Oxygen-Blown Gasification and Fixed-Bed Fischer–Tropsch Synthesis of Coal and Biomass

Presented at the 4th International Freiberg Conference
Dresden, Germany
May 2–6, 2010

Joshua Strege
What Is the EERC?

- Founded in 1951 as a U.S. Bureau of Mines laboratory to study lignite gasification.
- Defederalized in 1983 and became a part of the University of North Dakota.
- Has expanded into all fossil fuels, renewables, pollution prevention, environmental remediation, water, hydrogen, and materials research.
What Is the EERC?

• Work through partnerships with federal and state government as well as numerous commercial clients
• $236 million contract portfolio in FY09
• Clientele:
 – Governmental: 93
 – Academia: 52
 – International Market: 142
 – Private Corporations: 798
Project Overview

• Multiyear U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) agreement.

• First year – $750,000 through DOE NETL, $950,000 total to study distributed coal-to-liquid (CTL) and biomass-to-liquid (BTL) scenarios.

• Membership in Brigham Young University (BYU) Fischer–Tropsch (FT) Consortium offers FT reactor design and cheap, available catalyst formulations.

• Concept in first year was to demonstrate small-scale production of FT liquids for potential distributed systems.
Why FT? 50 Years of EERC Experience in Gasification

Chronology of Gasification Research, Development, and Demonstration (RD&D) at the EERC

Annular Externally Heated Retort Slagging Fixed-Bed Gasifier Mild Gasification Biomass Microgasifier
Transport Reactor Development Unit Catalytic Gasification/SOFC Entrained-Flow Gasifier
Why FT?
EERC Fuel-Upgrading Capabilities

- $4.7MM Defense Advanced Research Projects Agency (DARPA) project
 - Experience, reactors for hydrotreating vegetable oils to green diesel and jet fuel
- Numerous feeds, including various crop oils, fatty acids, and waste greases
- Preliminary testing of FT liquids
- Marrying gasifier technology, catalyst development with upgrading gives full FT technology package
First-Year Project Plan

• Coal is Powder River Basin (PRB) and lignite; biomass is torrefied, leached, or raw.
 – Best available gasifier at the EERC is bench-scale fluid-bed gasifier (FBG).
• Gasify coal and coal–biomass blends.
• Perform limited warm-gas cleanup to remove particulate, H_2S, H_2O, and condensables.
• Examine performance of FT catalysts.
Catalyst Source

• Commercial FT catalyst vendors very protective.
 – Difficult to obtain catalyst samples early in project.
• The EERC developed an iron-based FT catalyst based on open literature for preliminary testing.
• Membership in BYU consortium offers proven catalyst formulations that could be used in distributed systems.
• The EERC has since established partnership with commercial catalyst vendor for second year of project.
First-Year Developments

• Design and construction of FBG, FT reactor
• Tested PRB, lignite, and biomass (straight and blended)
• AspenPlus™ coal-to-liquids model
• Catalyst-processing equipment
• Fe-based FT catalyst formulation
• Product upgrading
FBG Reactor Design

- 2–9-kg/hr feed rate
 - K-Tron feeder provides real-time feed rate.
- Syngas recycle
- O$_2$-blown
- Up to 70 bar
- 840°C at maximum pressure
- Full-stream warm-syngas cleanup
The EERC’s Other CTL Option

• FBG shares feed system, cleanup train, FT reactor with bench-scale entrained-flow gasifier (EFG).
 – Allows high degree of flexibility in feedstock and operating conditions.
• The EERC also has in-house fuel preparation if need arises for switching from FBG to EFG.
 – 4-tph coal crusher
 – 1-tph pulverizer (-200 or 325 mesh)
 – 5-tph classifier (3/4 in. down to 325 mesh)
 – Steam dryer
 – Various processing equipment for biomass
FT Reactor Design

- Skid-mounted, modular design
- Design from BYU
- Two Dowtherm-cooled packed-bed FT reactors
 - Space and modules for expansion to four beds
- Syngas preheat
- Both gas and FT liquid recycle
FT Reactor Design

- 1-lph nominal production rate with all beds running
- 2.5-cm i.d., 3-m-tall reactors (2x, room for 4x)
- 2-kg catalyst required
- Multiple thermocouples throughout each bed length, plus independent inlet and outlet temperatures for each stream and unit operation
Catalyst

