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Correlation and Causation
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Correlation does not imply causation

A correlation between two random variables X1,X2, i.e.,

Corr(X1,X2) = Corr(X2,X1) ̸= 0

where

Corr(X1,X2) = E [(X1 − E[X1]) (X2 − E[X2])] .

is a symmetric relation, an association

Causation is by nature asymmetric: If C is a cause for R
than R can not be a cause for C.

1

1Figure from: D. R. Cox and N. Wermuth. Some Statistical Aspects of Causality. European Sociological Review 17(1):65-74,
2001.
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Causation

When is an event C a cause for another event E which is then the effect ?

In philosophy: C is a necessary and sufficient condition for E to occur

Obviously too strict for practice (e.g., C = smoking, E = lung cancer)

One probabilistic approach

Candidate cause2

The event C is a candidate cause of E if

P(E | C) > P(E | C).

2D. R. Cox. Causality: Some Statistical Aspects. J. R. Statist. Soc. A 155(2):291–301, 1992.
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Remarks
By the total law of probability

P(E) = P(C)P(E | C) + P(C)P(E | C)

we can easily conclude that

P(E | C) > P(E | C) ⇐⇒ P(E | C) > P(E)

where the latter is also known as positive dependence of E on C

Positive dependence of events C,E is again a symmetric relation:

P(E | C) > P(E) ⇐⇒ P(E ∩ C) > P(E)P(C) ⇐⇒ Corr(1C,1E) > 0

In literature, this is also often called events C and E are correlated

Thus, if C is a candidate cause for E, also E is a candidate cause for C...
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To express the asymmetry between cause and effect possible restrictions are3:

1. Temporal ordering: C has to occur before E in time

2. Spatial proximity: can (alternatively) be used as basis for ordering cause and effect

3. Subject-matter knowledge: “to establish a presumed causal ordering”

Moreover, candidate causes can still be spurios causes:

C : high ice cream sales, E : many heatstrokes (the next day)

satisfies (probably) P(E | C) > P(E | C).

3D. R. Cox. Causality: Some Statistical Aspects. J. R. Statist. Soc. A 155(2):291–301, 1992.
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Spurious causes
If C is a candidate cause of E but there exists a (background) event B
which explains the association, i.e.,

P(E | C ∩ B) = P(E | C ∩ B)

then, we call C a spurious cause of E

Spurious causes are equivalent to conditional independence

P(E ∩ C | B) = P(E | B)P(C | B) ⇐⇒ E ⊥⊥ C | B

Example:

C : high ice cream sales, E : many heatstrokes, B : begin of heat period
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Reichenbach’s commmon cause principle
If two events A and B are (positively) correlated, i.e. if

P(A ∩ B) > P(A) P(B)

then, either
1. A is a cause for B or

2. B is a cause for A or

3. there exists a common cause C for A and B, i.e., an event C such that

P(A ∩ B | C) = P(A | C)P(B | C).

Hans Reichenbach
(1891–1953)

Rather a requirement/axiom than a theorem
Applies in many situations in real life but not necessarily in quantum field theory
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Further notions of causality 4

2. Causality as the Effect of Intervention
If we forbid ice cream sales (C), will this yield a reduction of heatstrokes (E) in
practice?

Note that this is not captured by simply considering

P(E | C)− P(E | C) > 0

Of course, we would not detect causality between C and E via an intervention
whereas the conditional probabilities would imply it

We need a suitable formalism to deal with interventions (Pearl’s do-calculus)

3. Causality as Explanation of a Process

4D. R. Cox and N. Wermuth. Some Statistical Aspects of Causality. European Sociological Review 17(1):65-74, 2001.
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Simpson’s Paradox
Even more fun with causes, effects, and confounding variables:

Source: J. Pearl, M. Glymour, N. P. Jewell. Causal Inference in Statistics - A Primer. Wiley, 2016.
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Statistical Models and Machine Learning
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Statistical Models
In general, a statistical model is a pair (X ,P) of a sample/data space X and a
(parametric) family P of distributions Fθ on X

P = {Fθ : θ ∈ Θ}

Example:
X = R, P = {N(µ, σ2) : µ ∈ R, σ2 ∈ (0,∞)}

We then try to estimate θ ∈ Θ based on data/samples x1, . . . , xn ∈ X

Think about paired data (xi , yi). Can we infer which variable is the cause and which the
effect ?

