In der modernen Industrie ist die Präzision von Partikelsystemen für eine Vielzahl hochwertiger Produkte entscheidend. Herkömmliche Techniken zur Partikeltrennung stoßen jedoch bei der Verarbeitung von Partikeln unter 10 µm an ihre Grenzen, was die Effizienz und Spezifität der Ergebnisse betrifft. Um diese Herausforderung zu bewältigen, verfolgt das SPP das Ziel, revolutionäre Fraktionierungsverfahren zu entwickeln, die es ermöglichen, Partikeleigenschaften zu steuern und den Produktionsdurchsatz erheblich zu steigern. Die neuen Methoden sollen die Anforderungen zukünftiger Technologien erfüllen und den Weg für die effiziente Herstellung feinster, spezifisch angepasster Partikelsysteme ebnen.
Die innovativen Fraktionierungsmethoden, die im Rahmen des SPP entwickelt werden, sollen nicht nur die gezielte Beeinflussung und Selection von Partikeleigenschaften ermöglichen, sondern auch die analytischen Verfahren um Größenordnungen beschleunigen. Der Fokus liegt auf einem interdisziplinären Ansatz, der neue physikalische, chemische und thermodynamische Trennprinzipien einbezieht. Durch diese Fortschritte wird auch die feinabstimmte, bereichsspezifische Verarbeitung von Nanopartikeln Realität, was ihnen den Weg in die breite Anwendung ebnet und die Effizienz in der Produktionskette spürbar erhöht.
Informationen
Sekretariat
Susan Steinbinder
Agricolastraße 1, KKB-0035
phone: +49 (0) 3731 / 39-2695
e-mail: spp2045 [at] mvtat [dot] tu-freiberg [dot] de (spp2045[at]mvtat[dot]tu-freiberg[dot]de)
Koordinator TUBAF
Prof. Dr.-Ing. Urs Peuker
Agricolastraße 1, KKB-1058
phone: +49 (0) 3731 / 39-2916
e-mail: urs [dot] peuker [at] mvtat [dot] tu-freiberg [dot] de (urs[dot]peuker[at]mvtat[dot]tu-freiberg[dot]de)
Koordinator DFG
Dr.-Ing. Simon Jörres
Kennedyallee 40, 53175 Bonn
phone: +49 (0) 228 885-2971
e-mail: simon [dot] joerres [at] dfg [dot] de (simon[dot]joerres[at]dfg[dot]de)
Projektbereich Z - Zentralprojekte
Der Projektbereich Z hat sich im bisherigen Verlauf des SPP als übergreifende zentrale Aufgabe erwiesen. Hier werden Methoden zur mehrdimensionalen Charakterisierung der Partikelsysteme entwickelt. Denn nur, wenn die mehrdimensional-verteilten Eigenschaften hinreichend genau beschrieben werden können, ist es möglich das Trennergebnis zu quantifizieren. Eine weitere Herausforderung stellen die z.T. breiten Größenskalen dar, in denen die mehrdimensionale Charakterisierung erfolgen muss. Der Z-Bereich des SPP 2045 stellt mit seinen innovativen Methoden einmalige Partikeldatensätze bereit, die auch über das SPP hinaus in der Wissenschaft bspw. für Simulationen genutzt werden.
The central project Z1 will provide methods and estimations for the determination of multidimensional particle properties and acts as service partner for measuring tasks from the SPP-members.
Contacts:
Stefan Neumann and Ralf Ditscherlein,
TU Bergakademie Freiberg
Further details on this project can be found here.
The central project Z2 will analyze tomographic image data before and after separation processes to statistically summarize distributions of multidimensional particle shape and size characteristics with parametric copulas.
Contacts:
Universität Ulm
Further details on this project can be found here.
The central project Z4 aims at the clarification of the behaviour of particle suspensions in the critical size range between 100nm and 10µm by consideration of different separation features for a multidimensional fractionation.
Contacts:
Karlsruher Institut für Technologie (KIT)
Further details on this project can be found here.
The central project Z5 aims at the multidimensional characterization of nanoparticles utilizing a simultaneous measurement of two independent particle properties. This is done by combining two existing systems: Dynamic Mobility Analyzer (DMA, electric mobility) and Aerodynamic Aerosol Classifier (AAC, centrifugal force)
Contacts:
Universität Paderborn
Furtehr details on this project can be found here.
Projektbereich A – Beeinflussung des Trennmerkmals
Dieser Bereich befasst sich mit der Fragestellung, wie ein Trennmerkmal so beeinflusst werden kann, dass eine Trennung nach mehrdimensionalen Spezifikationen möglich wird?