- Supported iron-based catalyst was developed under a separate project.
- Previously tested at lab-scale.
Biomass Pretreatment

• Biomass treated by leaching.
 – Reduces troublesome ash components including alkali and chlorine.
• One sample of olive pits further treated by torrefaction.
 – Torrefaction produces a char material similar to coal.
 – Reduces transportation costs, makes cofeeding easier.
• All samples blended 30% with PRB coal and cofed.
Coal and Biomass Analyses

<table>
<thead>
<tr>
<th></th>
<th>PRB Antelope Coal</th>
<th>ND Lignite</th>
<th>Leached Olive Pits</th>
<th>Torrefied Olive Pits</th>
<th>Leached DDGS</th>
<th>Leached Switchgrass</th>
<th>DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-Drying Loss</td>
<td>16.62</td>
<td>14.90</td>
<td>44.40</td>
<td>39.40</td>
<td>22.00</td>
<td>59.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Proximate Analysis (air-dried basis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>6.94</td>
<td>10.00</td>
<td>9.39</td>
<td>5.70</td>
<td>10.57</td>
<td>4.87</td>
<td>7.12</td>
</tr>
<tr>
<td>Volatile Matter</td>
<td>42.32</td>
<td>32.52</td>
<td>62.78</td>
<td>43.27</td>
<td>65.47</td>
<td>63.69</td>
<td>69.01</td>
</tr>
<tr>
<td>Fixed Carbon</td>
<td>43.85</td>
<td>43.88</td>
<td>24.70</td>
<td>47.44</td>
<td>21.43</td>
<td>16.54</td>
<td>19.99</td>
</tr>
<tr>
<td>Ultimate Analysis (air-dried basis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.86</td>
<td>4.97</td>
<td>6.65</td>
<td>5.29</td>
<td>7.40</td>
<td>6.46</td>
<td>7.14</td>
</tr>
<tr>
<td>C</td>
<td>82.83</td>
<td>55.49</td>
<td>50.16</td>
<td>66.66</td>
<td>49.02</td>
<td>44.11</td>
<td>48.31</td>
</tr>
<tr>
<td>N</td>
<td>1.17</td>
<td>0.87</td>
<td>1.60</td>
<td>1.43</td>
<td>4.28</td>
<td>1.21</td>
<td>3.66</td>
</tr>
<tr>
<td>O</td>
<td>0.38</td>
<td>1.38</td>
<td>0.13</td>
<td>0.11</td>
<td>0.34</td>
<td>0.20</td>
<td>0.39</td>
</tr>
<tr>
<td>S</td>
<td>3.87</td>
<td>23.68</td>
<td>38.33</td>
<td>22.93</td>
<td>36.43</td>
<td>33.12</td>
<td>36.58</td>
</tr>
<tr>
<td>HHV, kJ/kg</td>
<td>24,539</td>
<td>21,506</td>
<td>19,264</td>
<td>25,572</td>
<td>19,966</td>
<td>15,701</td>
<td>19,845</td>
</tr>
</tbody>
</table>
Coal and Biomass Ash Analyses

<table>
<thead>
<tr>
<th></th>
<th>PRB Antelope Coal</th>
<th>ND Lignite</th>
<th>Leached Olive Pits</th>
<th>Torrefied Olive Pits</th>
<th>Leached DDGS</th>
<th>Leached Switchgrass</th>
<th>DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>32.6</td>
<td>40.5</td>
<td>6.6</td>
<td>10.1</td>
<td>3.0</td>
<td>40.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.0</td>
<td>13.8</td>
<td>1.5</td>
<td>2.6</td>
<td>0.8</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7.48</td>
<td>7.57</td>
<td>1.80</td>
<td>3.72</td>
<td>0.60</td>
<td>2.14</td>
<td>0.43</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.17</td>
<td>0.49</td>
<td>0.11</td>
<td>0.18</td>
<td>0.04</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.08</td>
<td>0.28</td>
<td>2.10</td>
<td>3.59</td>
<td>43.12</td>
<td>1.93</td>
<td>39.65</td>
</tr>
<tr>
<td>CaO</td>
<td>21.3</td>
<td>16.1</td>
<td>51.7</td>
<td>54.9</td>
<td>23.5</td>
<td>40.0</td>
<td>1.9</td>
</tr>
<tr>
<td>MgO</td>
<td>5.86</td>
<td>5.12</td>
<td>0.77</td>
<td>3.22</td>
<td>6.10</td>
<td>2.86</td>
<td>13.41</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.84</td>
<td>0.89</td>
<td>0.03</td>
<td>0.91</td>
<td>3.95</td>
<td>0.23</td>
<td>5.26</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.56</td>
<td>1.35</td>
<td>0.68</td>
<td>13.24</td>
<td>13.47</td>
<td>5.26</td>
<td>30.68</td>
</tr>
<tr>
<td>SO₃</td>
<td>13.25</td>
<td>13.32</td>
<td>1.78</td>
<td>4.73</td>
<td>4.70</td>
<td>1.47</td>
<td>2.84</td>
</tr>
<tr>
<td>Cl</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.08</td>
<td>0.55</td>
<td>0.12</td>
<td>0.64</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.00</td>
<td>0.00</td>
<td>32.63</td>
<td>0.73</td>
<td>0.00</td>
<td>3.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Temperature, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/27 17:00</td>
<td>Leached Olive Pits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/27 21:00</td>
<td>Torrefied Olive Pits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/28 1:00</td>
<td>Leached DDGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/28 5:00</td>
<td>Leached Switchgrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/28 9:00</td>
<td>Raw DDGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/28 13:00</td>
<td>Bed Material Lost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biomass Cofeeding
Biomass-Cofeeding Conclusions

