Micromorphic Homogenisation of a Porous Medium: Elastic Behavior and Quasi-brittle Damage

Article published in Continuum Mechanics and Thermodynamics. The final publication is available at www.springerlink.com, doi:10.1007/s00161-014-0402-5

Geralf Hütter, Uwe Mühlich, Meinhard Kuna

Today it is well-known that the classical Cauchy continuum theory is insufficient to describe the deformation behavior of solids if gradients occur over distances which are comparable to the microstructure of the material. This becomes crucial e.g. for small specimens or during localization of deformation induced by material degradation (damage). Higher order continuum approaches like micromorphic theories are established to address such problems. However, such theories require the formulation of respective constitutive laws, which account for the microstructural interactions. Especially in damage mechanics such laws are mostly formulated in a purely heuristic way, which leads to physical and numerical problems. In the present contribution the fully micromorphic constitutive law for a porous medium is obtained in closed form by homogenization based on the minimal boundary conditions concept. It is shown that this model describes size effects of porous media like foams adequately. The model is extended towards quasi-brittle damage overcoming the physical and numerical limitations of purely heuristic approaches.

title: size effects, homogenization, micromorphic theory, quasi-brittle damage

1 Introduction

Today, it is well-known that the mechanical response of porous materials like foams becomes dependent on the size of the used specimen if the dimension of the latter is comparable to the relevant microstructure length like the distance of pores or inclusions. If the behavior of structures made of such materials shall be simulated, the microstructure cannot be resolved everywhere in every detail. Rather, it is desirable to describe the material behavior in a smeared sense by means of a continuum theory. However, it is known that the classical Cauchy theory cannot describe the mentioned size effects. Merely, higher order continuum theories are necessary to model such effects. In the last years the micromorphic theory proposed first by Eringen and Suhubi attracted research interest. In the micromorphic theory the current material state does not only depend on the macroscopic strain but additionally on the so-called microdeformation and its gradient. An overview over this theory will be given below. Due to this more detailed description of the microscopic state, size effects can be captured in principle.

However, this additional possibility necessitates the formulation of additional constitutive equations for the higher order stresses that arise as work-conjugate quantities to the additional deformation measures. This additional freedom means that already for an isotropic linear elastic material the number of independent constitutive parameters rises from two to 18 when going from the classical
Cau ch y con tin uum to a fully micromorphic one. Of course, the exp erimen
tal determination of this large number of parameters requires big eorts and
the situation becomes even more severe if nonlinear material behavior is
considered. Two different strategies have been pursued in literature to treat
this problem. The first one is to use a reduced micromorphic theory like the
micropolar one (also known as Cosserat theory). In this case the isotropic
linear elastic material has six independent constitutive parameters, i.e. four
additional ones. Determining four additional parameters from experimental
or numerical investigations is typically seen as justifiable efort. However,
it turned out the Cosserat theory does not recover all effects that are being
observed with real materials. So this reduced theory has problems with the
dispersion of longitudinal waves and with the size eects typically observed in
bending specimens.

So recently, homogenization methods as proposed by Forest and Sab
attracted more attention to derive constitutive laws for micromorphic
theories. However, due to the problem in treating fluctuation fields in this
theory, the homogenizations were either done numerically or restricted
to constrained micromorphic theories where microdeformation and macrodeformation coincide a priori.

Damage mechanics is another eld where classical Cauchy theory comes to its limits. Here, it is today
well-established that classical theories are not able to describe the localization associated with softening
adequately. For this reason advanced formulations accounting for additional gradient terms (besides
the deformation gradient) like implicit gradient-enriched non-local models or phase-eld models experience
more and more popularity. According to Forest such formulations fit also in the framework of
classical micromorphic media. Referring to this framework the very most of the mentioned gradient-
enriched damage models correspond to classical damage models extended heuristically by a linear and
reversible constitutive relation between the additional gradient term and the respective conjugate
stress-type quantity ("higher-order stress"). Such a linear and reversible constitutive relation is questionable in
the context of the typically highly non-linear and dissipative constitutive relation for the classical Cauchy
stress term and raises the problem of the interpretation of the respective coefficient(s). Furthermore,
corresponding boundary conditions have to be specied for the higher order stresses. Typically, this
is the trivial Neumann boundary condition for free surfaces. However, if the higher order stress is
described by a linear and reversible constitutive law, it does not vanish in the fully damaged state.
Thus, the fully damaged state does not correspond to the formation of a free surface, which is a
counterintuitive prediction. For this reason it is highly desirable to obtain constitutive laws also for the
higher order terms in a consistent way. Here, homogenization is a promising approach.

The intention of the present paper is to overcome the mentioned limitations and to derive a micro-
morphic constitutive model in closed form for porous media by homogenization. Based on these results
a damage model is proposed.

