Image
Prof. Dr. rer. nat. Björn Sprungk
Kontakt
Prüferstr. 9, Zimmer DG.02
+49 3731 39-3225
Bjoern [dot] Sprungk [at] math [dot] tu-freiberg [dot] de (Bjoern[dot]Sprungk[at]math[dot]tu-freiberg[dot]de)
Aktuelles Lehrangebot (Sommersemester 2024)
- Methods in Machine Learning
- Stochastische Simulation / Stochastis Simulation
- Versuchsplanung und multivariate Statistik
Allgemeines Lehrangebot
- Aktuelle Themen der Stochastik (Winter, jährlich)
- Mathematics of Machine Learning (Winter, jährlich)
- Methods in Machine Learning (Sommer, jährlich)
- Probabilistic Forecasting and Data Assimilation (Sommer, jährlich)
- Uncertainty Quantification (Winter, ungerade Jahre)
- Stochastic Methods for Material Science (Winter, jährlich)
- Versuchsplanung und multivariate Statistik (Sommer, jährlich)
- Unsicherheitsquantifizierung für Differentialgleichungen
- Hochdimensionale Approximationsmethoden
- Stochastische Simulationsverfahren, speziell Markowketten-Monte Carlo
- Bayessche Inferenz für inverse Probleme
- Unsicherheiten im maschinelles Lernen
Preprints
- S. Power, D. Rudolf, B. Sprungk, A. Q. Wang (2024)
Weak Poincaré inequality comparisons for ideal and hybrid slice sampling
arXiv:2402.13678, 1-35.
- B. Sprungk, S. Weissmann, J. Zech (2023)
Metropolis-adjusted interacting particle sampling
arXiv:2312.13889, 1-40.
- D. Rudolf, B. Sprungk (2022)
Robust random walk-like Metropolis-Hastings algorithms for concentrating posteriors.
arXiv:2202.12127, 1-27.
Begutachtete Publikationen
- M. Hasenpflug, D. Rudolf, B. Sprungk (2024)
Wasserstein convergence rates of increasingly concentrating probability measures
Ann. Appl. Probab. 34(3):3320-3347. [arXiv]
- O. G. Ernst, B. Sprungk, C. Zhang (2024)
Uncertainty modeling and propagation for groundwater flow: a comparative study of surrogates.
Int. J. Geomath. 15, 11.
- H. Höllwarth, S. A.H. Sander, M. Werner, S. Fuhrmann, B. Sprungk (2023)
Simulation of phase separation in Na2O-SiO2 glasses under uncertainty
Journal of Non-Crystalline Solids 621:122534 (7pp).
- Lie, H. C., Rudolf, D., Sprungk, B., Sullivan T. J. (2023)
Dimension-independent Markov chain Monte Carlo on the sphere.
Scandinavian Journal of Statistics 50(4):1818-1858. [arXiv]
- Ernst, O. G., Pichler, A., Sprungk, B. (2022).
Wasserstein sensitivity of Risk and Uncertainty Propagation.
SIAM/ASA J. Uncertainty Quantification 10(3):915-948. [arXiv]
- Eigel, M., Ernst, O., Sprungk, B., Tamellini, L. (2022)
On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion.
SIAM J. Numer. Anal. 60(2):659-687 [arXiv]
- Ernst, O. G., Sprungk, B., Tamellini, L. (2022).
On Expansions and Nodes for Sparse Grid Collocation of Lognormal Elliptic PDEs.
In: H.-J. Bungartz et al. (Eds.) Sparse Grids and Applications - Munich 2018, Lecture Notes in Computational Science and Engineering, Band 144, Springer Cham, pp. 1-31. [arXiv]
- Natarovskii, V., Rudolf, D., Sprungk, B. (2021)
Geometric convergence of elliptical slice sampling.
Proceedings of the 38th International Conference on Machine Learning, PLMR 139:7969-7978 [arXiv]
- Klebanov, I., Sprungk, B., Sullivan, T. J. (2021)
The linear conditional expectation in Hilbert space.
Bernoulli 27(4):2267-2299. [arXiv]
- Natarovskii, V., Rudolf, D., Sprungk, B. (2021)
Quantitative spectral gap estimate and Wasserstein contraction of simple slice sampling.
