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Correlation and Causation
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Correlation does not imply causation

¢ A correlation between two random variables X;, X», i.e.,

Corr(X1,X2) = Corr(X2,X1) #0
where

1a
Corr(X1,X2) = E[(X1 — E[X1]) (X2 — E[X2])].

is a symmetric relation, an association

e Causation is by nature asymmetric: If C is a cause for R
than R can not be a cause for C.
|

1b

1Figure from: D. R. Cox and N. Wermuth. Some Statistical Aspects of Causality. European Sociological Review 17(1):65-74,
2001.
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Causation

* When is an event C a cause for another event E which is then the effect ?
* In philosophy: C is a necessary and sufficient condition for E to occur
 Obviously too strict for practice (e.g., C = smoking, E = lung cancer)

 One probabilistic approach

Candidate cause?

The event C is a candidate cause of E if

P(E | C) > P(E | C).

2D. R. Cox. Causality: Some Statistical Aspects. J. R. Statist. Soc. A 155(2):291-301, 1992.
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Remarks
* By the fotal law of probability

P(E) = P(C)P(E | C) + P(C)P(E | C)
we can easily conclude that
P(E|C)>P(E|C) <+ PE|C)>PE)

where the latter is also known as positive dependence of E on C

* Positive dependence of events C, E is again a symmetric relation:
P(E|C)>P(E) <= PENC)>PE)P(C) <= Corr(lc,1)>0

* In literature, this is also often called events C and E are correlated
e Thus, if C is a candidate cause for E, also E is a candidate cause for C...

7 Bjorn Sprungk
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« To express the asymmetry between cause and effect possible restrictions are®:
1. Temporal ordering: C has to occur before E in time
2. Spatial proximity: can (alternatively) be used as basis for ordering cause and effect
3. Subject-matter knowledge: “to establish a presumed causal ordering”
* Moreover, candidate causes can still be spurios causes:
C: high ice cream sales, E : many heatstrokes (the next day)

satisfies (probably) P(E | C) > P(E | C).

3D. R. Cox. Causality: Some Statistical Aspects. J. R. Statist. Soc. A 155(2):291-301, 1992.
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Spurious causes

If C is a candidate cause of E but there exists a (background) event B R C

which explains the association, i.e., ‘\5
P(E|CNB)=PE |CNB) c

then, we call C a spurious cause of E %\‘\DB

e Spurious causes are equivalent to conditional independence

C
P(ENC|B)=P(E |B)P(C|B) < EIC|B g/*ig
@)

* Example: 1e

C: high ice cream sales, E : many heatstrokes, B: begin of heat period

9 Bjorn Sprungk
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Reichenbach’s commmon cause principle

If two events A and B are (positively) correlated, i.e. if
P(ANB) > P(A) P(B)

then, either
1. Ais a cause for B or

2. Bis a cause for A or
3. there exists a common cause C for A and B, i.e., an event C such that

Hans Reichénbach
P(ANB|C)=P(A| C)P(B|C). (1891-1953)

* Rather a requirement/axiom than a theorem

* Applies in many situations in real life but not necessarily in quantum field theory

29 Kq
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Further notions of causality #

2. Causality as the Effect of Intervention

* If we forbid ice cream sales (C), will this yield a reduction of heatstrokes (E) in
practice?

* Note that this is not captured by simply considering
P(E|C)-P(E|C)>0
 Of course, we would not detect causality between C and E via an intervention

whereas the conditional probabilities would imply it

» We need a suitable formalism to deal with interventions (Pearl’s do-calculus)
3. Causality as Explanation of a Process

4D. R. Cox and N. Wermuth. Some Statistical Aspects of Causality. European Sociological Review 17(1):65-74, 2001.
1 1 Bjorn Sprungk
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Simpson’s Paradox

Even more fun with causes, effects, and confounding variables:

Exercise

Exercise

Cholesterol

Source: J. Pearl, M. Glymour, N. P. Jewell. Causal Inference in Statistics - A Primer. Wiley, 2016.
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Statistical Models and Machine Learning
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Statistical Models
* In general, a statistical model is a pair (X, P) of a sample/data space X and a
(parametric) family P of distributions Fy on X

P={Fy: 00O}
* Example:

X =R

)

P = {N(p,0%): p € R,0% € (0,00)}

* We then try to estimate 0§ € © based on data/samples x1,

o Xpe X
* Think about paired data (x;, y;). Can we infer which variable is the cause and which the
effect ?

