Siemens Fuel Gasification Technology
Status and New Developments

Siemens
Mr. Frank Hannemann Dr. Wang De Hui
What is Gasification?

Feed is …
- Carbon (C)
- Hydrogen (H)
- Water (H₂O)
- Petcoke
- Liquid residues (e.g. refinery)
- Sulfur (S)
- Nitrogen (N)
- Ash (rock)
- Trace Elements (e.g. Vanadium)

Gasification is …
- Main Reactions:
 - C + ½ O₂ => CO
 - C + CO₂ ⇌ 2 CO
 - C + H₂O => CO + H₂
 - CO + H₂O ⇌ CO₂ + H₂

Products are …
- Syngas: H₂ + CO
- CO₂:
 - Carbon Sequestration (CCS)
 - Enhanced Oil Recovery (EOR)
- Utilization: e.g. Methanol

Coal

Chemicals

Synthetic natural gas

Transportation fuels

Iron

Refinery hydrogen

Power
Siemens Gasification Island Design (500MW size)

- Length: 18 meters
- Outside diameter (incl. flanges): 4.3 m
- Weight: 220 tons
- Capacity: ~ 2,000 tons of coal daily

Proprietary equipment

- Feeder vessel
- Burner
- Gasifier
Siemens offers Gasifier Types for every Feedstock

<table>
<thead>
<tr>
<th>Customer Value</th>
<th>Feedstock’s with more than 3 wt% ash content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economies of Scale</td>
<td>Lignite’s, Sub-bituminous and Bituminous coals, Hard coals,…</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Size classes</td>
<td></td>
</tr>
<tr>
<td>SFG-200</td>
<td>(150-250 MWth)</td>
</tr>
<tr>
<td>SFG-350</td>
<td>(250-350 MWth)</td>
</tr>
<tr>
<td>SFG-500</td>
<td>(400-600 MWth)</td>
</tr>
<tr>
<td>SFG-850</td>
<td>(650-850 MWth)</td>
</tr>
<tr>
<td>SFG-1000</td>
<td>(850-1000 MWth)</td>
</tr>
</tbody>
</table>

Cooling Screen Design

- Fuel
- Pressurized water inlet
- Pressurized water outlet
- Burner
- Oxygen, steam

Refractory Wall Design

- Burner insert
- Cooling wall
- Refractory lining
- SiC layer
- Cooling water
- Quench water
- Quench
- Total quench
- Gas outlet
- Cooled reactor outlet
- Gas outlet
- Granulated slag

Feedstock’s with less than 2 wt% ash content

- Petroleum coke, Bitumen, Tars, Oils, Asphaltenes, Biomass,…

Unrestricted © Siemens AG 2015 All rights reserved.
Page 4 14 April 2015

Frank Hannemann and Wang De Hui
Siemens
Refinery Application

Gasification of Petcoke and liquid residues could improve the refinery total efficiency and revenue by co-production of H_2, steam and power.
New Sour Gas Shift (SGS) Technology
Cooperation between Siemens and Clariant

- Inhibited Pre-Shift Catalyst ensures safe operation (no temperature runaway)
- Lower catalyst volume, CAPEX reduction
- No steam consumption, OPEX reduction
- Improves total plant efficiency by ~1%

<table>
<thead>
<tr>
<th></th>
<th>Standard Shift</th>
<th>Siemens/Clariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPEX</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP Steam (42 bar)</td>
<td>-90</td>
<td>0</td>
</tr>
<tr>
<td>Generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP Steam (42 bar)</td>
<td>+132</td>
<td>+81</td>
</tr>
<tr>
<td>LP Steam (5.5 bar)</td>
<td>+235</td>
<td>+182</td>
</tr>
<tr>
<td>Net Balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP Steam (42 bar)</td>
<td>+42</td>
<td>+81</td>
</tr>
<tr>
<td>LP Steam (5.5 bar)</td>
<td>+235</td>
<td>+182</td>
</tr>
</tbody>
</table>
Test Facilities

Feeding and gasification/combustion test rigs

- Steam generator and Inert gas facility
- Pulverized fuel dosing and feeding system
- Slurry feeding system
- Waste water treatment and filter press
- Sulerox and Fe2O3 adsorption for desulphurisation
- Gasifier for coal, liquid waste and biomass
- Natural gas compressor and buffer vessel
- Inertgas compressor and buffer vessel
- Oxygen station with gas buffer
- Several cooling cycles and pump stations
- Medium voltage supply 20 kV
- Several low voltage supply systems 230/400 V
- Simatic I&C
Siemens Gasification main Project Landscape
as of November 2014

