Experimental investigation of single-particle gasification

14th of June 2016, Cologne, Germany

F. Küster1, R. Ackermann2, S. Guhl1, B. Meyer1

1IEC, TU Bergakademie Freiberg, Germany; 2IAP, Friedrich-Schiller-Universität Jena, Germany
Experimental investigation of single-particle gasification

Outline

1. Background and Motivation
2. The HITECOM Reactor
3. Development of a single particle holder
 - Requirements / overview particle holder
 - Overview adhesive-fixation
 - Integration in HITECOM-System
4. Results and Discussion
 - Feedstock characterization
 - Investigation of single-particle reactions
 - Determination of kinetic parameters
 - Further results
5. Conclusion / Outlook
Experimental investigation of single-particle gasification

Motivation

- Spatial and time resolved characterization of thermochemical conversion of single particles in directed flow at $T < 1400 \, ^\circ\text{C}$ and up to 40 bar for fundamental research and advanced CFD validation
 - Temperature map on the particle surface
 - Temperature- and concentration profiles in the boundary layer around particles

Challenges:

- High pressure
- High temperature
- Reactive gases
- Integration of optical ports
- Single-particle gasification
2. The HITECOM Reactor
Overview

Specifications:
- Magnetic suspension balance
- Ceramic flow tube
- $T_{\text{MAX}}=1400 \, ^\circ\text{C}$, $p_{\text{MAX}}=40 \, \text{bar}$
- Four optical ports (perpendicular to the flow direction; material: sapphire)
- Feed gases: CO, CO$_2$, H$_2$O, H$_2$, O$_2$, N$_2$ and Ar (1 – 200 l/min)

Challenging Task:
- Integration of particle holder
3. Development of a single particle holder
Demands for single particle holder

- Fixation various particles (1.0 – 4.0 mm)
- Temperature resistance (up to 1400 °C)
- Rigidity (no natural oscillation)
- Tolerance of shrinking particles
- good fixation in direct flow
- Minimal flow field distortion
- Compatibility with magnetic suspension balance / reactor

Development of new concepts for the fixation of single-particles in direct flow
 - Combination with magnetic suspension balance
 - Modification of the HITECOM-System
Single particle holder

Overview

Traditional particle holder with wire basket

Disadvantages:
- Disruption of the flow field
- Sensitive against direct flow (vibration)
- Problematic measurement of the boundary layer
- Not suitable for single particles

Classical:

<table>
<thead>
<tr>
<th>Wire-fixation</th>
<th>Ceramic-fixation</th>
<th>Adhesive-fixation</th>
</tr>
</thead>
</table>

Alternatives:

Task: Realization of a vibration-free particle holder tolerant against particle-shrinkage
Particle holder type C – **Adhesive-fixation**

Advantages:
- suitable for direct flow
- vibration-free
- excellent reusability / easy of assembly
- temperature resistant
- low error rate
Single particle holder

Particle holder type C – Adhesive-fixation (C.1)

Lignite I (T=900 °C, p=1.0 bar CO$_2$)
Single particle holder

Particle holder type C – Adhesive-fixation (C.2)

Lignite I (T=900 °C, p=1.0 bar CO₂)
4. Results and discussion
Results and discussion

Feedstock characterization

- Characterization of single-particles of three different feedstocks (lignite and hard coal)
- Characterization of a synthetic mixture of several single-particles of the three feedstocks (traditional methods)
 - Ultimate analysis (DIN 517 24/32)
 - Proximate analysis (DIN 517 18/19/20)
 - Particle shape (CAMSIZER)
 - Reactivity (reference thermobalance, 1bar CO₂, 800-1000°C)

- Challenges:
 - Hypothesis: „each particle is different“ (Influence of feedstock)
 - Non-destructive analysis methods (difficult / impossible)
 - Ultimate- and proximate analysis of the same particle: impossible
 - Ultimate analysis according to DIN
 - Proximate analysis in accordance with DIN
Results and discussion

Feedstock characterization – single-particles

Central German lignite (lignite I; x=0.5-3.0 mm)

Hard coal (x=1.6-2.0 mm)

