Advanced CtL/CtG Technologies for Lignite

Innovative Coal Value Chains

Dr. Jens Hannes, Dr. Thorsten Liese
RWE Generation SE
1 Chances and potentials of lignite to chemicals
2 Lowering of capital costs
3 Team up with renewable energies
4 Conclusions
Lignite can provide a significant contribution to security of supply in the future

In power production already today:

- Lignite power plants are already highly flexible to secure residual load. They are ideal partners for renewable energies.
- Refinement products from lignite are attractive for industry.
- Domestic raw material resource reduces import dependency.

Additionally as carbon supplier in the future:

- Raw material supply of chemical industry is based today mainly on crude oil and natural gas.
- Crude oil reserves decline; oil quality decreases
- Chemical industry can diversify its raw material base in the long run with stable prices.
A committee of inquiry* confirms relevance of lignite for the German energy system and raw material supply

- Cross party agreement of all political parties in NRW parliament

Main messages:

- Potential of lignite for production of chemicals
- Domestic resource lowers German dependence on geopolitical situations and world-market prices
- Lignite vicinity to chemical industry supports economic viability of CtL/CtG

Recommended action:
- establish scientific chairs in NRW, subsidies for demo plants

- RWE appreciates the outcome of the committee and will support development of CtL/CtG.

* „Enquetekommission zur Zukunft der chemischen Industrie in Nordrhein-Westfalen“
RWE’s approved lignite reserves contribute to a long term supply of energy carriers and raw material

<table>
<thead>
<tr>
<th>Mine</th>
<th>Exploitation</th>
<th>Reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garzweiler</td>
<td>35 – 40 Mt/a</td>
<td>1.2 bn t</td>
</tr>
<tr>
<td>Hambach</td>
<td>35 – 45 Mt/a</td>
<td>1.4 bn t</td>
</tr>
<tr>
<td>Inden</td>
<td>20 – 25 Mt/a</td>
<td>0.3 bn t</td>
</tr>
</tbody>
</table>

System lignite
- Exploitation: ~ 90 - 100 Mt/a
- Power production: ~ 70 - 75 TWh/a (40 % NRW / 13 % D)
- ~ 10,000 employees

* Status 01.01.2014, ** without gas turbines
Gasification most promising for high product yield and quality

Key technologies

Drying → Gasification → Gas-treatment → Synthesis

Alternative routes

Synthesis gas → Synthetic natural gas → Basic chemicals* → Fuels → Waxes

* Naphtha, hydrogen, acetic acid, formic acid, methanol, ammonia, …
Vision: Commercialization of CtL/CtG for Rhenish Lignite until mid ‘20ies

Special challenge: economic integration of new plant technologies into existing infrastructures at lignite and chemical sites

- Technologies used for CtL/CtG-plants are in general commercially available.
- Adaption and proving with regard to Rhenish Lignite and German provisions.

*Themal gasification capacity as benchmark for whole plant
Challenges and chances for CtL in Germany

Economy
- Lignite is economically available
- Equipment for CtL is extensive and capital intense
- Cost-benchmark für CtL products is crude oil price

→ **Approach 1: Lower the capital costs**

Security of supply
- Domestic resource is price stable and regionally available
- Added value remains inside the country

Environment
- CtL process emits more CO2 than products from gas or oil
- Combination with H2 from renewable energy allows carbon containing products from CO2 free process
- Potential of CO2 use via renewable energy

→ **Approach 2: Combine with renewables**
Contents

1. Chances and potentials of lignite to chemicals
2. Lowering of capital costs
3. Team up with renewable energies
4. Conclusions
Capital costs: Annex-Principle as a low-cost approach

Annex-Principle = Integration of a CtL/CtG-plant into existing site infrastructure

- Reduces investment
- Offers new utilization- / operation-options for existing infrastructure

Diagram:
- **Raw lignite** → **Lignite power plant** → **Dry lignite** → **Lignite gasification plant** → **Synthesis** → **Lignite to chemicals**
- **Industrial site** → **Solid residues** → **Process gases** → **Water** → **Steam** → **Power production**

- **Existing plants**
- **New plant**

- **Power plant** and **industrial sites** offer potentials for annex-plants
Approach capital costs: Alternative gas scrubbing

Gasscrubbing has high capital and operational costs
The widely used scrubbing technology for CtL (Rectisol – physical scrubbing with cold methanol) requires 20% of CtL capital costs.