The notation of the present contribution follows Forest and co-workers [see e.g.]. In particular
scalars, vectors, second, third and forth order tensors are denoted by , , , and
e respectively. The
operator denotes the complete transposition of all indices of a tensor and is the symmetric part of a second order tensor. Single to fourfold contractions are indicated by , , , respectively, and
are computed from left to right. i.e. or using Einstein’s summation rule over repeated
indices and with referring to the coordinates of tensor in a Cartesian system. The tensor product
is written in a short notation as . Only if the expressions maybe mistaken the symbol is inserted
equivalently as . Furthermore, denotes the nabla operator whose subscript denotes whether it is
computed with respect to the macroscopic or the microscopic location vector.
2 Homogenisation for Micromorphic Continua

2.1 Macroscopic Deformation Measures

According to Germain [20], a homogenization of a continuum with microstructure can be performed by approximating the relevant microscopic field quantities, here the displacement, as

\[\tilde{u} = U(X) + \left(\chi(X) - I \right) \cdot (x - X). \] (1)

The microscopic location vector is \(x \) and \(X \) refers to a macroscopic material point. Now the macroscopic displacement \(U(X) \) and the micro deformation \(\chi(X) \) are defined from the condition that the error between this approximation and the true microscopic field \(u(x) \) is minimized over a microstructural volume element \(V(X) \):

\[\left\| u(x) - \tilde{u} \right\|_{V(X)}^{2} \rightarrow \text{min}. \] (2)

whereby \(\langle \circ \rangle_{V(X)} \) means computing the average over \(V(X) \). If \(X \) is now defined as the location of the geometric center of \(V \), i.e. \(X = \langle x \rangle_{V(X)} \), then the optimization problem (2) yields [21]

\[U(X) = \langle u \rangle_{V(X)}, \] (3)

\[\chi(X) = I + \langle u(x) \otimes (x - X) \rangle_{V(X)} \cdot G^{-1}. \] (4)

with the second order geometrical moment tensor

\[G = \langle (x - X) \otimes (x - X) \rangle_{V(X)} \cdot . \] (5)

As in classical continuum theory the macroscopic gradients of the primary macroscopic field variables \(U(X) \) and \(\chi(X) \) are introduced as deformation measures, that is the macroscopic deformation gradient \(F = I + U \otimes \nabla X \) and the higher order deformation gradient \(K = \chi \otimes \nabla X \). Using definitions (3) and (4) it can be shown [see e.g. 21] that these quantities can be computed from the microscopic displacement field \(u(x) \) as

\[F = I + \langle \nabla u \rangle_{V(X)} \cdot \] (6)

\[K_{ijk} = \langle \frac{\partial u_{i}}{\partial x_{k}} (x_{m} - X_{m}) \rangle_{V(X)} G^{-1}. \] (7)

For a homogeneous deformation \(u = \hat{F} \cdot x + \hat{u} \) with constants \(\hat{F} \) and \(\hat{u} \) the aforementioned quantities are \(F = \chi = \hat{F} \) and \(K = 0 \). In the following only small strains are considered. Then, common deformation measures are the usual macroscopic strain \(E = 1/2(F + F^{T}) - I \), the difference between macroscopic deformation gradient and microdeformation \(\varepsilon = F - \chi \) and the microdeformation gradient \(K \).

2.2 Kinetics and minimal boundary conditions concept

According to the Hill-Mandel condition the macroscopic strain energy density is introduced as average of the corresponding microscopic quantity \(\psi \) over the microstructural volume element:

\[\Psi = \langle \psi \rangle_{V(X)}. \] (8)

It is well-known that, in contrast to the classical homogenization procedure, the particular values of the higher-order deformation measures \(\chi \) and \(K \) according to definitions (4) and (7) cannot be converted
to surface integrals and can thus not be prescribed directly via displacement boundary conditions \cite{22}. Merely, values of K and χ can be prescribed only as integral constraint over the whole domain of the microstructural volume element. Furthermore, in contrast to classical homogenization no periodic conditions can be derived. That is why Jäenicke and Steeb \cite{23} proposed in their “minimal boundary conditions concept” to implement only these integral type conditions but no other essential boundary conditions.

We consider now linear elastic material in the microstructural volume element under isothermal conditions. Thus, Eq. (8) becomes

$$\Psi = \left\langle \frac{1}{2} \varepsilon : S : \varepsilon \right\rangle_{V(\mathbf{X})}$$

with the local strain $\varepsilon(\mathbf{x}) = \frac{1}{2} [\nabla_x \mathbf{u} + (\nabla_x \mathbf{u})^T]$ for any local displacement field $\mathbf{u}(\mathbf{x})$. Therein, S denotes the local stiffness tensor.

According to the minimal boundary conditions concept, the actual microscopic displacement field $\mathbf{u}(\mathbf{x})$ is now the one which minimizes the macroscopic strain energy

$$\Psi = \min_{\mathbf{u}(\mathbf{x})} \left\langle \frac{1}{2} \nabla_x \mathbf{u} : S : \nabla_x \mathbf{u} \right\rangle_{V(\mathbf{X})}$$

under constraints (3), (4), (6) and (7) \cite{10} for prescribed values of the macroscopic quantities $\{U, \chi, F, K\}$ or, equivalently, $\{U, E, e, K\}$. Of course, it will turn out that Ψ does not depend explicitly on the macroscopic displacement U due to objectivity of the continuum theory on the microscopic level. In Eq. (10) the left and right sub symmetry of the stiffness tensor S was used to symmetrize the displacement gradient $\nabla_x \mathbf{u}$. The stresses that are work-conjugate to the deformation measures are then obtained as

$$s = \frac{\partial \Psi}{\partial \varepsilon}, \quad \Sigma = \frac{\partial \Psi}{\partial E}, \quad \mathbf{M} = \frac{\partial \Psi}{\partial K}$$

and fulfill (in absence of inertia and volume forces) the balance equations

$$\left(\Sigma + s\right) \cdot \nabla_X = 0$$

$$s + \mathbf{M} \cdot \nabla_X = 0,$$

see e.g. \cite{19} \cite{20}.