Neue, hochspezifische Klassierverfahren für Feinpartikelsysteme erfordern ausgeprägte Trennmerkmale, eine mehrdimensionale Trennung erfordert mehr als nur ein Trennmerkmal. Wichtige Fragestellungen sind:
- Verständnis der Mikroprozesse (Strömungskräfte, Wechselwirkungen, Benetzung)
- Steuerung der Trennmerkmale (Vorbehandlung, induziert im Prozess)
- Prozessentwicklung ((Semi-)kontinuierlich, Modellierung, skalierbare Verfahren)
This specific subproject deals with the separation of particles through immiscible liquid-liquid interfaces. The entrainment of particles in liquid-liquid interfaces is chiefly controlled by their radius and their wettability.
Contact
Claudia Heilmann, claudia [dot] heilmann [at] mvtat [dot] tu-freiberg [dot] de (claudia[dot]heilmann[at]mvtat[dot]tu-freiberg[dot]de)
Prof. Dr.-Ing. Urs A. Peuker, urs [dot] peuker [at] mvtat [dot] tu-freiberg [dot] de (urs[dot]peuker[at]mvtat[dot]tu-freiberg[dot]de)
TU Bergakademie Freiberg, Institut für Mechanische Verfahrenstechnik und Aufbereitungstechnik, Agricolastr. 1, 09599 Freiberg
Further details on the project can be found here.
The aim of this research project is the development of a continuous, scalable and multidimensional classification process according to size composition and surface properties for nanoparticles smaller than 10 nm.
Contacts:
Prof. Dr.-Ing. Doris Segets
Universität Duisburg-Essen
Further details on the project can be found here.
In the field of pharmaceutical and life science products as well as for optical applications, suspensions with particle sizes in the submicron/nanometer range with the highest quality standards are required. Within the top-down synthesis in stirred media mills, for example, wear (abrasion) of the mill components, primarily the grinding media, is a major challenge.
Contacts:
TU Braunschweig
Further details on the project can be found here.
The separation of particle fractions with highly specific physical properties from suspensions has great importance for process success in a number of process engineering processes. The physical properties of a particle collective are directly related to the particle size, particle shape, surface properties and chemical composition of the individual particles.
Contacts:
TU Kaiserslautern
Further details on the project can be found here.
This subproject shall investigate the fractionation of these synthesized particles with preparative gel electrophoresis. Thereby, the nanoparticles are separated spatially in an appropriate gel due to their different electrophoretic mobilities.
Contacts:
TU Braunschweig
Further details on the project can be found here.
The agglomeration in liquids or “spherical agglomeration” is based on a three-phase system consisting of two liquids with a miscibility gap and a heterogeneous suspended solid phase. Essential for this process are the surface energies resulting in wetting properties of the suspended particles.
This project is not included in the second funding period, however will run as an associated project.
Contacts:
Hochschule Trier Umwelt-Campus Birkenfeld
Further details on the project can be found here.
Projektbereich B - Verständnis der Mikroprozesse der Trennung
Welche neuen Mikroprozesse der Partikeltechnologie (Konzepte, Quantifizierung, Einflussparameter, Betriebsfenster, Kombination) sind geeignet, eine hochspezifische und mehrdimensionale Trennung zu erreichen?
Hier geht es um das Verständnis der Mikroprozesse der Trennung. Wichtige Fragestellungen dabei sind:
- Ausprägung des Trennmerkmale = Trennschärfe (Einschritt-Prozess oder Kaskade von Prozessen)
- Orthogonalität der Trennmerkmale = Mehrdimensionalität (nötig für Entkopplung der Trennprozesse)
- Querempfindlichkeiten der Mikroprozesse = Robustheit (Übergang vom idealen Laborsystem auf reale Partikelsysteme)
The main objective of this project is the development of a method for the preparative fractionation of semiconducting and metallic SWCNTs using a microfluidic system based on asymmetric field-flow fractionation (FFF) and dielectrophoresis of metallic SWCNTs on taxi particles that can be sedimented in the centrifugal field.
This project will not be included in the second funding period.
Contacts:
TH Brandenburg
Further details on this project can be found here.
Goal of the project is to deepen the understanding of continuous microfluidic separation methods (Multi Orifice Fluid Fractioning (MOFF), Serpentine Channel and Deterministic Lateral Displacement Fractioning (DLDF)) utilized for particle separation based on multiple characteristics (size, density and shape). To enable microfluidic separation methods in an industrial context for elevated throughput operation, both enlarged Reynolds numbers and enlarged particle loadings are studied.
Contacts:
Zihao Zhang, Ruhr Universität Bochum and Simon Raoul Reinecke, TU Berlin
Further details on this project can be found here.
Within this subproject, a modular prototype for Hybrid-FFF is developed, which is combining the effects of an ultrasonic resonant acoustic field with an electrostatic field.
Contacts:
Krischan Sandmann, Uni Bremen
Further details on the project can be found here.
In this subproject, the conventional column flotation will be modified by the use of microbubbles and the coupling of ultrasound, in order to achieve a separation for particles smaller than 10 µm. Since microbubbles possess a low buoyancy and the production of high concentrations is technically complex, a bi-modal bubble system of micro- and macro bubbles will be used.
This project will not be included in the second funding period.