 Claim: A (plain) statistical model is not rich enough to express and infer causality, only
association.

1 4 Bjorn Sprungk
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Linear Regression

» Assume we are given data (x;,y;), i = 1,...,50 from
an underlying bivariate normal distribution

() =~(@) (s "))

* How can we determine if X or Y is the explanatory
variable? l.e., fit
Y=b+aX+e, e ~N(0,0?),
or

X=b+aY +e, e ~N(0,0%)?

1 5 Bjorn Sprungk
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Linear Regression cont’d

* In this example we can infer the parametric model ] 7 o S
T o 0 098 O
2 %ooo 8
X ~N [ [* 7 oy pXZY 1 el
Y MY pYX UY ““ o ? ’ 2 T T T T
-2 -1 0 1 2
* and, in particular, estimate the correlation
Corr(X,Y) = Corr(Y, X) | e
. . . 1 0o S e
 But without further information we can not deduce < ] 0g 5% °
which of the two variables responses to a change in I A “%
the other. LT
.
jorn Sprun y “’CVO?'K#
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Prediciton versus causal queries

* Given the bivariate setting we may be interested in properties of a (random) pair (X, Y)
 For regression

fxX)=E[Y | X =x]
and for (binary) classification,

fx)=P[Y =1| X =x]

* Such functions f serve as predictors for unknown Y given a new query point X = x
which was generated in a neutral way (without intervention)

* These predictors allow not to answer (reasonably) questions like

Will there be less heatstrokes in summer if we forbid selling ice cream?

(because the distribution of (X, Y) is only valid without (non-representative) interventions)
Bjorn Sprungk
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Machine learning and Al

* Machine learning, particularly, supervised (deep) learning is just basically regression
for more elaborate (deep) functional models

fX)=E[Y | X =x]

* We learn via minimizing an empirical mismatch using a loss function ¢

— min
feF

1 n
n ;g(f(xi)vyi)

over a suitable function class F of regressors, e.g., neural networks

« Statistical learning theory tells us, how difficult this learning is, e.g., how many data
points n we need to come close (if at all) to the best regressor f* within

f* € argminE [¢(f(X), Y)]

feF
1 8 Bjorn Sprungk
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The ladder of causation

3. COUNTERFACTUALS
AcTviT: 3

QuEsTIoNS:

2. INTERVENTION
ACTVITY: Doty

Counterfactuals

QuEsTIONS:

Intervention magining/Retrospection/
Understanding
“What if | had done...?
“Why?”

Association Doing/Intervening
“What if  do...?"
“How can I..?

1. ASSOCIATION
ACTVITY: s

Seeing/Observing
“What if | see...?”

Source: https://www.cajagroup.com

Source: J. Pearl. The Book of Why: The New
Science of Cause and Effect. Penguin, 2018. y
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And then there was...

G chatGPT

Source: https://openai.com

20 Bjorn Sprungk

Introduction to Causal Inference

GAK,
& N 4,
&
S ‘}%‘
TN
4
eeiper”

2w


https://openai.com/

21

AMSTATNEWS

The Membership Magazine of the American Statistical Association

HOME TISTICIANS IN HISTORY PODCAST

PDF ARCHIVES ADVERTISE

Mackenzie: Can you tell me your first reactions to
Home » Artificial Intelligence, Cover Story ChatGPT and GPT-4? Did you find their capabilities

Judea Pearl, Al, and Causality: What Role Do surprising?
Statisticians Play?

1SEPTEMBER 2023 5045VIEWS ~ NO COMMENT

Pearl: Aside from being impressed, | have had to reconsider
my proof that one cannot get any answer to any causal or

In the first half of 2023, the machine learning programs counterfactual query from observational studies. What | didn't

ChatGPT and GPT-4 changed the landscape of artificial take into account is the possibility that the text in the training

intelligence research seemingly overnight. Judea Pearl’s database would itself contain causal information. The

research bridges the subjects of statistics and artificial programs can simply cite information from the text without

intelligence and highlights the importance of causality in both experiencing any of the underlying data.
settings. Dana Mackenzie, Pearl’s co-author for The Book of
Why, interviews him here to get his take on recent

developments. When they wrote their book in 2018, Pearl

contended machine learning had not yet moved past the first

rung of the “ladder of causation.” Computers could not

Source: https://magazine.amstat.org/ (GAky
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Published as a conference paper at ICLR 2024

CAN LARGE LANGUAGE MODELS INFER
CAUSATION FROM CORRELATION?