2.3 Local Displacement Field

This variational problem \cite{10} is solved in the present study approximately by Ritz’ method. Facing the large number of kinematic constraints, a polynomial ansatz

$$\mathbf{u}(\mathbf{x}) = A + B \cdot x + \frac{1}{2} C : \mathbf{x} x + \frac{1}{3} D : \mathbf{x} x x$$

is employed for the microscopic displacement field as established in literature on micromorphic homogenisation \cite{5} \cite{8} \cite{9} \cite{21} \cite{22} \cite{24}. Here $X = 0$ is assumed without loss of generality. The polynomial tensors $\mathbf{x} x$ and $\mathbf{x} x x$ are completely symmetric and so are the coefficient tensors C and D with respect to the corresponding indices.

Inserting this field in the mentioned definitions (4), (6), (7) and respecting the symmetry properties of the tensors yields (for a centrosymmetric unit cell, i.e. $(\mathbf{x}^n)_{V(\mathbf{X})} = 0$ for odd n):

$$F = I + B + D : G$$

$$\chi = I + B + \frac{1}{3} D : G^4 \cdot G^{-1}$$

$$K = C$$

4
Therein, \(G = \langle xx \rangle_{V(X)} \) and \(G^4 = \langle xxxx \rangle_{V(X)} \) are the second and forth order geometrical moments. The corresponding constitutive strain-like deformation measures are obtained as

\[
\begin{align*}
\tilde{E} &= \text{sym} (\tilde{B}) + \text{sym} (\approx D : \tilde{G}) \\
\tilde{e} &= \approx D \left(G I - \frac{1}{3} \approx G^4 \cdot G^{-1} \right) \\
\tilde{K} &= \tilde{C} .
\end{align*}
\]

At first glance it may look as if the coefficient tensors \(\tilde{B}, \tilde{C} \) and \(\approx D \) were directly tied by Eqs. (18) for given set of macroscopic deformations \(\tilde{E}, \tilde{e} \) and \(\tilde{K} \). However, the coefficient tensor \(\approx D \) of the cubic part of the polynomial has 30 independent components whereas \(\approx e \) has only nine \([22, 25]\). Thus, \(\approx D \) is not defined uniquely by the microstrain difference tensor \(\approx e \) but further assumptions are necessary. In contrast, the third order polynomial tensor \(\tilde{C} \) is sub-symmetric with respect to the right indices whereas definition (7) does not imply this property a priori for \(\tilde{K} \). In the cited references \([5, 8, 9, 21, 22, 24]\) the cubic coefficient tensor \(\approx D \) was filled more or less arbitrarily with components of the microdeformation difference tensor \(\approx e \) to fulfill Eq. (18). In the aforementioned studies the polynomial displacement field \([14]\) determined this way is prescribed either in the whole domain of the microstructural volume element or only at its boundary. In the latter case the definitions (4), (6), (7) of the macroscopic quantities \(\tilde{E}, \chi, K \) and consequently of \(\tilde{E}, \tilde{e} \) and \(\tilde{K} \) are violated in general \([22]\). With the present approach of formulating the boundary value problem (in variational form (10)) under strict enforcement of \([4, 6, 7]\) both problems do not appear and the local displacement field and the associated energy can be determined with consistent kinematics and with arbitrary accuracy, e.g. by taking higher order polynomials than \([14]\) as ansatz and determining the additional coefficients of arbitrary number straight forward by Ritz’ method.

3 Spherical Microstructural Volume Element

The method is applied to a spherical microstructural volume element as sketched in Figure 1. For a spherical unit cell of radius \(R \) the geometrical moments are \([26]\)

\[
\begin{align*}
G &= \frac{1}{3} R^2 \mathbf{1}, \\
G^4 &= \frac{1}{35} R^4 (2 \mathbf{F}^\circ + \mathbf{II})
\end{align*}
\]
wherein \(\Gamma^s \) is the symmetrizing forth order unit tensor. Thus, \([18] \) gives

\[
e = \frac{2}{35} R^2 D : \Gamma^s
\]

\[
E = \text{sym} (B) + \frac{7}{2} \text{sym} (e).
\]

(20)

(21)

Regarding the strain energy of this configuration it is clear that the void does not contribute due to its vanishing stiffness but only the matrix does. For this purpose the operator \(\langle \cdot \rangle_M = 1/V \int_{V_M} \cdot dV \) is defined that computes that integral over the matrix volume \(V_M \) (i.e. for \(r = R_{\text{void}} \ldots R \)) divided by the total volume \(V = V_M/(1-f) \) of the RVE. Therein, \(f \) denotes the void volume fraction. Inserting the polynomial displacement field \([14] \) into Eq. \([10] \) thus yields a macroscopic strain energy density

\[
\Psi = \left\langle \frac{1}{2} (B + C \cdot x + D : xx) : S : (B + C \cdot x + D : xx) \right\rangle_M
\]

(22)

to be minimized. Expanding this expression and taking into account the central symmetry of the geometry leads to

\[
\Psi = \frac{1}{2} \langle 1 \rangle_M B : S : B + \frac{1}{2} \langle C^T : S : C \rangle_M + \frac{1}{2} \langle D^T : S : D \rangle_M + \langle xxxx \rangle_M = \frac{2}{35} \left(f^{7/3} R^4 \right) \langle \Gamma^s + I \rangle.
\]