Contacts: TU Bergakademie Freiberg
The introduced project aimes to develop a flotation technique, which is able to realize a separation of particles below the 10 µm mark. The concept relies on the nucleation of nanobubbles during decompression on the surface of the particles themself. Surfactants may be used to stabilize the nanobubbles.
Contacts:
TU Clausthal
Further details on this project can be found here.
The process commonly referred to as „Magnetic-seeded filtration” aims to separate fine paramagnetic particles by agglomerating them with magnetic particles followed by a HGMS (high gradient magnetic separation) step. The aim of this project is to take a closer look at the hetero-agglomeration of ferro- and paramagnetic particles.
Contacts:
Karlsruher Institut für Technologie (KIT)
Further details on this project can be found here.
The main aim of this project is to develop a new technology for the efficient multidimensional separation of ultrafine particles via a combination of existing flotation techniques. Based on classic froth flotation, this innovative concept will associate the advantages of a mechanical flotation cell that comes with a high particle-bubble collision rate (thus a high recovery) with those from a flotation column with a fractionating effect due to its deep froth (thus a high grade).
Contacts:
Helmholtz-Institut Freiberg für Ressourcentechnologie
Further details on the project can be found here.
In this project it is intended to shed some light on the grounds for the DPC's potential capability to fractionate particles according to their size, shape and material and in dependence of throughput. This understanding shall pave the way for scaling-up such a separation process and to evaluate its potential as a characterization technology for microparticles.
Contacts:
Universität Bremen UFT
Further details on this project can be found here.
The project focuses on the multi-dimensional particle fractionation applying surface acoustic waves. In conjunction with the pinched flow method, particles will be fractioned with high selectivity in a cascaded manner, regarding their size, acoustic contrast (mechanical properties) and shape. In addition, a novel optical measurement technique based on deep neural networks is going to be developed, which allows for the measurement of the fluid flow and particle distribution as well as the identification of the particle species by determining the size and shape of the particles at the same time. In this way, design rules for such systems shall be derived, to customizable as to the sort, concentration and throughput of the particle suspensions applied.
Contacts:
TU Ilmenau
Further details on this project can be found here.
Projektbereich C - Apparative und prozesstechnische Konzepte
In diesem Teilbereich geht es darum, neue prozesstechnische oder apparative Konzepte auf ihr Potential bezüglich der mehrdimensionalen Trennung zu untersuchen. Welches Potential liefert bei etablierten Ansätzen die Leistungssteigerung in den Betriebsparametern bzw. eine Optimierung des Prozesses? Sind fundamental neue Apparatekonzepte technisch umsetzbar und leistungsfähig?
Fragestellungen
Theorie der mehrdimensionalen Trennung:
- Kann man mehrdimensionale Partikeleigenschaftsverteilungen aufstellen und daraus Trennmerkmale herleiten?
- Wie können die Daten multidimensionaler Messtechnik ausgewertet werden?
- Gibt es geeignete Optimierungsmethoden zur Lösung des Gleichfälligkeitsproblems?
Apparative Konzepte:
- Sind neue Apparatekonzepte technisch umsetzbar und leistungsfähig?
- Sind extreme Betriebsparameter (z.B. hohe Drehzahl, hohe Reynoldszahl, hoher Durchfluss) möglich und zielführend?
- Können etablierte Techniken zu einem kleineren Partikelgrößenbereich verschoben werden?
- Welche Prozessparameter sind relevant für eine spätere großtechnische Hochskalierung?
Prozesstechnische Konzepte:
- Ist ein kontinuierlicher Betrieb durch innovative Verschaltung möglich?
- Kann online Mess-/Regelungstechnik für gleichbleibende Trennqualität eingesetzt werden?
In this project, we model a switchable selective filter through a geometrically defined microfluidic channel with an array of insulating posts which is superimposed by an alternating electric field. Perspectively, fibreglass membranes can substitute the function of the insulating posts.
Contacts:
Universität Bremen UFT
Further details on this project can be found here.
A reduction of the cut size and an improvement of the sharpness of cut are hampered by fluid dynamic phenomena around and inside the classifier wheel. At higher revolution rates, vortices are built up between the blades, which cause a remixing of the already classified material. Due to the geometry of the powder feed, streaks are formed, which cause a pre-classification with a low selectivity. These two phenomena shall be investigated in the proposed project in order to realise a high sharpness of cut in the submicron range.
Contacts:
Mohamed Saad Elsayed Abohelwa,
TU Clausthal
Further details on this project can be found here.
This work aims to eliminate one major flaw in aerodynamic classification. Applying aerodynamic means to separate particles by size, inhabits an uncertainty introduced by the very same inertia, that is used as the classifying criteria for aerodynamic separation.
Contacts:
Universität Duisburg
Further details on this project can be found here.
The aim of the project is to develop a basic model for the multi-dimensional fractionation of ultrafine particles in strong centrifugal fields based on experimental measurements. The field of application reaches beyond the laboratory scale and therefore a capable in-situ measuring technique needs to be included in the process.
