Two-Dimensional CFD Model of an Air-Blown Updraft Coal Gasifier

Stefano Murgia Michele Vascellari Giorgio Cau
michele.vascellari@unica.it

Department of Mechanical Engineering
University of Cagliari
Outlook

1 Air blown Updraft Coal Gasifier

2 Numerical models for updraft gasifier

3 Results

4 Conclusions and future developments
Coal gasification is a key technology for advanced, high efficiency low-emission power generation.

Gasification processes are currently employed in large-scale IGCC power plants.

In near future, gasification technologies could become very interesting for medium and small-scale industrial applications.

Air-blown coal updraft gasifier is an interesting technology for distributed generation.
Coal gasification is a key technology for advanced, high efficiency low-emission power generation

Gasification process are currently employed in large-scale IGCC power plants

In near future, gasification technologies could become very interesting for medium and small-scale industrial applications

Air-blown coal updraft gasifier is an interesting technology for distributed generation
Coal gasification is a key technology for advanced, high efficiency low-emission power generation.

Gasification process are currently employed in large-scale IGCC power plants.

In near future, gasification technologies could become very interesting for medium and small-scale industrial applications.

Air-blown coal updraft gasifier is an interesting technology for distributed generation.
Coal gasification is a key technology for advanced, high efficiency low-emission power generation

Gasification process are currently employed in large-scale IGCC power plants

In near future, gasification technologies could become very interesting for medium and small-scale industrial applications

Air-blown coal updraft gasifier is an interesting technology for distributed generation
Updraft gasifiers are characterized by a complex multiphase, chemical reacting flow.

Advanced numerical models are required to simulate the complex multiphase flows.

Updraft coal gasification preliminary CFD model is developed.

MFIX (Multiphase Flow with Interphase eXchanges) code (Syamlal et al., 1993) is considered for updraft gasifier simulation.

Open source code developed at NETL, specialized in multiphase dense flows.
Air blown updraft coal gasifier

Numerical model

- Updraft gasifiers are characterized by a complex multiphase, chemical reacting flow
- Advanced numerical models are required to simulate the complex multiphase flows
- Updraft coal gasification preliminary CFD model is developed
- MFIX (Multiphase Flow with Interphase eXchanges) code (Syamlal et al., 1993) is considered for updraft gasifier simulation
- Open source code developed at NETL, specialized in multiphase dense flows
Updraft gasifiers are characterized by a complex multiphase, chemical reacting flow. Advanced numerical models are required to simulate the complex multiphase flows. Updraft coal gasification preliminary CFD model is developed. MFIX (Multiphase Flow with Interphase eXchanges) code (Syamlal et al., 1993) is considered for updraft gasifier simulation. Open source code developed at NETL, specialized in multiphase dense flows.
Updraft gasifiers are characterized by a complex **multiphase, chemical reacting flow**. Advanced numerical models are required to simulate the complex multiphase flows. Updraft coal gasification preliminary **CFD model** is developed. **MFIX** (Multiphase Flow with Interphase eXchanges) code (Syamlal et al., 1993) is considered for updraft gasifier simulation. Open source code developed at **NETL**, specialized in multiphase dense flows.

Numerical model

- Coal
- Drying & Devolatilization
- Gasification
- Combustion
- Ash
- Air+Steam
Updraft gasifiers are characterized by a complex **multiphase, chemical reacting flow**

- **Advanced numerical models** are required to simulate the complex multiphase flows
- Updraft coal gasification preliminary **CFD model** is developed
- **MFIX** (Multiphase Flow with Interphase eXchanges) code (Syamlal et al., 1993) is considered for updraft gasifier simulation
 - Open source code developed at **NETL**, specialized in multiphase dense flows
Outlook

1. Air blown Updraft Coal Gasifier

2. Numerical models for updraft gasifier

3. Results

4. Conclusions and future developments
Updraft gasifiers are characterized by a dense solid phase in correspondence of the reactor bed.

Gas and solid phases are considered as interpenetrating continua: Eulerian-Eulerian approach.

The solid phase is accounted as continuous media, characterized by its constitutive equations solved in a Eulerian frame.