• Biomass cofeeding did not affect FT product.
• Leaching sufficient to limit agglomeration.
• Torrefaction allowed higher bed temperatures.
• Untreated biomass (DDGS) led to rapid agglomeration and temperature divergence.
Average FT Run Conditions

<table>
<thead>
<tr>
<th></th>
<th>1<sup>st</sup> Test</th>
<th>2<sup>nd</sup> Test</th>
<th>3<sup>rd</sup> Test</th>
<th>4<sup>th</sup> Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure, bar</td>
<td>18.9</td>
<td>29.4</td>
<td>23.6</td>
<td>21.7</td>
</tr>
<tr>
<td>Temp., °C</td>
<td>266</td>
<td>262</td>
<td>260</td>
<td>259</td>
</tr>
<tr>
<td>Syngas, slpm</td>
<td>25</td>
<td>62</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Recycle, slpm</td>
<td>136</td>
<td>178</td>
<td>215</td>
<td>176</td>
</tr>
<tr>
<td>H<sub>2</sub></td>
<td>IN 28.3</td>
<td>OUT 13.3</td>
<td>IN 13.8</td>
<td>OUT 7.1</td>
</tr>
<tr>
<td></td>
<td>OUT 7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>IN 15.9</td>
<td>OUT 8.3</td>
<td>IN 8.6</td>
<td>OUT 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>IN 33.0</td>
<td>OUT 45.1</td>
<td>IN 20.5</td>
<td>OUT 23.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion, %</td>
<td>CO 61</td>
<td>H<sub>2</sub> 65</td>
<td>CO 54</td>
<td>H<sub>2</sub> 52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO 24</td>
<td>H<sub>2</sub> 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO 49</td>
<td>H<sub>2</sub> 58</td>
</tr>
<tr>
<td>Selectivity to Light Gas, %</td>
<td>CO 18</td>
<td>H<sub>2</sub> 24</td>
<td>CO 32</td>
<td>H<sub>2</sub> 28</td>
</tr>
<tr>
<td>Liquid Product, kg/hr</td>
<td>0.12</td>
<td>0.064</td>
<td>0.043</td>
<td>0.073</td>
</tr>
<tr>
<td>Organic:Aqueous Ratio, kg/kg</td>
<td>0.18</td>
<td>0.097</td>
<td>0.062</td>
<td>0.066</td>
</tr>
<tr>
<td>Aqueous TOC, mg/L</td>
<td>7880</td>
<td>7950</td>
<td>16,100</td>
<td>25,500</td>
</tr>
</tbody>
</table>
Notes from First Test

• Mass balance across FT reactor 71%.
 – 14% of product HC; remainder water (8 g/L TOC).
 – Much of this error due to different calibration of inlet and outlet gas-metering devices – 73% on N₂.

• Some mass loss is due to light HC.
 – Samples depressurized into ice-cooled pot.
 – When samples were depressurized, they bubbled in the drain line and formed foam.
 – This indicates rapid evaporation of light products that condensed at pressure.
 – Similarity of mass balance during syngas or N₂ feed suggests mass loss to evaporation is small.
Product Properties – First Test

CO Conversion = 61%
Selectivity to Light Gas = 18%
Notes from Second Test

• Product was collected into ice-cooled pot in first test but at room temperature in later tests.
 – This is a primary reason for lower organic:aqueous ratio in products after first test.