(23)

(24)

Now the coefficient tensors \(B, C \) and \(D \) have to be substituted by the macroscopic deformation measures \(E, K \) and \(e \) from \([18] \). In \([21] \) the first two terms on the right-hand side can be evaluated immediately by means of \([18] \) and \([21] \). Also the mixed term \(\langle B^T : S : D \rangle_M \) can be evaluated directly since \(\langle xx \rangle_M \) is spherical according to Eq. \([24] \) and \(D : I \) can be substituted by \(e \) according to Eq. \([20] \). The quadratic term in \(D \) goes with \(\langle xxxx \rangle_M \). The latter is a linear combination of \(I \) and \(\Gamma^s \). The former part \(I \) results in terms \(\langle D^T : S : D \rangle_M = I = \langle D : I \rangle = \langle D : I \rangle \) that can again be evaluated directly to \(e \) according to Eq. \([20] \). Thus, one obtains in a first step

\[
\Psi = \frac{1}{2} (1-f) \left(E - \frac{7}{2} e \right) : S : \left(E - \frac{7}{2} e \right) + \frac{R^2}{10} \left(1 - f^{5/3} \right) \left(K^T : S : K \right) : I
\]

\[
+ (1-f^{7/3}) \frac{R^4}{70} \left(\frac{35}{9 R^2 e} \right) : S : \left(\frac{35}{9 R^2 e} \right) + (1-f^{7/3}) \frac{R^4}{35} \left(D : \Gamma^s \cdot D^T : \Gamma^s \right) : S
\]

\[
+ (1-f^{5/3}) \frac{R^2}{5} \left(E - \frac{7}{2} e \right) : S : \left(\frac{35}{9 R^2 e} \right).
\]

(25)

Collecting some terms results in

\[
\Psi = \frac{1}{2} (1-f) E : S : E + \frac{R^2}{2} F^K (f) \left(K^T : S : K \right) : I + F^{Ee} (f) E : S : e
\]

\[
- \frac{7}{8} \left(2 + 7 f - 14 f^{5/3} + 5 f^{7/3} \right) e : S : e + \left(1 - f^{7/3} \right) \frac{R^4}{35} \left(D : \Gamma^s \cdot D^T : \Gamma^s \right) : S.
\]

(26)

\[\text{Employing Eq. [18] to the microstructural volume element with void to obtain Eqs. [18] and [23] means that the displacement field is defined also in the void, i.e. it corresponds to the limit case of elastic material in the void but with vanishing stiffness. This assumption is necessary since, as mentioned already, [1] and [7] cannot be converted to surface integrals.} \]
The coefficient functions $F^K(f)$ and $F^{Ee}(f)$ will be summarized below. The last term $\mathbf{D} : \mathbf{F} : \mathbf{D}^T$ in Eq. (26) cannot be expressed uniquely in terms of the macroscopic deformations \mathbf{E}, \mathbf{K} and \mathbf{e} but it contains a fluctuation field. According to the minimal boundary conditions concept the fluctuation field minimizes the total strain energy for given \mathbf{E}, \mathbf{K} and \mathbf{e}. In Eq. (26) only \mathbf{D} remains to be determined under constraint Eq. (20). The Lagrangian of the corresponding minimization problem reads

$$\mathcal{L} = \Psi_0 \left(\mathbf{E}, \mathbf{K}, \mathbf{e} \right) + \left(1 - f^{7/3} \right) \frac{R^4}{35} \left(\mathbf{D} : \mathbf{F} : \mathbf{D}^T \right) : \mathbf{S} + \lambda \left(\mathbf{e} - \frac{7}{35} R^2 \mathbf{D} : \mathbf{I} \right)$$

(27)

and is to be minimized with respect to the polynomial coefficient tensor \mathbf{D} and the Lagrange multiplier λ. Therein, $\Psi_0(\mathbf{E}, \mathbf{K}, \mathbf{e})$ was introduced as an abbreviation for all terms in Eq. (26) that depend on the macroscopic deformations only. The stationarity conditions $\mathcal{L}_\mathbf{D} = 0$ and $\mathcal{L}_\mathbf{e} = 0$ give Eq. (20) and

$$\frac{\partial}{\partial \mathbf{D}} \left(\mathbf{D} \right) = 0 = \left(1 - f^{7/3} \right) \frac{2R^4}{35} \mathbf{S} \approx \mathbf{D} - \frac{2}{35} R^2 \lambda \mathbf{I}.$$

(28)

Lagrange multiplier λ can be determined by taking the (right) spherical part of (28) and inserting Eq. (20) yielding $\lambda = \left(1 - f^{7/3} \right) 35/6 \mathbf{S} : \mathbf{e}$. Inserting this value back into Eq. (28) gives

$$\mathbf{S} \left(\mathbf{D} - \frac{35}{6R^2 \mathbf{F}^{Ee} \mathbf{e}} \right) = 0.$$

(29)

Note that this does not imply that the bracketed term in Eq. (29) is zero but only its left symmetrized part. Thus, one obtains the left symmetrized part (by multiplying the compliance tensor from left) as

$$\mathbf{G} : \mathbf{D} = \frac{35}{6R^2 \mathbf{F}^{Ee} \mathbf{e}} \mathbf{G}.$$