Claim: A (plain) statistical model is not rich enough to express and infer causality, only
association.
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Linear Regression

Assume we are given data (xi , yi), i = 1, . . . ,50 from
an underlying bivariate normal distribution(

X
Y

)
∼ N

((
0
0

)
,

(
1

√
0.75√
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))

How can we determine if X or Y is the explanatory
variable? I.e., fit

Y = b + aX + ε, ε ∼ N(0, σ2),

or
X = b + aY + ε, ε ∼ N(0, σ2) ?
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Linear Regression cont’d

In this example we can infer the parametric model(
X
Y

)
∼ N

((
µX
µY

)
,

(
σ2

X ρXY
ρYX σ2

Y

))

and, in particular, estimate the correlation

Corr(X ,Y ) = Corr(Y ,X)

But without further information we can not deduce
which of the two variables responses to a change in
the other.
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Prediciton versus causal queries
Given the bivariate setting we may be interested in properties of a (random) pair (X ,Y )

For regression
f(x) = E [Y | X = x]

and for (binary) classification,

f(x) = P [Y = 1 | X = x]

Such functions f serve as predictors for unknown Y given a new query point X = x
which was generated in a neutral way (without intervention)

These predictors allow not to answer (reasonably) questions like
Will there be less heatstrokes in summer if we forbid selling ice cream?

(because the distribution of (X ,Y ) is only valid without (non-representative) interventions)
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Machine learning and AI
Machine learning, particularly, supervised (deep) learning is just basically regression
for more elaborate (deep) functional models

f(x) ≈ E [Y | X = x]

We learn via minimizing an empirical mismatch using a loss function ℓ

1
n

n∑
i=1

ℓ(f(xi), yi) → min
f∈F

over a suitable function class F of regressors, e.g., neural networks
Statistical learning theory tells us, how difficult this learning is, e.g., how many data
points n we need to come close (if at all) to the best regressor f⋆ within F

f⋆ ∈ argmin
f∈F

E [ℓ(f(X),Y )]
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The ladder of causation

Source: J. Pearl. The Book of Why: The New
Science of Cause and Effect. Penguin, 2018.

Source: https://www.cajagroup.com
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And then there was...

Source: https://openai.com
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Source: https://magazine.amstat.org/
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Source: Jin et al. Can Large Language
Models Infer Causation from Correlation?

(arXiv, 2024).
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Structural Cause-Effect Models
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Structural Causal Models

Foundation for causal reasoning

Entail a probability/statistical model but also additional information in form of a structure
of dependencies between variables

Form of structural equation models dating back to Sewall Wright (1889 – 1988) used,
e.g., in econometrics and social sciences

We focus on the simpelst form here with two variables C and E
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Assumption underlying causal inference

Principle of independent mechanism
The causal generative process of a system’s variables is composed of autonomous
modules that do not inform or influence each other.

In the probabilistic case, this means that the conditional distribution of each variable given
its causes (i.e., its mechanism) does not inform or influence the other conditional
distributions. In case we have only two variables, this reduces to an independence
between the cause distribution and the mechanism producing the effect distribution.

In short:
Independence of cause and mechanism (ICM).
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Example
Consider the (cor)relation between altitude and average temperature of cities

Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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Again, we can ask: What’s the cause and what’s the effect?

Consider the joint distribution (here: pdf) of altitude A and temperature T

p(a, t) = p(a | t) p(t)
= p(t | a) p(a)

which can be decomposed in conditional and marginal density

The marginal density would correspond to the distribution of the cause

whereas the conditional density corresponds to the distribution of the mechanism turing
cause into effect

Given the principle of independent mechanism we can now ask:
Which mechanism (a 7→ t or t 7→ a), i.e., which conditional distribution p(t | a) or
p(a | t) remains invariant if we change the cause, i.e., marginal p(a) or p(t)?
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Equilibrium laws

Example: Physical laws for equilibira

Consider the ideal gas law
p · V = n · R · T

with pressure p, Volumne V , temperature T , ideal gas constant R, and amount of
substance n.