Contacts: Marvin Winkler, Karlsruher Institut für Technologie (KIT)
Further details on this project can be found here.
The objective of this project is the establishment of technical relevant and scalable multidimensional separation processes for nanoparticles.
Contacts:
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Further details on this project can be found here.
In this project we want to investigate multidimensional particle fractionation by combining different microfluidic modules such as a passive deterministic lateral displacement (DLD) post array with an active fractionation device using electric or magnetic fields.
Contacts:
Jonathan Kottmeier und Maike Wullenweber,
TU Braunschweig
Further details on this project can be found here.
In this project, a magnetically controlled chromatography is used to achieve a size fractionation of nanoparticles in the range of 10 to 500 nanometres. In this context, the interaction of three forces represents the relevant parameters for a successful fractionation: the hydrodynamic drag force, random diffusion force and the magnetic force.
Contacts:
Karlsruher Institut für Technologie (KIT)
Further details on this project can be found here.
Veranstaltungen
Second funding period: 2021-2024
First funding period: 2017-2021
28.09.–01.10.2020 Digitales Abschlusstrefffen, Programm
09.–10.06.2020 Jahrestreffen SPP 2045, Abschluss der ersten Förderperiode in Duisburg (Universität Duisburg/ Essen, Zentrum für BrennstoffzellenTechnik GmbH ZBT) - ABGESAGT (Corona)
17.–18.01.2019 Jahrestreffen SPP 2045, Darstellung der Projektfortschritte in Freiberg ("Alte Mensa"), Programm
16.01.2019 Vorabendtreffen zum Jahrestreffen
17.–18.01.2018 Kick-Off Meeting in Freiberg ("Alte Mensa"), Programm
16.01.2018 Vorabendtreffen zum Kick-Off SPP 2045 in Freiberg
09.–11.04.2019 PARTEC in Nürnberg
Second funding period: 2024-2026
First funding period: 2021-2024
Workshop series on soft-skills and strategic career planning
The second round of our interactive workshop series gives you the opportunity to further develop your soft skills and personal competences, which are very much essential for your future career.
02.2024 TBA, lecturer: TBA
01.2024: TBA, lecturer: TBA
15.11.2023: Self-regulation, lecturer: Julia Schreier - This workshop is held in German only.
18.10.2023: Start-up opportunities and self-promotion - transfer-relevant funding programs, lecturer: Thomas Klotz, SAXEED
13.09.2023: Resilience to go, lecturer: Kathrin Hombach, Coaching and Consulting
Workshop series "Interactive workshops for establishing contact in a professional way: networking skills in science, industry and social media" (2022/2023)
The interactive workshop series is being organised by the coordination offices of the SPP 1980, SPP 2045, SPP 2289 and SPP 2315. In this series, various experts will give you hands-on experience and feedback on how
- strategic networking works for your own career,
- you can formulate your own goals and plans for your future career,
- to do short self-presentations (elevator pitch, etc.),
- you can analyze your own existing network,
- networking in social media works,
- to optimize and enhance your own skills,
and why all of the above is so important nowadays.
These workshops will also give you the space for self-reflection and exchange with your fellow colleagues, and they will also give you the chance to express special topic requests that could be covered in this network.
28.06.2023: Project Management – Differences between academia and industry, lecturer: Franziska Böhler, Blackpoint Consulting
17.05.2023: Project Management – Basics , lecturer: Franziska Böhler, Blackpoint Consulting
19.04.2023: Proposal Writing – Insights from the DFG, lecturers: Anja Kleefuß and Dr. Simon Jörres, DFG
15.02.2023: This is how I did it - professionals report on their career path (academia), lecturers: Dr. Martin Rudolph (HZDR-HIF) and Prof. Dr.-Ing. Samir Salameh (FH Münster)
25.01.2023: This is how I did it – professionals report on their career path (industry), lecturers: Dr.-Ing. Henrieke Großmann (Daimler AG - Mercedes Benz Cars) and Dr. Andreas Kopf (International Transport Forum (OECD))
16.11.2022: Tweet or Perish - Science Communication: Career Boost or Wast of Time?, lecturer: Dr. Theresa Schredelsker, CENIDE-NETZ, https://nanoblogs.org; LinkedIn post