(30)

Only the latter is needed for computing the strain energy and inserting it back into Eq. (26) leads to the final result

$$\Psi = \frac{1}{2} \left(1 - f \right) \mathbf{E} : \mathbf{S} : \mathbf{E} + \frac{R^2}{2} F^K(f) \left(\mathbf{K}^T : \mathbf{K} \right) : \mathbf{I} + \frac{1}{2} F^{Ee}(f) \mathbf{e} : \mathbf{S} : \mathbf{e} + F^{Ee}(f) \mathbf{E} : \mathbf{S} : \mathbf{e}.$$

(31)

The prefactors depend on the void volume fraction f and read

$$F^{Ee}(f) = \frac{7}{12} \left[4 - 21 f + 42 f^{5/3} - 25 f^{7/3} \right]$$

$$F^K(f) = \frac{7}{2} f \left(1 - f^{2/3} \right)$$

$$F^{Ee}(f) = \frac{1}{5} \left(1 - f^{5/3} \right).$$

(32)

They are plotted against f in Figure 2. The stresses are obtained from (31) according to (11) as

$$\mathbf{s} = \frac{\partial \Psi}{\partial \mathbf{e}} = F^{Ee}(f) \mathbf{S} : \mathbf{e} + F^{Ee}(f) \mathbf{S} : \mathbf{e}$$

(33)

$$\Sigma = \frac{\partial \Psi}{\partial \mathbf{E}} = \left(1 - f \right) \mathbf{S} : \mathbf{E} + F^{Ee}(f) \mathbf{S} : \mathbf{e}$$

(34)

$$\mathbf{M} = \frac{\partial \Psi}{\partial \mathbf{K}} = R^2 F^K(f) \mathbf{S} : \mathbf{K}$$

(35)

Actually, the assumed symmetry of \mathbf{D} with respect to its right indices has to be enforced by a further Lagrange multiplier. However, this more lengthy procedure gives finally the same result Eq. (30) and is thus omitted here for the sake of clarity.
Note that the strain energy Ψ depends on the symmetric part of the difference strain \mathbf{e} only since \mathbf{e} appears in products with the symmetric stiffness tensor \mathbf{S} only. Correspondingly, the conjugate stress \mathbf{s} is symmetric. Also the higher-order stress \mathbf{M} has a left sub-symmetry. Consequently, only six of the nine equations (13) are independent. Thus, in the classification of Forest and Sievert [19] the derived model describes a microstrain continuum.

4 Circular Microstructural Volume Element

The procedure can be applied analogously to a plane problem, i.e. to a circular microstructural volume element of radius R with circular void of R_{void}. Then f describes the void area fraction or, equivalently, the volume fraction of infinitely long cylindrical voids aligned normal to the loading plane. The geometrical moments are then

$$G = \frac{1}{4} R^2 \mathbf{I}, \quad G^4 = \frac{1}{24} R^4 (2 \mathbf{I} + \mathbf{I}).$$

(36)

Now the second and fourth order unit tensors \mathbf{I} and \mathbf{I} refer to their 2D analogs. Analogous to Eqs. (20) and (21) one obtains the relation between polynomial coefficients and deformation measures as

$$\mathbf{e} = \frac{R^2}{12} \mathbf{D} : \mathbf{I},$$

(37)

and

$$\mathbf{E} = \text{sym} (\mathbf{B}) + 3 \text{sym} (\mathbf{e}).$$

(38)

The procedure from the preceding section remains the same but with (24) replaced by

$$\langle 1 \rangle_M = 1 - f \quad \langle \mathbf{xx} \rangle_M = (1 - f^2) \frac{R^2}{4} \mathbf{I}, \quad \langle \mathbf{xxxx} \rangle_M = (1 - f^3) \frac{R^4}{24} (2 \mathbf{I} + \mathbf{I}).$$

(39)

Finally, also the resulting energy Eq. 31 and the derived stresses Eqs. 33 to 35 remain but with the prefactors

$$F^{ee}(f) = 3 \left[1 - 3f + 6f^2 - 4f^3 \right]$$

$$F^{Ee}(f) = 3f (1 - f)$$

$$F^K(f) = \frac{1}{4} (1 - f^2).$$

(40)
wherein \(N\), the stresses are

\[
\begin{align*}
U &= U_s(X_2) \mathbf{b}_1 \\
\chi &= \chi_s(X_2) \mathbf{b}_1 \mathbf{b}_2
\end{align*}
\]

with \(\mathbf{b}_1\) and \(\mathbf{b}_2\) denoting the unit base vectors. Then the strains are obtained as

\[
\begin{align*}
K &= \chi'_s(X_2) \mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3 \\
E &= U'_s \mathbf{N}_s \\
\text{sym}(\varepsilon) &= (U'_s - \chi_s) \mathbf{N}_s
\end{align*}
\]