Solid stress is modelled considering kinetic and plastic theories of solid.
Updraft Gasifier Numerical models Results Conclusions

Numerical models for updraft gasifier

Hydrodynamic theory

- Updraft coal gasifiers are characterized by a dense solid phase in correspondence of the reactor bed
- Gas and solid phases are considered as interpenetrating continua: Eulerian-Eulerian approach
 - The solid phase is accounted as continuous media, characterized by its constitutive equations solved in a Eulerian frame
- Solid stress is modelled considering kinetic and plastic theories of solid
Numerical models for updraft gasifier

Hydrodynamic theory

- Updraft coal gasifiers are characterized by a dense solid phase in correspondence of the reactor bed.
- Gas and solid phases are considered as interpenetrating continua: Eulerian-Eulerian approach.
 - The solid phase is accounted as continuous media, characterized by its constitutive equations solved in a Eulerian frame.
- Solid stress is modelled considering kinetic and plastic theories of solid.
Updraft coal gasifiers are characterized by a dense solid phase in correspondence of the reactor bed.

Gas and solid phases are considered as interpenetrating continua: Eulerian-Eulerian approach.

- The solid phase is accounted as continuous media, characterized by its constitutive equations solved in a Eulerian frame.

Solid stress is modelled considering kinetic and plastic theories of solid.
Numerical models for updraft gasifier

Granular kinetic theory

- Conservation equations are solved for each phase for continuity, species mass fractions, momentum and energy.

- Solid phase momentum equation is expressed in the following way:

\[
\frac{\partial (\rho_s \varepsilon_s U_s)}{\partial t} + \nabla \cdot (\rho_s \varepsilon_s U_s U_s) = \nabla \cdot S_s + \varepsilon_s \rho_s g - I_{sg}
\]

 - Solid stress
 - Gravitational
 - Interphase

- Gas-solid momentum exchange \(I_{sg} \) is given by the drag force and by the mass transfer.

- Solid stress depends on particle collisions and friction described by granular theory.
Numerical models for updraft gasifier

Granular kinetic theory

- Conservation equations are solved for each phase for continuity, species mass fractions, momentum and energy.

- Solid phase momentum equation is expressed in the following way:

\[
\frac{\partial (\rho_s \varepsilon_s U_s)}{\partial t} + \nabla \cdot (\rho_s \varepsilon_s U_s U_s) = \nabla \cdot S_s + \varepsilon_s \rho_s g - I_{sg}
\]

 - Solid stress
 - Gravitational
 - Interphase

- Gas-solid momentum exchange \(I_{sg} \) is given by the drag force and by the mass transfer.

- Solid stress depends on particle collisions and friction described by granular theory.
Numerical models for updraft gasifier
Granular kinetic theory

- Conservation equations are solved for each phase for continuity, species mass fractions, momentum and energy.
- Solid phase momentum equation is expressed in the following way:

\[
\frac{\partial \left(\rho_s \varepsilon_s \mathbf{U}_s \right)}{\partial t} + \nabla \cdot \left(\rho_s \varepsilon_s \mathbf{U}_s \mathbf{U}_s \right) = \nabla \cdot \mathbf{S}_s + \varepsilon_s \rho_s \mathbf{g} - \mathbf{I}_{sg}
\]

- Solid stress depends on particle collisions and friction described by granular theory.
- Gas-solid momentum exchange \(\mathbf{I}_{sg} \) is given by the drag force and by the mass transfer.

Murgia, Vascellari, Cau (D.I.Me.Ca.)
Conservation equations are solved for each phase for continuity, species mass fractions, momentum and energy.

Solid phase momentum equation is expressed in the following way:

$$\frac{\partial (\rho_s \varepsilon_s \mathbf{U}_s)}{\partial t} + \nabla \cdot (\rho_s \varepsilon_s \mathbf{U}_s \mathbf{U}_s) = \nabla \cdot \mathbf{S}_s + \varepsilon_s \rho_s \mathbf{g} - \mathbf{I}_{sg}$$

Gas-solid momentum exchange \mathbf{I}_{sg} is given by the drag force and by the mass transfer.