26.10.2022: Introduction to the workshop series - The importance of networking and strategic planning from the start; lecturer: Dr. Doris Segets, University of Duisburg-Essen - EMPI
Other Workshops
02.–04.03.2021 NaWi-Workshop in Duisburg, Programm
16.–17.09.2019 Doktoranden-Workshop Partikelwechselwirkungen/ Grenzflächen in Freiberg ("Alte Mensa"), Programm
09.07.2019 NaWi-Workshop in Frankfurt/ Main, Programm
10.05.2019 "9. Freiberger Frauen- und Männergespräch - Karrierewege promovierter Frauen" in Freiberg (Senatssaal), Programm
25.–26.09.2018 Doktoranden-Workshop Partikelcharakterisierung in Freiberg ("Alte Mensa"), Programm
24.09.2018 Vorabendtreffen zum Workshop in Freiberg
12.–13.02.2018 NaWi-Workshop in Freiberg
Publikationen
Giesler, J., Weirauch, L., Thöming, J., Pesch, G., Baune, M. Dielectrophoretic particle chromatography: From batch processing to semi-continuous high throughput separation. 2024
Rhein, F., Zhai, O., Schmid, E., Nirschl, H. Multidimensional Separation by Magnetic Seeded Filtration: Experimental Studies. 2023, 2(3), 588-606, 10.3390/powders2030037
Wilhelm, T., Sygusch, J., Furat, O., Bachmann, K., Rudolph, M., Schmidt, V. Parametric Stochastic Modeling of Particle Descriptor Vectors for Studying the Influence of Ultrafine Particle Wettability and Morphology on Flotation-Based Separation Behavior. 2023, 2(2), 353-371, 10.3390/powders2020021
Journal Articles
Barasinski, M., Pesch, G.R., Garnweitner, G. (2022). Electrophoresis and Dielectrophoresis Particle Separation Techniques - Fundamentals, Instrumentation, and Selected Applications, 1st ed., (Ed. Contado, C.), Elsevier Science, ISBN: 9780323854870. 10.1016/B978-0-323-85486-3.00009-3
Barasinski, M., Hilbig, J., Neumann, S., Rafaja, D., Garnweitner, G. (2022). Simple model of the electrophoretic migration of spherical and rod-shaped Au nanoparticles in gels with varied mesh sizes. Colloids and Surfaces A, 651, 129716. 10.1016/j.colsurfa.2022.129716
Barasinski, M., Garnweitner, G. (2022). Separation of Nano- and Submicron Particles by Preparative Gel Elextrophoresis. Chemie-Ingenieu-Technik, 95. 10.1002/cite.202200134
Buchwald, T., Ditscherlein, R., Peuker, U.A. (2022). Description of Separation Processes Involving Multidimensional Particle Property Distributions. Chemie-Ingenieur-Technik. 10.1002/cite.202200109
Ditscherlein, R., Leißner, T., and Peuker, U.A. (2022). Preparation strategy for statistically significant micrometer–sized particle systems suitable for correlative 3D imaging workflows on the example of X–ray microtomography. Powder Technology, 395, p. 235-242. 10.1016/j.powtec.2021.09.038
Ditscherlein, R., Furat, O., Löwer, E., Mehnert, R., Trunk, R., Leißner, T., Krause, M. J., Schmidt, V., and Peuker, U.A. (2022). PARROT: A pilot study on the open access provision of particle–discrete tomographic datasets. Microscopy and Microanalysis, 28, p. 350-360. 10.1017/S143192762101391X Open Access
Giesler, J., Weirauch, L., Thöming, J., Baune, M. and Pesch, G. (2021) High-throughput dielectrophoretic separator based on printed circuit boards. Electrophoresis, 11, 16861. 10.1038/s41598-021-95404-w Open Access
Sachs, S., Baloochi, M., Cierpka, C. and König, J. (2022). On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Lab on a Chip, 22, p. 2011-2027. 10.1039/D1LC01113H
Open Access
Sachs, S., Cierpka, C. and König, J. (2022). On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II. Lab on a Chip, 22, p. 2028-2040. 10.1039/D2LC00106C Open Access
Weirauch, L., Giesler, J., Baune, M., Pesch, G.R., Thöming, J. (2022). Shape-selective remobilization of microparticles in a mesh-based DEP filter at high throughput. Separation and Purification Technology, 300, 121792. 10.1016/j.seppur.2022.121792
Journal Articles
Arlt, C.-R., Brekel, D., and Franzreb, M. (2021). Continuous fractionation of nanoparticles based on their magnetic properties applying simulated moving bed chromatography. Separation and Purification Technology, 259, 118123. 10.1016/j.seppur.2020.118123
Arlt, C-R., Brekel, D., Neumann, S., Rafaja, D. and Franzreb, M. (2021). Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography. Frontiers of Chemical Science and Engineering, 15, p. 1346–1355. 10.1007/s11705-021-2040-3 Open Access