 Inserting these stresses into balance equations (12) and (13) gives a system of linear ordinary differential equations for the unknown functions \(U_s(X_2)\) and \(\chi_s(X_2)\). In addition to the classical boundary displacement conditions \(U_s(0) = 0\) and \(U_s(\hat{h}) = \hat{U}_s\), boundary conditions for the higher order deformations have to be specified. Here, so-called “micro-clamped” boundary conditions \(\chi_s(0) = \chi_s(\hat{h}) = 0\) are prescribed in order to address size effects. Then the solution may be found by standard mathematical methods as

\[
\begin{align*}
\chi_s(X_2) &= \frac{\hat{U}_s}{\hat{h}} \left[1 + \frac{F^{Ee}}{F^{ee}} \right] \left. \frac{\cosh \frac{h}{2\hat{R}_e} - \cosh \frac{h-2X_2}{2\hat{R}_e}}{\cosh \frac{h}{2\hat{R}_e} - \frac{(F^{ee} + F^{Ee})^2}{(1-F^{ee}+2F^{Ee})F^{ee}} \frac{\sinh(h/(2\hat{R}_e))}{h/(2\hat{R}_e)}} \right] \\
U_s(X_2) &= \frac{\hat{U}_s}{\hat{h}} \left[X_2 + \hat{R}_e \right] \left. \frac{\cosh \frac{h-2X_2}{2\hat{R}_e} - \cosh \frac{h}{2\hat{R}_e}}{\cosh \frac{h}{2\hat{R}_e} - \frac{(F^{ee} + F^{Ee})^2}{(1-F^{ee}+2F^{Ee})F^{ee}} \frac{\sinh(h/(2\hat{R}_e))}{h/(2\hat{R}_e)}} \right].
\end{align*}
\]
Therein, the abbreviation

$$\hat{R}_s = R \sqrt{\frac{F^R(f) \left[1 - f + F^{ee}(f) + 2F^{Ee}(f)\right]}{(1 - f) F^{ee}(f) - (F^{Ee}(f))^2}}$$

was introduced for the length that arises mathematically from the characteristic equation of the system of ordinary differential equations for simple shear. The plot against the void volume fraction \(f \) for spherical voids in Figure 4 shows that for low \(f \) the value \(\hat{R}_s \) lies in the range of \(R \) but increases significantly with further increasing \(f \). In general, the value \(R \) is to be interpreted as half mean void distance.

The distribution of the shear microdeformation \(\chi_s \) for simple shearing is plotted in Figure 5 for different ratios of height \(h \) of the specimen and material length \(\hat{R}_s \). It shows that for small specimens \(\chi_s \) is non-homogeneous over the whole thickness whereas for large specimens \(h/R = 50 \) a region of constant deformations is formed in the center and the inhomogeneous deformations are limited to boundary layers of finite size at the surfaces. In contrast, the total stress \(\Sigma + \Theta \) is constant over the whole thickness due to balance of momentum Eq. (12). Inserting the solution Eqs. (47) back into material laws Eq. (46) yields a macroscopic shear stress of

$$\tau_s = (\Sigma + \Theta) : \mathbb{N}_s = \frac{\mu \hat{U}_s}{h} \left(1 - \frac{1 - f - (F^{Ee})^2}{(1 - f + F^{ee})^2} \frac{\tanh(h/(2\hat{R}_s))}{h/(2\hat{R}_s)}\right).$$

The result for a classical Cauchy continuum can be easily identified by the limit case \(h/\hat{R}_s \to \infty \) as \(\tau_s^\infty = \left[1 - f - (F^{Ee})^2/F^{ee}\right] \mu \hat{U}_s/h \). For finite values of the ratio of height \(h \) and characteristic length \(\hat{R}_s \), or equivalently mean half void distance \(R \), the shear stress is plotted in Figure 6 for given mean shear strain \(\hat{U}_s/h \). Due to the linearity of the material behavior the plotted ratio corresponds directly to the relative stiffness of the specimen. The graph shows the transition between the two limit cases \(h/R \to \infty \) and \(h/R \to 0 \) (the latter being of course a purely mathematical solution conflicting with the assumptions of the homogenization). For low void volume fractions of \(f = 0.001 \) to \(f = 0.1 \) a moderate stiffening with decreasing strip thickness \(h \) is predicted. Although being weaker in magnitude, the size-effect does not vanish completely for \(f = 0 \). Such artificial size-effects are known from constrained higher order theories [12,31]. It remains open to clarify whether this effect is a relic of the approximate solution (14) or whether it is attributed to the employed homogenisation theory itself. For higher void volume fractions \(f > 0.1 \) the size effect becomes more distinct. Furthermore, it is found that the transition region on the \(h/R \) axis in Figure 6 is the wider, the higher \(f \) is. So for \(f \geq 0.5 \) the size

![Figure 4: Effect of void volume fraction on characteristic length (spherical voids)](image)
effect does not saturate the strip height reaches a value $h \approx 10R$. This behavior is plausible due to the stronger interaction of the voids. Mathematically, it is attributed to the increase of the characteristic length R_s relative to the mean void half distance R with increasing void volume fraction f as shown already in Figure 4.

The used unit cell with void (Figure 1) raises the suspicion that the obtained elastic micromorphic law might be suitable to describe the size effects of elastic closed-cell foams. Figure 6 shows that the derived theory predicts for intermediate void volume fractions f up to 0.5 a shear stiffness of small specimens $h = (2\ldots4)R$ of a factor τ_s/τ_{∞} of 1.5 to 4 compared to large specimens. This amount of stiffening lies indeed in the range of experimental results compiled by Lakes [2, 3]. Waseem et al. [32] performed bending tests with foam-like structures (with drilled and regularly arranged holes) and observed, in agreement with the predictions of the present model, indeed an increasing size-effect for increasing void volume fractions.