What’s cause and effect here? I.e. changing any of p,V , R will effect the others.
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Definition
A structural Cause-Effect model (SCEM) C with graph

C → E

consists of two assignments

C := NC

E := fE(C,NE)

where NE ⊥⊥ NC are independent “noise” random variables on (measurable) spaces E and
C, respectively, and fE : C → E denoting a (measurable) cause-effect mechanism.
We call C a (direct) cause of the effect E.

Given distributions PNC ,PNE for the “noises” (and fE), a SCEM yields a joint distribution
PC,E for the cause-effect pair (C,E).
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Example
Consider the SCEM

C := NC

E := 4 · C + NE

with NE ,NC ∼ N(0,1) iid. Then(
C
E

)
∼ N

((
0
0

)
,

(
1 4
4 17

))
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Interventions
An intervention is (usually) a change of (one of) the assignments in the SCEM

which typicall yields a different distribution different from the observational
(unintervened) distribution

Hard intervention: Setting one of the two variables to a specific value, e.g.,

do (E := 4)

The resulting distribution of the other variables is then denoted by

Pdo(E:=4)
C = PC,do(E:=4)

C

and may differ from the conditional distribution PC|E=4

Soft intervention: Keeping a functional dependence, e.g.,

do
(

E := gE(C) + ÑE

)
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Example
Consider the SCEM

C := NC

E := 4 · C + NE

with NE ,NC ∼ N(0,1) iid. Then for any x ∈ R

PE ̸= Pdo(C:=x)
E = N(4x,1) = PE|C=x

but on the other hand

PC = Pdo(E:=x)
C = PNC = N(0,1) ̸= PC|E=x

This reseembles the roles of cause and effect: An intervention on E does not effect C, but
on C does effect E.
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Counterfactuals
Modification of a SCEM by changing all of its noise distributions

Again results in different distributions than the observational distribution

Example
Consider the following setting of an eye disease:

for 99% of all affected patients the treatment curse the disease (T = 1,B = 0) whereas
no treatment would yield blindness (T = 0,B = 1)
but for 1% of the patients it is the other way round, i.e., treatment yields blindness
whereas by not treatment the recover from the disease

Question: A patient has gone blind after treatment. What would have happend had the
doctor chosen not to treat the patient?
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Corresponding SCEM C

T := NT

B := T · NB + (1 − T) · (1 − NB)

with NB ∼ Bernoulli(0.01) describing to which of the two groups a patient belongs and NT
the decision on treatment.
To answer the counterfactual question, first condition C on observation:

C | B = 1,T = 1 :
T := 1
B := T · 1 + (1 − T) · (1 − 1) = 1

i.e., we gained knowledge on NB = 1 for the given patient. Then calculate the effect of the
intervention

do (T = 0) .
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The intervened conditioned SCEM

C | B = 1,T = 1; do (T = 0) :
T := 0
B := T · 1 + (1 − T) · (1 − 1) = 0

yields
PC|B=1,T=1;do(T=0)

B = δ0

i.e., the patient would have not gone blind with certainty (probability 1).

The SCEM provides a computational approach to answer counterfactual questions.
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Learning an SCEM from Data
Question: Is the causal structure C identifiable from the joint distribution PC

C,E?

Proposition
For every joint distribution PX ,Y of a pair (X ,Y ) of two real-valued random variables, there
exists an SCEM

Y = fY (X ,NY ), X ⊥⊥ NY ,

where fY : R → R is measurable and NY are real-valued noise variable.

Meaning: For X = C and Y = E exists an SCEM and also for X = E and Y = C which
yield the same observational distribution PX ,Y .

Thus: Without additional assumptions the causal structure is not identifiable from data or
joint distribution alone.
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Summary
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