Zhijing Jin'>"*  Jiarui Liu>" Zhiheng Lyu* Spencer Poff®

Mrinmaya Sachan?> Rada Mihalcea® Mona Diab>*'  Bernhard Schélkopf!
"Max Planck Institute for Intelligent Systems, Tiibingen, Germany 2ETH Ziirich
LTI, CMU  “*University of Hong Kong *Meta Al ®University of Michigan
jinzhi@ethz.ch jiarui@cmu.edu zhihenglyu.cs@gmail.com

Training Corpus

Ice cream sales - Drowning cases - Hot weather

?
@i‘ £ How can LLMs process such

Causation? What causes what?

Vaccination - Fatality rate -~ Autism

Jations

Tech company CEOs College dropout P
/
This requires the skill of inferring causation from correlation

We propose a new task: Corr2Cause Inference Previous tasks:
Suppose we know that A correlates with B.

- . Couses
Can we infer that A causes B? No

Touching a ot stove ———> Getting burned

‘Skill being tested in previous work: Empirical

A correlates with B. C correates with B. However, A is independent of C. Kiowitdga Inatead ofpure caie rene

Can we infer that A causes B

Figure 1: Illustration of the motivation behind our task and dataset.

22 Bjorn Sprungk
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ABSTRACT

Causal inference is one of the hallmarks of human intelligence. While the field
of Causal NLP has attracted much interest in the recent years, existing causal
inference datmels in NLP primarily rely on discovering causality from empirical
In this work, we propose the first
benchmark dalasel to test the pure causal inference skills of large language models
(LLMs). Specifically, we formulate a lm\'cl task CORR2CAUSE, which takes a
set of correlational and the causal i between
the variables. We curate a large-scale dataset of more than 200K samples, on
which we evaluate seventeen existing LLMs. Through our experiments, we identify
a key shortcoming of LLMs in terms of their causal inference skills, and show
that these models achieve almost close to random performance on the task. This
shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill
via finetuning, but we find that these models still fail to generalize — they can only
perform causal inference in in-distribution settings when variable names and textual
expressions used in the queries are similar to those in the training set, but fail in
out-of-distribution settings generated by perturbing these queries. CORR2CAUSE
is a challenging task for LLMs, and can be helpful in guiding future research on
improving LLMs’ pure reasoning skills and generalizability|

Source: Jin et al. Can Large Language
Models Infer Causation from Correlation?
(arXiv, 2024).
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Structural Cause-Effect Models
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Structural Causal Models

* Foundation for causal reasoning
* Entail a probability/statistical model but also additional information in form of a structure
of dependencies between variables
* Form of structural equation models dating back to Sewall Wright (1889 — 1988) used,
e.g., in econometrics and social sciences
» We focus on the simpelst form here with two variables C and E

Bjorn Sprungk
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Assumption underlying causal inference

Principle of independent mechanism

The causal generative process of a system’s variables is composed of autonomous
modules that do not inform or influence each other.

In the probabilistic case, this means that the conditional distribution of each variable given
its causes (i.e., its mechanism) does not inform or influence the other conditional
distributions. In case we have only two variables, this reduces to an independence
between the cause distribution and the mechanism producing the effect distribution.

In short:
Independence of cause and mechanism (ICM).

25 Bjorn Sprungk
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Consider the (cor)relation between altitude and average temperature of cities
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Source: J. Peters et al. Elements of Causal Inference. MIT Press, 2017.
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|
* Again, we can ask: What'’s the cause and what’s the effect?

 Consider the joint distribution (here: pdf) of altitude A and temperature T
p(a;t) =p(a|t)p(t)
=p(t|a)p(a)
which can be decomposed in conditional and marginal density
* The marginal density would correspond to the distribution of the cause

» whereas the conditional density corresponds to the distribution of the mechanism turing
cause into effect
* Given the principle of independent mechanism we can now ask:

Which mechanism (a — t ort — a), i.e., which conditional distribution p(t | a) or
p(a | t) remains invariant if we change the cause, i.e., marginal p(a) or p(t)?