Barnkob, R., Cierpka, C., Chen, M., Sachs, S., Mäder, P. and Rossi, M. (2021) Defocus particle tracking: A comparison of methods based on model functions, cross-correlation, and neural networks. Measurement Science and Technology, 32, 094011. 10.1088/1361-6501/abfef6/meta
Giesler, J., Weirauch, L., Thöming, J., Baune, M. and Pesch, G. (2021) Separating microparticles by material and size using dielectrophoretic chromatography with frequency modulation. Scientific Reports, 11, 16861. 10.1038/s41598-021-95404-w Open Access
Lösch, P., Nikolaus, K., Antonyuk, S. (2021) Fractionating of finest particles using cross-flow separation with superimposed electric field. Separation and Purification Technology, 257, 117820. 10.1016/j.seppur.2020.117820
Lösch, P., Antonyuk, S. (2021) Selective particle deposition at cross-flow filtration with constant filtrate flux Powder Technology, 388, p. 305-317. 10.1016/j.seppur.2020.117820
Marquardt, J. E., Arlt, C.-R., Trunk, R., Franzreb, M., Krause, M. J. (2021) Numerical and experimental examination of the retention of magnetic nanoparticles in magnetic chromatography. Computers & Mathematics with Applications, 89, p. 34-43. 10.1016/j.camwa.2021.02.010
Reinecke S. R., Blahout S., Rosemann T., Kravets B., Wullenweber M., Kwade A., Hussong J., Kruggel-Emden H. (2021) DEM-LBM simulation of multidimensional fractionation by size and density through deterministic lateral displacement at various Reynolds numbers. Powder Technology, 385, p. 418–433. 10.1016/j.powtec.2021.02.062
Rhein, F., Kaiser, S., Rhein, M., Nirschl, H. (2021) Agglomerate processing and recycling options in magnetic seeded filtration. Chemical Engineering Science, 238, 116577. 10.1016/j.ces.2021.116577
Rosemann T., Reinecke S.R. and Kruggel-Emden H. (2021) Analysis of mobility effects in particle-gas flows by particle-resolved LBM-DEM simulations. Chemie Ingenieur Technik, 93(1-2), p. 223–236. 10.1002/cite.202000204
Open Access
Schreier, J., Bröckel, U. (2021) Multidimensional separation due to selective spherical agglomeration–evidence of shape separation via X-ray microtomography. Particuology, 58, p. 316-323. 10.1016/j.partic.2021.04.003
Sygusch, J. and Rudolph, M. (2021) A contribution to wettability and wetting characterisation of ultrafine particles with varying shape and degree of hydrophobization. Applied Surface Science, 566. 10.1016/j.apsusc.2021.150725
Open Access
Trunk, R., Weckerle, T., Hafen, N., Thäter, G., Nirschl, H., Krause, M. J. (2021) Revisiting the Homogenized Lattice Boltzmann Method with Applications on Particulate Flows. Computation, 9(2), 11. 10.3390/computation9020011
Open Access
Trunk, R., Bretl, C., Thäter, G., Nirschl, H., Dorn, M., Krause, M. J. (2021) A Study on Shape-Dependent Settling of Single Particles with Equal Volume Using Surface Resolved Simulations. Computation, 9(4), 40. 10.3390/computation9040040 Open Access
Winkler, M., Gleiss, M., Nirschl, H. (2021) Soft Sensor Development for Real-Time Process Monitoring of Multidimensional Fractionation in Tubular Centrifuges. Nanomaterials, 11, 1114. 10.3390/nano11051114 Open Access
Journal Articles
Arlt, C.R., Tschöpe, A. and Franzreb, M. (2020) Size Fractionation of Magnetic Nanoparticles by Magnetic Chromatography. Journal of Magnetism and Magnetic Materials, 497, 165967. 10.1016/j.jmmm.2019.165967
Blahout, S., Reinecke, S.R., Kazerooni, H.T., Kruggel-Emden, H. and Hussong J. (2020) On the 3D Distribution and Size Fractionation of Microparticles in a Serpentine Microchannel. Microfluidics and Nanofluidics, 24, 22. 10.1007/s10404-020-2326-7 Open Access
Barasinski, M., Garnweitner, G. (2020) Restricted and Unrestricted Migration Mechanisms of Silica Nanoparticles in Agarose Gels and Their Utilization for the Separation of Binary Mixtures. The Journal of Physical Chemistry C, 124(9), p. 5157-5166. 10.1021/acs.jpcc.9b10644
Ditscherlein, R., Furat, O., de Langlard, M., de Souza e Silva, J. M., Sygusch, J., Rudolph, M., Leißner, T., Schmidt, V. and Peuker, U. A. (2020) Multiscale Tomographic Analysis for Micron-Sized Particulate Samples. Microscopy and Microanalysis, 26(4), p. 676-688. 10.1017/S1431927620001737 Open Access
Ditscherlein, R., Leißner, T. and Peuker, U.A. (2020) Self-constructed automated syringe for preparation of micron-sized particulate samples in x-ray microtomography. MethodsX, 7, 100757. 10.1016/j.mex.2019.11.030 Open Access
