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Review
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Markov property and faithfulness

The joint distribution PX is said to be Markov with respect to the DAG G if

A,B d-sep. by C ⇒ A |= B|C

for all disjoint set A,B,C.

The joint distribution PX is said to be faithful to the DAG G if

A,B d-sep. by C ⇐ A |= B|C

for all disjoint set A,B,C.

Under the Markov condition and faithfulness, the Markov equivalence class of G is
identifiable from PX.
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Independence-Based methods

5 Hanyue Gu

Methods for Structure Identifiability



Idea

Estimate the skeleton, that is, the undirected edges
Orient as many edges as possible
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Estimation of skeleton

Lemma [4]
The following two statements holds.

(i) Two nodes X ,Y in a DAG (X, E) are adjacent if and only if they cannot be d-separated
by any subsets S ⊆ X\{X ,Y}.

(ii) If two nodes X ,Y in a DAG (X, E) are not adjacent, then they are d-separated by either
PAX or PAY .

Lemma (i): IC algorithm, SGS algorithm

Lemma (ii): PC algorithm
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IC/SGS algorithm: Idea

For each pair of nodes (X ,Y ), these methods search through all possible subsets
A ⊆ X\{X ,Y} of variables neither containing X nor Y and check whether X and Y are
d-separated given A. After all those tests, X and Y are adjacent if and only if no set A was
found that d-separates X and Y .
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PC algorithm: Idea

The PC algorithm starts with a fully connected undirected graph and step-by-step
increases the size of the conditioning set A, starting with #A = 0. At iteration k, it
considers sets A of size #A = k, using the following neat trick: to test whether X and Y
can be d-separated, one only has to go through sets A that are subsets either of the
neighbors of X or of the neighbors of Y .
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PC algorithm(Example) [1]

Figure: Original true causal graph.
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PC algorithm: Estimation of skeleton

Figure: After step 1. Figure: After step 2. Figure: After step 3.

1. Form a complete undirected graph.
2. Eliminate edges between variables that are unconditionally independent.
3. For each pair of variables (A,B) having an edge between them, and for each variable C

with an edge connected to either of them, eliminate the edge between A and B if
A |= B|C.
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PC algorithm: Estimation of skeleton

4. For each pair of variables (A,B) having an edge between them, and for each pair of
variables C,D with edges both connected to A or both connected to B, eliminate the
edge between A and B if A |= B|{C,D}.

Continue checking independencies conditional on subsets of variables of increasing size
until there are no more adjacent pairs (A,B), such that there is a subset of variables such
that all of the variables in the subset are adjacent to A or all adjacent to B.
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PC algorithm: Orientation of edges

Figure: After step 5. Figure: After step 6.

5. For each triple of variables (A,B,C) such that A and B are adjacent, B and C are
adjacent, and A and C are not adjacent, orient the edges A−B−C as A→ B← C, if B
was not in the set conditioning on which A and C became independent.

6. For each triple of variables such that A→ B − C, and A and C are not adjacent, orient
the edge B − C as B→ C. This is called orientation propagation.
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PC algorithm: Notes

There are other orientation propagation rules that are not illustrated here, such as
Meek’s orientation rules [2].

In some examples, none of orientation rules will apply to a given undirected edge, and
that edge will remain undirected in the output.
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Conditional independence tests

Statistical significance test

Kernel-based test

Gaussian distributed variables: vanishing partial correlation

Non-Gaussian distributed variables: nonlinear extension of partial correlation
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Nonlinear extension of partial correlation [4]

1. (Nonlinearly) regress X on Z and test whether the residuals are independent of Y

2. (Nonlinearly) regress Y on Z and test whether the residuals are independent of X

3. If one of those two independences hold, conclude that X |= Y |Z
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Score-Based methods
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Best scoring graph

Given data D = (X1, · · · ,Xn) from a vector X of variables, that is, a sample containing n
i.i.d. observations, the idea is to assign a score S(D,G) to each graph G and search over
the space of DAGs to find the graph with the highest score:

Ĝ := argmax
G DAG over X

S(D,G)

There are several possibilities to define such a scoring function S. Often a parametric
model is assumed (e.g., linear Gaussian equations or multinomial distributions), which
introduces a set of parameters θ ∈ Θ [4].
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(Penalized) likelihood

For each graph we may consider the maximum likelihood estimator θ̂ for θ and then define
a score function by the BIC

S(D,G) := log p(D|θ̂,G)− #parameters
2 log n

where log p(D|θ̂,G) is the log likelihood and n is the sample size [4].
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Bayesian scoring functions

We define priors ppr(G) and ppr(θ) over DAGs and parameters, respectively, and consider
the log posterior as a score function (note that p(D) is constant over all DAGs):

S(D,G) := log p(G|D) ∝ log ppr(G) + log p(D|G),

where p(D|G) is the marginal likelihood

p(D|G) =
∫
θ∈Θ

p(D|G, θ)ppr(θ,G)dθ.

Here the resulting estimator Ĝ is usually called a maximum a posteriori (MAP) estimator [4].
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Greedy search techniques

At each step there is a candidate graph and a set of neighboring graphs. For all these
neighbors, one computes the score and considers the best-scoring graph as the new
candidate. If none of the neighbors obtains a better score, the search procedure
terminates (not knowing whether one obtained only a local optimum).

A neighborhood relation: Starting from a graph G, we may define all graphs as neighbors
from G that can be obtained by removing, adding, or reversing one edge [4].
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Exact methods
Here, “exact” means that they aim at finding (one of) the best scoring graphs for a given
finite data set.

Due to the Markov factorization, we have for D = (X1, · · · ,Xn) that

log p(D|θ̂,G) =
d∑

j=1

n∑
i=1

log p(X i
j |X i

PAG
j
, θ̂),

which is a sum of d ’local’ scores.

Other techniques:
ILP framework: represent graphical structures as vectors
Restrict the number of parents [4]
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Additive Noise Models

23 Hanyue Gu

Methods for Structure Identifiability



Score-based method combined with greedy search

Nonlinear Gaussian case:

For a given graph structure G, we regress each variable on its parents and obtain the score

log p(D|G) =
d∑

j=1
− log v̂ar[Rj ],

here, v̂ar[Rj ] is the empirical variance of the residuals Rj obtained from the regression of
variable Xj on its parents [4].
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If the noise cannot be assumed to have a Gaussian distribution [3]

For each DAG Gi we follow the three-step procedure:
1. For each node k estimate the residuals ϵ̂k by nonparametrically regressing Xk on
{Xl}l ∈ paGi(k). If paGi(k) = ∅, set ϵ̂k = xk .

2. For each node k estimate the residual densities p̂ϵk from the estimated residuals ϵ̂k .
3. Compute the penalized likelihood score

Sn
i =

1
n

n∑
j=1

d∑
k=1

log p̂ϵk(ϵ̂
j
k)−#(edges)i · an,

where an controls the strength of the penalty.
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Independence tests

Figure: PHASE 1
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Figure: PHASE 2 [5]

Note: This method is based on the fact that for each node Xi the corresponding noise
variable Ni is independent of all non-descendants of Xi .
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Intervention
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Intervention

Known intervention targets

Unknown intervention targets
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Unknown intervention targets

Figure: (a) A causal diagram; (b) The order graph without knowing the intervention target; (c) The
marked order graph.[6]
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