In addition to the amount of stiffening that is attainable with small specimens, the second important question is whether the particular specimen sizes can be predicted at which the size effect initiates, i.e. whether the location of transition region on the abscissa between the two limit cases in Figure 6 is realistic. Finite element simulations of simple shearing of elastic foams with discretely resolved microstructure were performed by Tekoglu and co-workers [4, 6] and Jänicke et al. [33]. Tekoglu and co-workers performed simulations with random Voronoi-tessellated foams modeled by beam elements. They published average and lower and upper bound values of the obtained macroscopic stiffness that are plotted in Figure 6. For such a random microstructure, the length R is interpreted as mean value computed as radius of the mean area-equivalent cell. Jänicke et al. [33] investigated perfectly regular honeycomb structures and slightly disturbed modifications thereof with more accurate 2D continuum elements on the microstructure level. Unfortunately, the latter authors investigated only specimen sizes where the size effect is still relatively weak.

Both research groups used 2D models. For this reason their results are compared in Figure 7 with the analytical predictions [49] of the present homogenized model, but now with the coefficients for circular voids from section 4. Solution (40) remains valid then but coefficients F_{cc}, F_{Ec} and F_K have to be replaced by the 2D values (40). Figure 7 shows that the present homogenized model with $f = 0.4\ldots0.6$ matches the simulation results for the discrete microstructure from literature quite well. However, it has to be remarked that the microstructure in the latter simulations corresponds to void volume fractions of about 0.9. Thus, in this regime of f the present model apparently overestimates the size effect. This overestimation is related to the steep increase of the characteristic length R_s in this regime (see Figure 4). The steep increase comes again from the coefficient functions $F_{cc}(f)$ and $F_{cc}(f)$ in the
denominator of definition (48) of \hat{R}_s. The functions $F^{ee}(f)$ and $F^{ee}(f)$ derive from the polynomial approximation of the local displacement field and is possibly not accurate enough for high void volume fractions $f \gtrsim 0.6$. And possibly for that large f also the exact topology of a foam, which is not covered by the present model, has an effect on the size effect. From this point of view a slight calibration of the mean cell radius R of the present model may be reasonable to match particular (numerical or real) experiments better.

In all but one of the just mentioned numerical and experimental studies from literature Cosserat theory (a special case of micromorphic theory) is employed to model the observed size-effects. Possibly Cosserat theory was chosen due to the considerably lower number of independent material parameters compared to fully micromorphic theory since the constitutive parameters were determined in all these studies by a fitting procedure. However, Lakes points already out that Cosserat theory is unable to describe some of the observed size effects like the dispersion of longitudinal waves. For this reason Lakes proposes to use fully micromorphic theories as perspective. In the present contribution a homogenization for a fully micromorphic theory was performed so that the derived model is able to describe the lacking effects. Remarkably, although allowed in the ansatz Eq. (14) (due to the unrestricted cubic polynomial coefficient tensor \mathbf{D}) the Cosserat terms drop out due to the regular geometry of the RVE and a microstrain theory is obtained.

5.2 Damage Model for Quasi-brittle Materials

Quasi-brittle materials like ceramics or concrete soften due to initiation and propagation of microcracks. Typically, these microcracks initiate at voids or inclusions. Mühlich et al. [31] formulated a corresponding damage model by assuming that the damaged spherical layer of thickness Δa can be considered as effective void growth as sketched in Figure 8. Thus, they introduce the effective void volume fraction

$$f^{\text{eff}} = \left(\frac{R_{\text{void}} + \Delta a}{R}\right)^3.$$ \hfill (50)

after some amount of crack growth Δa as internal variable. This approach is adopted here to derive a micromorphic damage mechanics model based on the presented homogenization. It is assumed that no residual strains appear during quasi-brittle failure so that the damaged zone stores no strain energy anymore. Thus, the Helmholtz energy as state function is obtained by inserting f^{eff} instead of f into Eq. [31]. Furthermore, an evolution equation for f^{eff} has to be formulated. For this purpose the dissipation D associated with microcrack growth is investigated. It is assumed that a number n of microcracks

![Figure 7: Size-effect in simple shearing predicted by the present homogenized model with circular voids compared to simulations with discretely resolved microstructure [4, 6, 33].](image)
propagate whose crack fronts remain circular. Thus, for a fracture toughness of the matrix material Γ_0 (which may depend on Δa), the dissipation during ongoing microcrack growth is

$$D = n\Gamma_0 2\pi (R_{\text{void}} + \Delta a) \dot{\Delta a}.$$ \hspace{1cm} (51)

By means of Eq. (50) this expression can be rearranged to

$$D = \frac{2\pi n R_0^2 \Gamma_0}{3 \sqrt{f_{\text{eff}}}} \dot{f}_{\text{eff}}.$$ \hspace{1cm} (52)

Macroscopically, the Clausius-Duhem inequality $D = Z \dot{f}_{\text{eff}} V \geq 0$ has to hold with $V = 4\pi/3 R^3$ and $Z = -\Psi_{f_{\text{eff}}}$ being the driving force (or energy release rate) of f_{eff}. Thus, for ongoing microcrack growth $f_{\text{eff}} \geq 0$, Eq. (52) has to be equal to $Z f_{\text{eff}} V$. Otherwise, there is no growth of microcracks, i.e. $f_{\text{eff}} = 0$. This behavior can be expressed in terms of a damage function

$$\Phi = Z - \gamma(f_{\text{eff}})$$ \hspace{1cm} (53)

with material resistance

$$\gamma(f_{\text{eff}}) = \frac{n\Gamma_0}{2R \sqrt{f_{\text{eff}}}}$$ \hspace{1cm} (54)

and the corresponding loading-unloading conditions

$$\Phi \leq 0, \quad f_{\text{eff}} \geq 0, \quad \Phi f_{\text{eff}} = 0.$$ \hspace{1cm} (55)