Bjorn Sprungk f
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Equilibrium laws

Example: Physical laws for equilibira
» Consider the ideal gas law

p-V=n-R-T
substance n.

with pressure p, Volumne V, temperature T, ideal gas constant R, and amount of

* What's cause and effect here? l.e. changing any of p,V, R will effect the others.

Bjorn Sprungk
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Definition
A structural Cause-Effect model (SCEM) ¢ with graph

C—E
consists of two assignments
C = NC
E :=fg(C,Ng)

where Ng 1L N¢ are independent “noise” random variables on (measurable) spaces £ and
C, respectively, and fz: C — £ denoting a (measurable) cause-effect mechanism.

We call C a (direct) cause of the effect E.

Given distributions Py, Py, for the “noises” (and f¢), a SCEM yields a joint distribution
Pc e for the cause-effect pair (C, E).

Bjorn Sprungk f
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Consider the SCEM

C .= NC
E:=4.C+Ne
with Ng, Nc ~ N(0, 1) iid. Then

(&) ~~((6) (& 7))

Bjorn Sprungk
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Interventions

* An intervention is (usually) a change of (one of) the assignments in the SCEM

 which typicall yields a different distribution different from the observational
(unintervened) distribution

* Hard intervention: Setting one of the two variables to a specific value, e.g.,

* The resulting distribution of the other variables is then denoted by

do(E:=4) _ p€,do(E:=4)
PCO =P; ¢

and may differ from the conditional distribution Pgjg—4
 Soft intervention: Keeping a functional dependence, e.g.,

do (E =ge(C)+ NE)
31 Bjorn Sprungk
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Consider the SCEM
C = NC

E=4.C+Nge
with Ng, Nc ~ N(0, 1) iid. Then for any x € R

Pe + PYE=) —N(4x,1) = Pgjcx
but on the other hand

Pc = PYE=) = Py, =N(0,1) # Pcie=x
This reseembles the roles of cause and effect: An intervention on E does not effect C, but
on C does effect E.
32 Bjorn Sprungk
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Counterfactuals

 Modification of a SCEM by changing all of its noise distributions

* Again results in different distributions than the observational distribution

Example
Consider the following setting of an eye disease:
» for 99% of all affected patients the treatment curse the disease (T = 1,B = 0) whereas
no treatment would yield blindness (T =0,B = 1)
* but for 1% of the patients it is the other way round, i.e., treatment yields blindness
whereas by not treatment the recover from the disease
Question: A patient has gone blind after treatment. What would have happend had the
doctor chosen not to treat the patient?

Bjorn Sprungk
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|
Corresponding SCEM ¢

T = NT
B:=T -Ng+(1—-T)-(1—Ng)
with Ng ~ Bernoulli(0.01) describing to which of the two groups a patient belongs and Nt
the decision on treatment.

To answer the counterfactual question, first condition € on observation:

¢|B=1,T=1:
T :=1
B=T-1+(1-T)-(1-1)=1
i.e., we gained knowledge on Ng = 1 for the given patient. Then calculate the effect of the
intervention

do (T =0).
34 Bjorn Sprungk
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The intervened conditioned SCEM
¢|B=1,T=1;do(T =0):

T:=0
yields

B=T-1+(1-T)-(1-1)=0
P§|B:1,T:1;do(T:0) _s

0
i.e., the patient would have not gone blind with certainty (probability 1).

The SCEM provides a computational approach to answer counterfactual questions.
35
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Learning an SCEM from Data

Question: Is the causal structure ¢ identifiable from the joint distribution P¢ ?

Proposition

For every joint distribution Py y of a pair (X, Y) of two real-valued random variables, there
exists an SCEM
Y = fy(X,Ny), X 1L Ny,

where fy : R — R is measurable and Ny are real-valued noise variable.

Meaning: For X = C and Y = E exists an SCEM and also for X = E and Y = C which
yield the same observational distribution Py y.

Thus: Without additional assumptions the causal structure is not identifiable from data or

joint distribution alone.

36 Bjorn Sprungk f
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Summary
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