Ultimate analysis

Proximate analysis
Results and discussion – feedstock characterization

Reactivity – single-particles

Reactivity index R [1/h]

- BK3037
- BK2820
- SK3010

Reaction rate r [1/s]

- SK3010
- BK3037
- BK2820

Carbon conversion $X_c = 50\%$

Reaction rate r

\[r = \frac{1}{m_{C,0}} \cdot \frac{dm_C}{dt} = \frac{dX_C}{dt} \]

Reactivity index R_S (Carbon conversion $X_c = 50\%$):

\[R_S^{0.5} = \frac{0.5}{t_{1/2}} \]

Influence of feedstock

- Lignite I
- Lignite II
- Hard coal
Results and discussion – *single-particle reactions*

Single-particle reactions in HITECOM reactor (I)

Lignite I (T=1000 °C, p=1.0 bar CO₂)
Hard coal (T=1000 °C, p=1.0 bar CO₂)
Results and discussion – single-particle reactions

Single-particle reactions in HITECOM reactor (II)

Lignite II (T=1000 °C, p=1.0 bar CO₂)
Results and discussion – single-particle reactions

Single-particle reactions in HITECOM reactor (II)

- Performing single-particle gasification is possible
- Determination of kinetic parameters
Validating the HITECOM results – experimental design

- Preliminary tests using reference thermobalance
 - Characterization of single-particles (lignite and hard coal)
 - Characterization of powdered samples (homogeneous)
 - Ceramic crucible (particle container, 10µl)
 - Experimental conditions:
 - Temperature range: 800-1000 °C (50K-steps)
 - Pressure: 1bar CO₂

- Experiments in HITECOM-reactor
 - Characterization of single-particles (lignite and hard coal)
 - Adhesive-fixation (hanging)
 - Experimental conditions:
 - Temperature range: 800-1000°C (50K-steps)
 - Pressure: 1bar CO₂

- Comparison of the results
Results and discussion – single-particle reactions

Validating the HITECOM results – determination of kinetic parameters

Temperature range: 800-1000 °C

- Determination of kinetic parameters successful (Arrhenius plot)
- Validation with data from the reference thermobalance successful
- Influence of the feedstock confirmed
 ➢ Possible solution: synthetic particles
Results and discussion – single-particle reactions

Further results – synthetic particles

- **Idea**: Minimization the influence of the feedstock with „ideal“ particles
 - Known and homogeneous composition
 - Known (ideal) particle shape
 - Known reactivity

- Known and well defined properties
- Comparative measurements

Synthetic particle (T=1000 °C, p=1.0 bar CO₂)
Results and discussion – *single-particle reactions*

Further results – thermal camera

- **Task**: Integration of the thermal camera in the HITECOM reactor
 - Calibration of the thermal camera under real conditions
 - Visual observation of single-particles during gasification

 - Temperature map on the particle surface under gasification conditions
 - Compare with simulation

Lignite I (T=1050 °C, p=1.0 bar CO$_2$)
5. Conclusion / Outlook
Conclusion

• Development, construction and commissioning of the HITECOM-Reactor finished
 • Software and hardware improvements

• Integration of particle holder into the TG
 • Further development of the particle holder / adhesive composition
 • Combination of the particle holder with TG interface

• Performing single-particle gasification is possible
 • Adjustment to models is possible

• Determination of kinetic parameters
 • Validation with data from the reference thermobalance successful

• Influence of feedstock not negligible!
 • the differences in reactivity between particles from the hard coal are larger than the
differences between particles of two central German brown coals
 • „each particle is different“

• “Avoid” the influence of the feedstock
 • Possible solution: synthetic particles
Experimental investigation of single-particle gasification

Outlook

- Expansion of the experimental design (CO₂-gasification)
 - Test other single-particle holder (e.g. ceramic-fixation)
 - Variation of the flow conditions
 - Variation of the pressure conditions (partial pressure / total pressure)
 ➢ Expanding applicability of kinetic parameters

- Investigation of the influence of the adhesive

- Water steam gasification
Thank you for your attention

This research has been funded by the Federal Ministry of Education and Research of Germany in the framework of Virtuhcon (Project Number 03Z2F512).