For the particular state potential Eq. (31) the driving force is

$$Z = \frac{1}{2} E : S : E - \frac{R^2}{2} \left(F^{K^T} : S : F^K \right)' \left(K^T : S : K \right) : I - \frac{1}{2} \left(F^{Ee} \right)' \epsilon : S : \epsilon = \left(F^{Ee} \right)' E : S : \epsilon.$$ \hspace{1cm} (56)

Again, the prime $'$ denotes the derivative of a function with respect to its single argument, i.e. here with respect to f_{eff}. Note firstly that in Eq. (56) the driving force Z remains finite at $f_{\text{eff}} = 1$ for given deformations E, K and ϵ. Secondly, it can be found that in absence of higher order deformations $K = 0$ and $\epsilon = 0$, the proposed model reduces to the Kachanov effective stress type isotropic damage model.

\footnote{For the model with circular voids from section 4 analogous considerations lead to $\gamma(f_{\text{eff}}) = n\Gamma_0 / \left(\pi R \sqrt{f_{\text{eff}}} \right)$.}
with \((1 - \varepsilon_{\text{eff}})\) as prefactor of the strain energy density \(1/2\varepsilon : \mathbf{S} : \varepsilon\) of the compact matrix material, compare e.g. [34]. In the context of such models the internal variable \(\varepsilon_{\text{eff}}\) is denominated just as damage variable. Some extensions of effective stress damage models to implicit gradient enriched non-local continuum theories (it is recalled that according to Forest [16] such formulations fit in the framework of generalized micromorphic media) have been proposed in the literature [e.g. 35–39]. Therein, higher order terms that contain the intrinsic length are included typically linearly and reversibly (corresponding to \(\mathbf{M} = c\mathbf{K}\) in present notation with a constant \(c\)) the problems mentioned in section 1. The model proposed in the present study overcomes this problems as all material parameters are determined by a homogenization procedure. So despite the finite driving force, all stress quantities \(\mathbf{\Sigma}_v\), \(s\) and \(\mathbf{M}\) vanish with \(\varepsilon_{\text{eff}} \to 1\) as the corresponding prefactors do, Figure 2. Thus, a free surface, i.e. with trivial natural boundary conditions \((\mathbf{\Sigma} + s) \cdot \mathbf{n} = 0\) and \(\mathbf{M} \cdot \mathbf{n} = 0\) associated to the equilibrium conditions (12)–(13), arises naturally in the fully damaged state \(\varepsilon_{\text{eff}} = 1\).

6 Summary and Outlook

In the present paper the unconstrained micromorphic constitutive law of an elastic porous medium is obtained by homogenization. For this purpose the minimal boundary conditions concept is applied so that the model is consistent with Germain’s homogenization concept for micromorphic media. A closed form solution of the resulting boundary-value problem on the microscale is derived by Ritz’ method for arbitrarily anisotropic (but homogeneous) linear elastic properties of the matrix material. Although not precluded from the ansatz, the Cosserat (micropolar) terms cancel out and a microstrain theory is obtained. The theory is applied to the simple shearing problem and shows a stiffening effect when the thickness of the layer becomes comparable to the distance of the voids, an effect that is well-known from experiments with closed-cell foams and from simulations with discretely resolved microstructure. It is found that the size effect is stronger, the higher the void volume fraction is, a behavior that is plausible since the void interaction becomes more dominant for higher void volume fractions.

Based on the micromorphic model for elastic porous media, a damage model for quasi-brittle materials is proposed accounting for micro-crack initiation and growth by introducing an effective void volume fraction. It turns out that under homogeneous loading conditions the presented model reduces to a Kachanov-Lemaître effective stress type model with isotropic damage. Models of this type have been extended heuristically to implicit gradient enriched formulations already in literature. Such models fit also into the (generalized) framework of micromorphic continua. In contrast to these heuristic approaches, in the presented model all material parameters have a clear physical meaning as well as the gradient terms and the conjugate higher order stresses have. Correspondingly, the formation of free surfaces with vanishing stresses and higher-order stresses when reaching the fully damaged state is, in contrast to heuristic gradient models, an natural outcome of the derived model.

It remains open to investigate the macroscopic localization and fracture behavior predicted by the presented model in detail and compare it with corresponding experimental results. Also the predicted size effect in the elastic regime requires verification by experimental data. The derived model is obtained by an approximate solution by means of Ritz’ method. The solution can be further refined by incorporating higher order polynomial ansatz functions or ansatz functions that eventually contain known exact solutions for some special cases like e.g. Lamé’s solution of a hollow sphere under hydrostatic loading. Although surely expressive in the particular implementation, the procedure for refining the solution is straight-forward by means of the employed homogenization method. It will be interesting to see whether such a refined solution eliminates the (weak) artificial size effect that is predicted by the present model for a vanishing void volume fraction.
Acknowledgments

The authors thank Rostyslav Skrypnýk for proofreading the manuscript.

References

