Molten Salt Reactors in Gasification and Gas Purification

Presenting author:
Ville Nikkanen

Place:
6th International Freiberg Conference on IGCC & XtL Technologies
Dresden, Germany

Time:
19th of May 2014
Table of Contents:

- Applications and Research
- Tar Cracking Process in Molten Carbonates
- Properties of Molten Carbonates
- Conclusion
- Contacts and Additional Information
1. Applications for Molten Salts and Carbonates:

- **Applications for molten salts**
 - Different applications in which liquid media and high temperatures are needed or beneficial
 - Few industrial applications e.g. in SO_2 oxidation in H_2SO_4 production.
 - Carbonate melts are less used in the industry

- **Research fields**
 - Molten Salt Fuel Cells (CO_3^{2-})
 - Direct gasification molten salts (1970’s)
 - Thermal energy storing in solar thermal power plants (NO_3^-)
 - Cooling in 4th generation nuclear power plants (Exotic mixtures)
 - Gas purification (CO_3^{2-})
 - **Molten carbonates in reality**
1. Applications in Gasification:

- Molten salt reactor integration with a gasifier
 - Small or medium scale
 - Fluidized bed gasifiers for gas engines
 - High temperature gas is used to heat the Molten Salt Reactor
 - Tars are partly eliminated
 - Tar cracking before heat recovery and gas engine
 - Less maintenance in downstream processes
 - Almost complete (strong-) acid gas removal
 - Less corrosion in heat recovery
 - H_2S and other weaker acids are only partly removed
2. Molten Carbonate Gas Purification Process:
3. Properties of Molten Carbonates:

- Benefits of molten salt gas purification
 - Eliminates and separates partially several impurities at one stage
 - High temperatures and pressures can be used
 - High heat transfer rates and high thermal capacity
 - Simple structure
 - No solid-solid blockages – carbon formation less harmful

- Challenges
 - Complex chemistry
 - Transformation of mixture during operation
 - High corrosivity
 - Evaporation of salts at highest temperatures
 - Pressure drop

M. Kawase and M. Otaka, *Removal of \(H_2S \) using molten carbonate at high temperature*, Waste Management 33, 2013
2. Tar Cracking:

- **Catalytic window**
 - Molten carbonates have a slight catalytic effect in tar cracking

![Graph showing the conversion rate of benzene vs. temperature. The graph illustrates the catalytic effect of molten carbonates compared to thermal processes.](image-url)
3. Physical Properties of Molten Carbonates:

- **Viscosity**
 - Viscosity of molten carbonates is low (2-5 mPa·s) at high temperatures (800°C)
 - Low viscosity increases the contact between the syngas and molten carbonates and lowers the pressure drop over the reactor.

- **Surface and interfacial tensions**
 - Surface tensions of molten carbonates are high (200 mN/m)
 - High surface tension decreases the gas-liquid contact between syngas and molten carbonates

- **Solubility of compounds**
 - Gas solubilities are reported to be low, which decreases also contact
 - Metals dissolve to molten salts, which might increases catalytic effects

3. Reactivity of Carbonates:

- Reactivity and stability of Molten carbonates
 - Alkali carbonates are the most stable carbonates
 - Decomposition to oxides only at very high temperatures
 - Low tendency to reduction

- Chemical absorption
 - Carbonates react with different impurities
 - HCl, HBr, HF (fast reaction)
 - H$_2$S (equilibrium)
 - HCN (equilibrium)
 - Chemical absorption $\leftrightarrow f (T, P, p_{gases}, C_{MCO3}, C_{Solid \ carbon}, C_{Impurities})$
3. Exhausted Salt and Regeneration:

- Exhausted salt
 - Particles and chemical impurities affect to properties
 - Silica ashes and particles increase viscosity
 - Chemical absorption increases the melting point
 - Carbon content increases hydrogen sulfide absorption
 - Corrosivity of molten salt increases

- Utilization of exhausted salt?
 - Probably waste
 - Recovery of potassium and lithium
 - Sodium carbonate ~ 300–800 €/ton
 - Potassium carbonate ~ 800–1 200 €/ton
 - Lithium carbonate ~ 5 000–10 000 €/ton

4. Conclusion:

- **One possible approach for syngas cleaning**
 - Operates at high temperatures
 - Eliminates or separates partly several harmful compounds in one step
 - Possibly great potential in gas purification

- **Challenges**
 - Corrosion
 - Complex chemistry and increase of melting point during operation
 - Regeneration of salt
 - Potassium and especially lithium are expensive
 - Complete purification is not achieved
 - Vulnerable downstream processes are not applicable without deeper purification
5. Contacts and additional information:

- **Contact:**
 - ville.nikkanen@ict.fraunhofer.de
 - www.ict.fraunhofer.de
 - stephan.seidelt@eifer.org
 - http://www.eifer.uni-karlsruhe.de

- **Patents:**
 - EIFER holds a patent on this technology

- **Funding:**
 - European 7th framework: Fuel From Waste
Thank you
for your attention.

Ville Nikkanen
ville.nikkanen@ict.fraunhofer.de