• Second test went smoothly, although product was accidentally destroyed.

• Second test conducted at higher space velocity and higher N₂ dilution (~50%) than first test, resulting in poorer conversion and lighter product.
Ambient Air Temperatures

Test

Air Temperature, °C

-20 -10 0 10 20 30 40

1 2 3 4
Notes from Third Test

- Cold weather caused significant system upsets, frequent shutdowns during third test.
 - Problem areas heated to solve problem.
- High CO$_2$ in syngas and FT recycle gas.
 - Rapid FT catalyst deactivation
 - Very poor conversion
 - High light gas production
 - High water-soluble content (i.e., alcohols)
- Cofeeding treated biomass with lignite actually improved gasifier performance.
Product Properties – Third Test

CO Conversion = 24%
Selectivity to Light Gas = 32%
Notes from Fourth Test

- Attempt was made to regenerate catalyst under hot CO prior to fourth test.
 - Operating conditions similar to first test, but product quality similar to third test.
 - Catalyst activity does not seem to have fully recovered.

- Heating cold lines after third test caused gasifier tars to carry through to FT reactor.
 - Heating did not fully stabilize gasifier operation, as agglomeration formed early in fourth test and affected fluid-bed operation for duration of test.
Product Properties – Fourth Test

CO Conversion = 49%
Selectivity to Light Gas = 28%
GC–MS Product Breakdown

![GC-MS Product Breakdown Chart](chart.png)
FT Reactor Conclusions

• Two-stage warm-gas cleanup reduced syngas sulfur to nondetectable levels.
• Packed-bed FT reactor design feasible with high recycle, low single-pass conversion.
• Critical to capture tars from gasifier – catalyst not easily regenerated after tar exposure.
 – Also capture tars to avoid plugging, as catalyst activity does not recover after rapid shutdown.
• High CO$_2$ detrimental to iron-based catalyst.
 – For small-scale packed-bed FT reactor, may need to use cobalt-based catalyst or develop effective warm-gas CO$_2$ sorbents.
Hydrotreating

- Used coal-derived product from first test.
- Treated over commercial hydrotreating catalyst.
- No aqueous phase observed after hydrotreating.
 - FT product from lab-scale testing deoxygenated to hydrocarbons and water.
- Also no readily discernable change in GC–MS.
 - Insignificant olefin saturation
- Karl Fischer analysis showed very low water content.
- Results suggest very little oxygen in FT product.
- Hydrotreated product distilled into two fractions.
- Heavier fraction suitable for upgrading to jet and diesel; major peak at C10, extends to C30+.
- Lighter naphtha fraction potential gasoline feedstock; major peak at C7, only traces above C11.
Isomerization

- Heavy product isomerized over commercial catalyst.
- Product distilled to yield naphtha, jet fuel, diesel.
- FT product did not sufficiently isomerize for jet fuel.
 - Note that FT product not pure: some gasifier tars.
 - Demonstrates potential need for catalysts, processes specific to FT products.

Jet Fuel
Freeze Point = -45°C

Isomerized Heavy Fraction
67% Isomerization
Future Work

• Second year – Develop process-specific FT and fuel-upgrading catalysts.
 – Catalyst partner working with EERC to develop catalysts for commercialization.

• Third year – Demonstrate warm-gas cleanup train suitable for long-term operation.
 – Critical for small-scale gasifiers.
 – Compare to performance of cold-gas cleanup.
 – To date, the EERC has demonstrated only short-term FT operation with warm-gas cleanup.
Possible Future Work

• Require cost share from outside U.S. federal government.
• Further catalyst development.
• Connect FT reactor to other gasifiers.
 – Coupling FT skid to off-site gasifiers for testing syngas online.
• Mixed alcohol synthesis at high pressure (70+ bar).
• Develop technoeconomic models.
• Produce gallon-scale quantities of fungible fuel.
Contact Information

Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, North Dakota 58202-9018

World Wide Web: www.undeerc.org
Telephone No. (701) 777-5000
Fax No. (701) 777-5181

Josh Strege
Research Engineer
(701) 777-3252
jstrege@undeerc.org