Ann. Appl. Probab. 31(2):806-825. [arXiv]
- Habeck, M., Rudolf, D., Sprungk, B. (2020)
Stability of doubly-intractable distributions.
Electron. Commun. Probab. 25, paper no. 62, 13pp. [arXiv]
- Schillings, C., Sprungk, B., Wacker, P. (2020)
On the Convergence of the Laplace Approximation and Noise-Level-Robustness of Laplace-based Monte Carlo Methods for Bayesian Inverse Problems.
Numerische Mathematik 145:915-971. [arXiv]
- Rudolf, D., Sprungk, B. (2020)
On a Metropolis-Hastings importance sampling estimator
Electron. J. Statist. 14(1):857-889. [arXiv]
- Sprungk, B. (2020)
On the Local Lipschitz Robustness of Bayesian Inverse Problems.
Inverse Problems 36:055015 (31pp). [arXiv]
- Ernst, O. G., Sprungk, B., Tamellini, L. (2018)
Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables.
SIAM J. Numer. Anal. 56(2):877-905. [arXiv]
- Rudolf, D., Sprungk, B. (2018)
On a Generalization of the Preconditioned Crank-Nicolson Metropolis Algorithm.
Found. Comput. Math. 18:309-343. [arXiv]
- Rudolf, D., Sprungk, B. (2017)
Metropolis-Hastings Importance Sampling Estimator.
Proc. Appl. Math. Mech. 17:731-734.
- Hundt, S., Sprungk, B., Horsch, A. (2017)
The Information Content of Credit Ratings: Evidence from European Convertible Bond Markets.
The European Journal of Finance 23(14):1414-1445.
- Ernst, O. G., Sprungk, B., Starkloff, H.-J. (2015)
Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems.
SIAM/ASA J. Uncertainty Quantification 3(1):823-851. [arXiv]
- Ernst, O. G., Sprungk, B., Starkloff, H.-J. (2014)
Bayesian inverse problems and Kalman filters.
In: Dahlke S. et al. (Eds.) Extraction of Quantifiable Information from Complex Systems, Lecture Notes in Computational Science and Engineering, Band 102, Springer, Cham, pp. 133-159.
- Ernst, O. G., Sprungk, B. (2014)
Stochastic collocation for elliptic PDEs with random data - the lognormal case.
In: J. Garcke und D. Pflüger (Eds.) Sparse Grids and Applications - Munich 2012, Lecture Notes in Computational Science and Engineering, Band 97, Springer, Cham, pp. 29-53.
- Sprungk, B., van den Boogaart, K. G. (2013)
Stochastic differential equations with fuzzy drift and diffusion.
Fuzzy Sets and Systems 230(1):53-64.
Seit 02/2024 | W2-Professor für Angewandte Mathematik, Institut für Stochastik , TU Bergakademie Freiberg |
02/2020 - 01/2024 | Tenure-Track Professor für Angewandte Mathematik, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg |
04/2018 - 01/2020 | Postdoc, Institut für Mathematische Stochastik, Georg-August Universität Göttingen |
08/2017 - 03/2018 | Postdoc, DFG-Graduiertenkolleg 1953 "Statistical Modeling of Complex Systems and Processes", Universität Mannheim |
06/2017 | Promotion über "Numerical Methods for Bayesian Inference in Hilbert Spaces", TU Chemnitz |
05/2013 - 08/2017 | Doktorand, Professur Numerische Mathematik, TU Chemnitz |
04/2011 - 04/2013 | Wissenschaftlicher Mitarbeiter, DFG-Schwerpunktprogramms 1324 "Extraktion quantifizierbarer Information aus komplexen Systemen", Institut für Numerische Mathematik und Optimierung, TU Bergakademie Freiberg |
07/2009 - 12/2009 | Auslandssemester, Technisch-Naturwissenschaftlichen Universität Norwegen, Trondheim |
10/2005 - 03/2011 | Diplomstudium Angewandte Mathematik, TU Bergakademie Freiberg |
1985 | Geboren in Possendorf (Sachsen) |