails the dis-

tribution PX. Furthermore, there is no graph G with G ∉ CPDAG(G
0
),

such that PX is Markovian and faithful with respect to G
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Additive Noise Models

Proposition 7.1 shows that a given distribution could have been entailed
from several SCMs with different graphs.

Definition 7.3 (ANMs)

We call an SCM C an ANM if the structural assignments are of the
form

Xj = fj (PAj) + Nj , j = 1, ..., d (4)

if the noise is additive. For simplicity, the functions fj are differen-
tiable and the noise variables Nj have a strictly positive density

We obtain non-trivial identifiability results, if we restrict the function class.
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Additive Noise Models
Some of the following identifiability results assume causal minimality
(A ⫫ B∣C ⇒ A ⫫G 0

B∣C ). For ANMs, this means that each function fj is
not constant in any of its arguments.

Proposition 7.4 (Causal minimality and ANMs)

Consider a distribution induced by a model (7.1) and assume that
the functions fj are not constant in any of its arguments, that is, for
all j and i ∈ PAj there is some value paj,−i of the variables PAj\{i}
and some xi ≠ x

′
i such that

fj(paj,−i, xi) ≠ fj(paj,−i, x′i)

Then the joint distribution satisfies causal minimality with respect
to the corresponding graph. Conversely, if there are nodes j and i
such that for all paj,−i the function fj(paj,−i, ⋅) is constant, causal
minimality is violated.
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Linear Gaussian Models with Equal Error Variances

There is another deviation from linear Gaussian SEMs that makes the
graph identifiable via restricting the noise variables to have the same
variance is sufficient to recover the graph structure.

Proposition 7.5 (Identifiability with equal error variances)

Consider an SCM with graph G0 and assignments

Xj ∶= ∑
k∈PAj

G0

βjkXk + Nj , j = 1, ..d , (5)

where all Nj are i.i.d. and follow a Gaussian distribution. In particular,

the noise variance σ
2
does not depend on j . Additionally, for each

j ∈ {1...p} we require βjk ≠ 0 for all k ∈ PAj Then, the graph G0 is
identifiable from the joint distribution.
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Linear Non-Gaussian Acyclic Models

Shimizu et al. [2006] prove the following statement using independent
component analysis (ICA) [Comon, 1994, Theorem 11]

Theorem 7.6 (Identifiability of LiNGAMs)

Consider an SCM with graph G0 and assignments

Xj ∶= ∑
k∈PAj

G0

βjkXk + Nj , j = 1, ..d , (6)

where all Nj are are jointly independent and non-Gaussian distributed
with strictly positive density.Additionally, for each j ∈ {1...p} we
require βjk ≠ 0 for all k ∈ PAj Then, the graph G0 is identifiable
from the joint distribution.
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Nonlinear Gaussian Additive Noise Models

The graph structure of an ANM becomes identifiable if the assignments
are linear and the noise variables are non-Gaussian. Alternatively, we can
also exploit nonlinearity. The result is easiest to state with Gaussian noise:
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Nonlinear Gaussian Additive Noise Models

Theorem 7.7 (Identifiability of nonlinear Gaussian ANMs)

Let PX = PX1,...,Xd
be induced by an SCM with

Xj = fj (PAj) + Nj ,

with normally distributed noise variables Nj ∼ N(0, σ2
j ) and

three times differentiable functions fj that are not linear in any
component in the following sense. Denote the parents PAj of
Xj by Xk1 , ...,Xkl then the function fj (xk1 , ...xka−1 , ⋅, xka+1 ..., xkl )
is assumed to be nonlinear for all a and some
xk1 , ...xka−1 , ⋅, xka+1 ..., xkl ∈ Rl−1
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Nonlinear Gaussian Additive Noise Models

Theorem 7.7 (Identifiability of nonlinear Gaussian ANMs)

As a special case, let PX = PX1,...,Xd
be induced by an SCM

with
Xj ∶= ∑

k∈PAj

fjk (Xk ) + Nj , j = 1, ..d , (7)

with normally distributed noise variables Nj ∼ N(0, σ2
j ) and

three times differentiable, nonlinear functions fjk . This model
is known as a causal additive model (CAM).

In both cases one can identify the corresponding graph G0 from the
distribution PX. The statements remain true if the noise distributions
for source nodes, that is, nodes without parents, are allowed to have
a non-Gaussian density with full support on the real line R.
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Summary of Some Known Identifiability Results for GN

Figure 3: Summary of some known identifiability results for Gaussian noise.
Results for non-Gaussian noise identifiability results are available, too, but they
are more technical.
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Thank you for your attention!
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