Two-Dimensional CFD Simulation for Industrial Coal-Water Slurry Entrained Flow Gasifier
Two-Dimensional CFD Simulation for Industrial Coal-Water Slurry Entrained Flow Gasifier

Yu Zhang¹, Andreas Richter², Jian Xu¹, Yong Yang¹, Yongwang Li¹

¹Synfuels China Technology Co., Ltd., China,
²IEC, TU Bergakademie Freiberg, Germany
email: zhangyu@synfuelschina.com.cn

Speaker: Yu Zhang
Jun 8th, 2015
Huhhot, Inner Mongolia, China
Content Outline

Motivation and Purpose

Coal Water Slurry Gasifier Modeling

Simulation Results and Discussions
 • Simulation Results
 • Influence of Turbulence – Chemistry Interaction Model
 • Non-reactive Cold and Reactive Flow Simulation Results
 • Influence of Operation Condition

Conclusions

Outlook
Motivation

- Coal is the major source of energy in China
 Chemical products from coal: CTG, CTL, CTM (MTO, MTA)
- Importance of gasification process
 Process stability, overall efficiency, investment
- Entrained flow gasification technology
 Advantages: high carbon conversion ratio, wide adaption to different types of coal, large production capacity
- Challenges in developing entrained flow gasification
 Fluctuate of coal qualities, scale up effect, harsh condition for experiment
- Comprehensive model for entrained flow gasification
 Optimization of gasifier design and operation condition
Purpose

- Developing comprehensive coal water slurry (CWS) entrained flow gasifier model
 - Evaporation, devolatilization, volatile decomposition, gas phase and char reactions
- Comparing turbulence – chemistry interaction models
 - FR/ED model, EDC model
- Analyzing simulated cold and reactive flow field
- Sensitivity analysis of operation conditions
 - Pressure, coal water slurry concentration, droplet size distribution
Coal Water Slurry Gasifier Modeling

- Gasification chamber geometry and mesh
 2D axial symmetry quadrilateral mesh
- Operation and boundary conditions

<table>
<thead>
<tr>
<th>Ultimate Analysis, wt%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C, daf</td>
<td>79.72</td>
</tr>
<tr>
<td>H, daf</td>
<td>4.56</td>
</tr>
<tr>
<td>O, daf</td>
<td>14.64</td>
</tr>
<tr>
<td>N, daf</td>
<td>0.88</td>
</tr>
<tr>
<td>S, daf</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proximate Analysis, wt%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile, dry</td>
<td>60.02</td>
</tr>
<tr>
<td>Fixed carbon, dry</td>
<td>33.23</td>
</tr>
<tr>
<td>Ash, dry</td>
<td>6.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation pressure, MPa</td>
<td>4.0</td>
</tr>
<tr>
<td>CWS mass rate, kg/s</td>
<td>18.210</td>
</tr>
<tr>
<td>CWS temperature, K</td>
<td>333.15</td>
</tr>
<tr>
<td>Water volume fraction, %</td>
<td>50.53</td>
</tr>
<tr>
<td>Oxygen mass flow rate, kg/s</td>
<td>9.987</td>
</tr>
<tr>
<td>Oxygen temperature, K</td>
<td>313.15</td>
</tr>
<tr>
<td>Average droplet diameter, mm</td>
<td>0.188</td>
</tr>
</tbody>
</table>
Sub-models

- **Evaporation Model**

 Diffusion controlled model

 \[
 \frac{d m_p}{d t} = -A_p M_{w,l} k_c \left(\frac{p_{sat}(T_p)}{RT_p} - X_i \frac{p}{RT_{\infty}} \right)
 \]

 \[
 Sh_{AB} = \frac{k_c d_p}{D_{i,m}} = 2.0 + 0.6 \text{Re}_{d}^{1/2} \text{Sc}^{1/3}
 \]

- **Pyrolysis Model**
 - **Devolatilization**
 - Single kinetic step rate

 \[
 -\frac{d m_p}{d t} = k \left[m_p - (1 - f_{v,0})(1 - f_{w,0})m_{p,0} \right]
 \]

 \[
 k = 3.82 \times 10^5 \exp \left(\frac{-7.4 \times 10^7}{RT} \right)
 \]

 - **Volatile Decomposition**

 \[
 Vol \rightarrow a_1CH_4 + a_2CO + a_3CO_2 + a_4H_2 + a_5N_2 + a_6H_2S + a_7H_2O
 \]

<table>
<thead>
<tr>
<th>T, K</th>
<th>P, MPa</th>
<th>Mw</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>a₄</th>
<th>a₅</th>
<th>a₆</th>
<th>a₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>4.0</td>
<td>18.468</td>
<td>0.425</td>
<td>0.124</td>
<td>0.113</td>
<td>0.194</td>
<td>0.016</td>
<td>0.003</td>
<td>0.124</td>
</tr>
</tbody>
</table>

\[
R_{Vol} = 2.199 \times 10^{11} \exp \left(-\frac{2.027 \times 10^8}{RT} \right) C_{Vol}^{0.2}
\]
Reaction Mechanism