<table>
<thead>
<tr>
<th></th>
<th>Rectisol scrubber</th>
<th>Alternative scrubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity of synthesis gas</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Operational costs</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flexibility (Aromats, higher HC)</td>
<td>+</td>
<td>-1)</td>
</tr>
<tr>
<td>Technical maturity</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Capital costs</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

→ **Approach for a chemical scrubbing system with high product purity**
- reduce the amount of necessary equipment
- avoid cryogenic system

1) add. . Benzol scrubbing necessary in case of higher HC in raw syngas
New gas scrubbing concept with potential to lower capital costs

Amin scrubber

Desorber

NaOH-scrubber

H2O + Na2SO4

H2O + Na2S

CO2

H2S + CO2

H2O2-scrubber

Sulphur

clean synthesis gas

Raw syngas

H2O + Na2S-treatment

Steam + air

H2O2-scrubber

Na2S-treatment
Measures to lower capital costs
Alternative scrubbing concept offers capital saving potential

- No capital and energy intense kryogenic methanol system,
 Cost reduction of scrubbing by about 50% via:
 - Only half amount of equipment
 - Only a third of compression power

- Components are known and tested in other processes:
 - Amin scrubbing: *(reformed gas cleaning and Carbon Capture)*
 - NaOH scrubbing: *(reformed gas cleaning)*
 - NaSO₂ treatment: *(tested)*
 - H₂O₂-scrubbing: *(used in waste water treatment)*

Reduction of estimated scrubbing investment by about 50%,
i.e. reduction of total investment by about 10%
Transformation of carbon containing substances

Challenge for lignite:
- Conversion solid fuels to liquid or gas
 \(\triangleq \) modification of H:C:O-ratio
- Solid fuels contain “too much” Oxygen („O“) and carbon („C“) and “not enough“ hydrogen („H“)
 \(\rightarrow \) change of ratios by shift reaction
 \(\rightarrow \) addition of e.g. renewable H\(_2\) also possible

Chance:
- Production of carbon containing goods from lignite lowers CO\(_2\) emissions compared to pure power production

Example Methanol production:
\[
\text{Gasification: } 2\text{CO} + 4\text{H}_2 \xrightarrow{\text{Synthesis}} 2\text{CH}_3\text{OH} + 3\text{CO}_2
\]
\(\Rightarrow \) at least 40 % carbon bonding
Use of renewable power to enhance product yield and reduce CO$_2$-emissions at an early process step

Flexible process heating by surplus electricity from renewables

Combined potentials of regenerative heating:

- lowering CO$_2$ emissions by up to 20%
- lowering O$_2$ demand by up to 30%
- increasing product yield by up to 20%
Exploring cost-cutting potential, CO$_2$ reduction, grid balancing

Development concluded with WTA-prototype in Niederaußem

Development ongoing regarding Rhenisch lignite e.g. within Fabiene project until 2020

Rectisol process to be replaced by amine scrubbing combination with NaOH and H$_2$O$_2$ scrubber
Development: 2017 – 2020

Development ongoing regarding customer specific products e.g. within Fabiene project
Contents

1 Chances and potentials of lignite to chemicals
2 Lowering of capital costs
3 Team up with renewable energies
4 Conclusions
Conclusions

- Domestic lignite has potential as a chemical feedstock resource.
- Combination with renewable energies can contribute to efficient use of renewables.
- For economic optimisation capital costs and CO₂ reduction are key.
- There is potential to reduce capital costs via alternative gas scrubbing.
- Higher product yields and CO₂ avoidance via combination with surplus power.
- CtL/CtG are enablers for use of CO₂.
Thank you!