Ditscherlein, R., Leißner, T. and Peuker, U.A. (2020) Preparation techniques for micron-sized particulate samples in X-ray microtomography. Powder Technology, 360, p. 989-997. 10.1016/j.powtec.2019.06.001
Furat, O., Masuhr, M., Kruis, F. E., Schmidt, V. (2020) Stochastic modeling of classifying aerodynamic lenses for separation of airborne particles by material and size. Advanced Powder Technology, 31(6), p. 2215-2226. 10.1016/j.apt.2020.03.014 Open Access
Giesler, J., Pesch, G. R., Weirauch, L., Schmidt, M.-P., Thöming, J., Baune, M. (2020) Polarizability-Dependent Sorting of Microparticles Using Continuous-Flow Dielectrophoretic Chromatography with a Frequency Modulation Method. Micromachines, 11(1). 10.3390/mi11010038 Open Access
Hansen, L., Wollmann, A., Weers, M., Benker, B., Weber, A. P. (2020) Triboelectric Charging and Separation of Fine Powder Mixtures. Chemical Engineering & Technology, 43(5), p. 933-941. 10.1002/ceat.201900558 Open Access
Neumann, S., Menter, C., Mahmoud, A. S., Segets, D., Rafaja, D. (2020) Microstructure characteristics of non-monodisperse quantum dots: On the potential of transmission electron microscopy combined with X-ray diffraction. CrystEngComm, 22, 3644. 10.1039/D0CE00312C Open Access
Olszok, V., Rivas-Botero, J., Wollmann, A., Benker, B., Weber, A. P. (2020) Particle-induced nanobubble generation for material-selective nanoparticle flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 592, p. 635-642. 10.1016/j.colsurfa.2020.124576
Sandmann, K., Fritsching, U. (2020) Selective Partikelklassierung in ultraschallangeregten Aerosolen. Chemie Ingenieur Technik, 92(5), p. 635-642. 10.1002/cite.201900158
Schreier, J., Furat, O., Cankaya, M., Schmidt, V., Bröckel, U. (2020) Automated evaluation of contact angles in a three-phase system of selective agglomeration in liquids. Image Analysis & Stereology, 39, p. 179-188. 105566/ias.2403
Winkler, M., Sonner, H., Gleiss, M., Nirschl, H. (2020) Fractionation of ultrafine particles: Evaluation of separation efficiency by UV–vis spectroscopy. Chemical Engineering Science, 213, p. 115374. 10.1016/j.ces.2019.115374
Conference Papers
Hansen, L., Wollmann, A., Weers, M., Benker, B. and Weber, A. P. (2020) Triboelektrische Trennung von feinen Pulvergemischen. Tagungsband Forschungsfeldkolloquium 2020, Forschungsfeld Rohstoffsicherung und Ressourceneffizienz, Herausgeber: Langefeld, O. und Mrotzek-Blöß, A., Papierfliegerverlag, ISBN 978-3-86948-767-0
Rivas-Botero, J., Wollmann, A., Olszok, V., Benker, B. and Weber, A. P. (2020) Nanoflotation zur Rückgewinung von Rohstoffen. Tagungsband Forschungsfeldkolloquium 2020, Forschungsfeld Rohstoffsicherung und Ressourceneffizienz, Herausgeber: Langefeld, O. und Mrotzek-Blöß, A., Papierfliegerverlag, ISBN 978-3-86948-767-0
Sygusch, J. and Rudolph, M. (2020) The effect of the particle parameters of morphology and wettability in ultrafine particle flotation and froth fractionation. IMPC 2020: XXX International Mineral Processing Congress, The Southern African Institute of Mining and Metallurgy, Cape Town.
Journal Articles
Frank, U., Wawra, S.E., Pflug, L., Peukert, W. (2019) Multidimensional Particle Size Distributions and Their Application to Nonspherical Particle Systems in Two Dimensions. Particle & Particle Systems Characterization, 36, 1800554, p. 1-9. 10.1002/ppsc.201800554 Open Access
Furat, O., Leissner, T., Bachmann, K., Gutzmer, J., Peuker, U.A., and Schmidt, V. (2019) Stochastic Modeling of Multidimensional Particle Properties Using Parametric Copulas. Microscopy and Microanalysis, 25(3), p. 720-734. 10.1017/S1431927619000321 Open Access
Kottmeier, J., Wullenweber, M., Blahout, S., Hussong, J., Kampen, I., Kwade, A., Dietzel, A. (2019) Accelerated Particle Separation in a DLD Device at Re > 1 Investigated by Means of µPIV. Micromachines, 10(11), 768. 10.3390/mi10110768 Open Access
Kravets B., Rosemann T., Reinecke S. R., Kruggel-Emden H. (2019) A new drag force and heat transfer correlation derived from direct numerical LBM-simulations of flown through particle packings. Powder Technology, 345, p. 438–456. 10.1016/j.powtec.2019.01.028
