Gasification of Lignite in O$_2$ and CO$_2$ atmosphere at different ER and different O$_2$ partial pressures with a Pilot Scale Bubbling Fluidized Bed Gasifier

Serhat Gül1, Fehmi Akgün1, Emir Aydar1
1TUBITAK Marmara Research Center Energy Institute, 41470, Gebze, Kocaeli, Turkey
e-mail (Presenter): serhat.gul@tubitak.gov.tr

In this study, gasification experiment was carried out with pilot scale bubbling fluidized bed gasifier (Figure 1) which was operated with the coal feed capacity of 133 to 621 kWth (30 - 140 kg/h coal feed rate). The mixture of oxygen and CO$_2$ was used as gasification agent with different ratios. The operating pressure of gasifier in this experiment was atmospheric. The effects of ER and partial pressure of O$_2$ on syngas composition, carbon conversion ratios and cold gas efficiencies were investigated.

![Figure 1: Pilot Scale Bubbling Fluidized Bed Gasifier](image)

According to the results, with the increase of ER values from 0.32 to 0.41 during gasification with O$_2$ and CO$_2$ mixtures, carbon conversion ratios were increased from 68% to 89%, respectively. Similarly, with the increase of partial pressures of oxygen from 0.21 to 0.50, C conversions were decreased from 89% to 67%, respectively. In fact, it was expected that the C conversion increase with the increase of oxygen partial pressure. However, due to the thermal load of fluidized bed, which was increased from 4 MW/m3 to 18.6 MW/m3, with the increase of oxygen partial pressure, C conversion was effected and decrease with the increase of thermal load. Detail results will be presented and discussed.