18 SFG-500 gasifiers shipped/installed for 5 projects
Additional 24 SFG-500 gasifiers being fabricated
NCPP
Reference Plant Achievements

Front view NCPP plant

SFG-500 achievements

- longest continuous single gasifier runtime: 160 d
- longest continuous plant runtime (4+1): 230 d
- total achieved plant availability: 92%
- CO + H2 content (effective syngas): > 92%
- fast start-up / shut-down capabilities: < 2 h
- high fuel flexibility: 7 to 28 % ash content

Commercial operation and high availability since 2011
in average more than 5300 t/d methanol production achieved
NCPP Site Impression

Gasifier during installation

Black water treatment plant

CO shift

Gasifier building

Unrestricted © Siemens AG 2015 All rights reserved.

Page 10 7th June 2015
Shenhua Ningxia Coal Group – 80.000 BBL/d CtL
World largest CtL Plant, Ningxia, China

Facts and Figures
- Gasifier manufacturing China
- **24 x 500 MW SFG gasifiers**
- Sub-bituminous coal
- Ash content: typ. 10–20 wt%
- Moisture: <30 wt%

Input / Output
- > 2,300 t/h coal input
- > 2,700,000 Nm³/h syngas
- 110 t/h Naphta
- 352 t/h Diesel
- 42 t/h LPG

Schedule
- PDP finished
- Hardware procurement ongoing
- Construction started
- 2016: Commissioning
Polygeneration – A Flexible Clean Fuel Utilization

- Gasification
- Gas Clean Up
- Power Generation
- Downstream Conversion Processes
- Chemical Feedstocks
- SNG
- Clean Transportation Fuels
- CO2 for Enhanced Oil Recovery
SFGT Based Advanced Polygeneration Concept

Addition of renewable power for auxiliaries (already today)

Processes not needed in case of sufficient power from renewables (long-term future)

Polygeneration allows stepwise integration of fossil and renewable energy
Up to 90% CO₂ reduction possible

Gasification

CO₂

Chemicals (Urea, SNG, MeOH, Diesel)

Power (to grid or for auxiliaries)

Addition of renewable power for auxiliaries (already today)

Air Separation

H₂O = H₂ + 0.5 O₂

“Green” H₂

H₂ for adjusting stoichiometric ratio (i.e., reduced/no CO shift and CO₂ capture)

“high” power demand

“high” power demand

H₂ Storage

O₂ Storage

Steam

Combined Cycle

Syntheses

Steam

Combined Cycle

O₂

O₂

O₂

H₂O = H₂ + 0.5 O₂

Polygeneration allows stepwise integration of fossil and renewable energy
Up to 90% CO₂ reduction possible
Summit Power, Texas Clean Energy Project

Key Features
- 200 MW green Power (90% carbon capture)
- 2 M tons-per-year CO2 for EOR
- 750 ktons-per-year Ammonia/Urea
- Project financed; Coal supply and offtake agreements (power, ammonia/urea and CO2)
- Total invest ~ $ 3 BN
- $ 450M direct funding from U.S. DoE plus up to $ 625M investment tax credits

Partners
- Owners group: Summit; Nobel; CHS; Siemens; HQC
- EPC Contractor Gasisland: HQC / SNC-Lavalin
- Technology suppliers: Siemens; Casale; Linde

Siemens Scope
- Power Island
- Gasifier Island Basic Engineering
- Supply of Gasifier, Feeder Vessel, Scrubbing system
- O+M Management

Customer: Summit Power Group
Location: Odessa, TX, USA
Plant type: Coal to Fertilizer and Power
Configuration: 1x SFG-850 Gasifiers plus SGT6-8000H gas turbine operating on H2 natural gas mixture
Financial Close: June 2015
Com. operation: December 2018

Frank Hannemann and Wang De Hui
Siemens
Innovation Concept SFG-1000

Design evolution based on NCPP experience

<table>
<thead>
<tr>
<th>Innovation</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Capacity Expansion** | • 47 m³ reactor volume
• 4000 t/d coal
• 260000 Nm³/h CO+H₂ |
| **Process Design** | • Compact feeding
• Improved water cycle
• Filter cake recycle |
| **Equipment Design** | • Multiple Burner concept
• Combination of water quench with fly ash washing capability |

[Diagram: Process Design Flowchart]
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, it's affiliates or their respective owners.