Homogeneous Reaction

\[CO + 0.5O_2 \rightarrow CO_2 \]
\[H_2 + 0.5O_2 \rightarrow H_2O \]
\[CH_4 + 0.5O_2 \rightarrow CO + 2H_2 \]

\[CO + H_2O \leftrightarrow CO_2 + H_2 \]
\[CH_4 + H_2O \leftrightarrow CO + 3H_2 \]

Char Reaction

\[C + 0.5O_2 \rightarrow CO \]
\[C + CO_2 \rightarrow 2CO \]
\[C + H_2O \rightarrow CO + H_2 \]

Turbulence – chemistry interaction model

Finite Rate/ Eddy Dissipation

\[R_{i,r} = v'_{i,r} M_{w,i} A \rho \frac{\varepsilon}{k} \min_R \left(\frac{Y_R}{v'_{R,r} M_{w,R}} \right), \quad R_{i,r} = v'_{i,r} M_{w,i} A B \rho \frac{\varepsilon}{k} \sum_{j}^N \frac{Y_P}{v''_{j,r} M_{w,j}} \]

Eddy Dissipation Concept

\[\gamma = \left(\frac{100 \frac{3C_{D2}}{4C_{D1}}^{1/4}}{\eta} \right), \quad \tau^* = \left(\frac{C_{D2}}{3} \right)^{1/2} \tau_\eta, \quad R_i = \frac{\rho \gamma^2}{\tau^* (1 - \gamma^3)} (Y_i - Y_i) \]
Results and Discussions

- Temperature distribution

- Streamline distribution
Gas concentration distribution
● Particle residence time distribution

- Comparison with process design data

<table>
<thead>
<tr>
<th>Mole fraction at outlet of gasification chamber, %</th>
<th>Xc, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>H₂</td>
</tr>
<tr>
<td>Simulation</td>
<td>35.06</td>
</tr>
<tr>
<td>Design Data</td>
<td>33.8</td>
</tr>
</tbody>
</table>
Influence of Turbulence – Chemistry Interaction

- Turbulence – Chemistry interaction

Eddy Dissipation Model

\[
R_{i,r} = \nu_{i,r} M_{w,i} A \rho \frac{\varepsilon}{k} \min_R \left(\frac{Y_R}{\nu_{R,r} M_{w,R}} \right), \quad R_{i,r} = \nu_{i,r} M_{w,i} AB \rho \frac{\varepsilon}{k} \sum_p Y_p
\]

Eddy Dissipation Concept Model

\[
\gamma = \left(\frac{100 C_D^2}{4 C_{D,1}^2} \right)^{1/4} \left(\frac{\eta}{\lambda} \right), \quad \tau^* = \left(\frac{C_D^2}{3} \right)^{1/2}, \quad \tau_{\eta}, R_i = \frac{\rho \tau^2}{\tau^* (1 - \gamma^3)} (Y_i - Y_i^*)
\]

- Comparison of ED and EDC models

[Diagram of temperature distribution with labels FR/ED and EDC]
<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>H₂</th>
<th>CO₂</th>
<th>H₂O</th>
<th>Xc</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDC Model</td>
<td>35.06</td>
<td>28.45</td>
<td>14.79</td>
<td>21.38</td>
<td>97.70</td>
</tr>
<tr>
<td>FR/ED Model</td>
<td>42.29</td>
<td>25.46</td>
<td>9.49</td>
<td>22.06</td>
<td>98.08</td>
</tr>
<tr>
<td>Design Data</td>
<td>33.8</td>
<td>27.3</td>
<td>16.2</td>
<td>22.2</td>
<td>97.16</td>
</tr>
</tbody>
</table>
Non-reactive Cold and Reactive Flow Simulation Results

- Comparison of streamline distribution

- Particle residence time distribution
Influence of Operation Condition

- Operation pressure (4MPa to 5MPa)
- Slurry concentration (49.5% to 47.1% vol)
Mean droplet diameter (188\(\mu\)m to 376\(\mu\)m)
Conclusions

- The comprehensive 2-D CFD model for industrial CWS gasifier is approved by process design data.
- Comparison of CFD results obtained by FR/ED and EDC are presented. The simulation results show that EDC model is more suitable for gasification simulation.
- Significant differences of streamline distribution and particle residence time distribution for cold and reactive flow simulation are observed. The jet-core region is elongated since gas releasing in reactive flow.
- Ascending operation pressure increases syngas yield, and low slurry concentration leads to less CO concentration and higher H$_2$/CO ratio. The coarse particle results in lower syngas concentration and carbon conversion ratio.
Outlook

- Specifying volatile decomposition and char reaction kinetic parameters based on experiment data.
- Implementing sensitivity analysis of sub-models including turbulence, evaporation, devolatilization and volatile decomposition models, and mesh independent check.
- Comparison of 2D and 3D CFD models of gasification chamber.
Acknowledgements

Supported by Synfuels China Co., Ltd. and collaborated with TU Bergakademie Freiberg IEC

Collaborators
Dipl. –Ing. Fengbo An, Dipl. –Ing. Thomas Förster, Dr. –Ing. Dmitry Safronov, M. Sc. Yury Voloshchuk
Thank you for your attention

Our Expertise Energy In Future