Leißner, T., Diener, A., Löwer, E., Ditscherlein, R., Krüger, K., Kwade, A., and Peuker, U. A. (2019) 3D ex-situ and in-situ X-ray CT process studies in particle technology – A perspective. Advanced Powder Technology, 31(1), p. 78-86. 10.1016/j.apt.2019.09.038 Open Access
Lösch, P., Nikolaus, K., Antonyuk, S. (2019) Classification of Fine Particles Using the Hydrodynamic Forces in the Boundary Layer of a Membrane. Chemie Ingenieur Technik, 91(11), p. 1656-1662. 10.1002/cite.201900052
Mahmoud, A. S., Segets, D. (2019) Cleaning matters! ACS Combinatorial Science, 21(11), p. 722-725. 10.1021/acscombsci.9b00122
Menter, C., Segets, D. (2019) Scalable classification of nanoparticles: A proof of principle for process design. Advanced Powder Technol. 30, p. 2801-2811. 10.1016/j.apt.2019.08.027
Rhein, F., Schmid, E., Esquivel, F., Nirschl, H (2019) Opportunities and challenges of magnetic seeded filtration in multidimensional fractionation. Chemie Ingenieur Technik, 92(3), p.266-274. 10.1002/cite.201900104 Open Access
Rhein, F., Scholl, F., Nirschl, H. (2019) Magnetic seeded filtration for the separation of fine polymer particles from dilute suspensions: Microplastics. Chemical Engineering Science, 207, p. 1278-1287. 10.1016/j.ces.2019.07.052
Rhein, F., Ruß, F., Nirschl, H. (2019) Collision case model for population balance equations in agglomerating heterogeneous colloidal systems: Theory and experiment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, p. 67-78. 10.1016/j.colsurfa.2019.03.089
Rosemann T., Kravets B., Reinecke S.R., Kruggel-Emden H., Wu M., Peters B. (2019) Comparison of numerical schemes for 3D lattice Boltzmann simulations of moving rigid particles in thermal fluid flows. Powder Technology, 356, p. 528-546. 10.1016/j.powtec.2019.07.054
Schach, E., Buchmann, M., Tolosana-Delgado, R., Leißner, T., Kern, M., van den Boogaart, K. G., Rudolph, M., Peuker, U.-A. (2019) Multidimensional characterization of separation processes – Part 1: Introducing kernel methods and entropy in the context of mineral processing using SEM-based image analysis. Minerals Engineering, 137, p. 78-86. 10.1016/j.mineng.2019.03.026
Süß, S., Michaud, V., Amsharov, K., Akhmetov, V., Kaspereit, M., Damm, C., Peukert, W. (2019) Quantitative Evaluation of Fullerene Separation by Liquid Chromatography. The Journal of Physical Chemistry, 123, p. 16747-16756. 10.1021/acs.jpcc.9b03247 Open Access
Weirauch, L., Lorenz, M., Hill, N., Lapizco-Encinas, B.H., Baune, M., Pesch, G.R., Thöming, J. (2019) Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. Biomicrofluidics, 13, 064112. 10.1063/1.5124110 Open Access
Journal Articles
Höcker, S.B., Trunk, R., Dörfler, W., Krause, M. J. (2018) Towards the simulations of inertial dense particulate flows with a volume-averaged lattice Boltzmann method. Computers & Fluids, 166, p. 152-162. 10.1016/j.compfluid.2018.02.011
Pesch, G. R., Lorenz, M., Sachdev, S., Salameh, S., Du, F., Baune, M. Boukany, P. E., Thöming, J. (2018) Bridging the scales in high-throughput dielectrophoretic (bio-)particle separation in porous media. Scientific Reports, 8, 10480. 10.1038/s41598-018-28735-w
Süß, S., Metzger, c., Damm, C., Segets, D., Peukert, W. (2018) Quantitative evaluation of nanoparticle classification by size-exclusion chromatography. Powder Technology, 339, p. 264–272. 10.1016/j.powtec.2018.08.008
Furat, O., Leissner, T., Ditscherlein, R., Sedivy, O., Weber, M., Bachmann, K., Gutzmer, J., Peuker, U., Schmidt, V. (2019) Description of Ore Particles from X-Ray Microtomography (XMT) Images, Supported by Scanning Electron Microscope (SEM)-Based Image Analysis. Microsc Microanal, 24(5), p. 461-470. 10.1017/S1431927618015076
Wawra, S., Pflug, L., Thajudeen, T., Kryschi, C., Stingl, M., Peukert, W., Determination of the two-dimensional distributions of gold nanorods by multiwavelength analytical ultracentrifugation. NATURE COMMUNICATIONS, 2018, 9, 4898.
10.1038/s41467-018-07366-9
Conference Papers
Peuker, U.A., Leißner, T., Weber, A.P., Rafaja, D., Schmidt, V. (2018) Mehrdimensionale Eigenschaften von Partikelsystemen - ganzheitliche Eigenschaftsfunktion (PE). Chemie Ingenieur Technik, 90(9), p. 1209-1210. 10.1002/cite.201855172
Wawra, S., Pflug, L., Thajudeen, T., Peukert, W. (2018) Ermittlung der 2D-Partikelgrößenverteilung plasmonischer Partikel mittels analytischer Ultrazentrifugation. Chemie Ingenieur Technik Volume 2018, 90(9), 1214. 10.1002/cite.201855182