Solid stress depends on particle collisions and friction described by granular theory.
Numerical models for updraft gasifier

Viscous and plastic granular flows

- \(\varepsilon_g > \varepsilon^*_g \): solid stress is described by the kinetic theory of granular material.
- \(\varepsilon_g \leq \varepsilon^*_g \): solid stress is described by the plastic theory.
- Stress is related to the particle collisions.

\(a \varepsilon^*_g \): void fraction at packed condition.

Murgia, Vascellari, Cau (D.I.Me.Ca.)

CFD Updraft Gasifier

CCT 2009
Numerical models for updraft gasifier
Viscous and plastic granular flows

\[\varepsilon_g > \varepsilon_g^a : \text{solid stress is described by the kinetic theory of granular material} \]

\[\varepsilon_g \leq \varepsilon_g^* : \text{solid stress is described by the plastic theory} \]

\[\varepsilon_g^a \] void fraction at packed condition

Stress is related to the particle collisions

Stress is related to the friction between particles

Murgia, Vascellari, Cau (D.I.Me.Ca.)

CFD Updraft Gasifier

CCT 2009
Numerical models for updraft gasifier
Viscous and plastic granular flows

- $\varepsilon_g > \varepsilon_g^a$: solid stress is described by the kinetic theory of granular material.
- Stress is related to the particle collisions.
- $\varepsilon_g \leq \varepsilon_g^*$: solid stress is described by the plastic theory.
- Stress is related to the friction between particles.

ε_g^a void fraction at packed condition
Numerical models for updraft gasifier
Viscous and plastic granular flows

- $\varepsilon_g > \varepsilon_g^a$: solid stress is described by the **kinetic theory of granular material**
- Stress is related to the **particle collisions**

- $\varepsilon_g \leq \varepsilon_g^*$: solid stress is described by the **plastic theory**
- Stress is related to the **friction between particles**

ε_g^* void fraction at packed condition
Numerical models for updraft gasifier
Viscous and plastic granular flows

- $\varepsilon_g > \varepsilon^a_g$: solid stress is described by the kinetic theory of granular material
- Stress is related to the particle collisions
- $\varepsilon_g \leq \varepsilon^*_g$: solid stress is described by the plastic theory
- Stress is related to the friction between particles

$^a\varepsilon^*_g$ void fraction at packed condition
Coal gasification is modelled according to the following reactions sequence:

- Drying
- Devolatilization
- Char heterogeneous reactions

In updraft gasifiers drying and devolatilization are considerably faster than heterogeneous reactions.

At this early state of model development, drying and devolatilization are not accounted.
Coal gasification is modelled according to the following reactions sequence:

- Drying
- Devolatilization
- Char heterogeneous reactions

In updraft gasifiers, drying and devolatilization are considerably faster than heterogeneous reactions.

At this early state of model development, drying and devolatilization are not accounted for.
Numerical models for updraft gasifier

Coal gasification models

- Coal gasification is modelled according to the following reactions sequence:
 - Drying
 - Devolatilization
 - Char heterogeneous reactions

- In updraft gasifiers drying and devolatilization are considerably faster than heterogeneous reactions

- At this early state of model development, drying and devolatilization are not accounted
Coal gasification is modelled according to the following reactions sequence:

- Drying
- Devolatilization
- Char heterogeneous reactions

In updraft gasifiers, drying and devolatilization are considerably faster than heterogeneous reactions.

At this early state of model development, drying and devolatilization are not accounted.
Numerical models for updraft gasifier

Heterogeneous reactions model

- The unreacted shrinking core model is considered (Wen, 1968)
- Three resistance mechanisms are considered:
 - External gas film
 - Ash layer
 - Reaction on unreacted core
- The following heterogeneous reactions are considered:

\[
\begin{align*}
2C(s) + O_2 & \rightarrow 2CO \\
C(s) + CO_2 & \rightarrow 2CO \\
C(s) + H_2O & \rightarrow CO + H_2
\end{align*}
\]
Numerical models for updraft gasifier

Heterogeneous reactions model

- The unreacted shrinking core model is considered (Wen, 1968)
- Three resistance mechanisms are considered:
 - External gas film
 - Ash layer
 - Reaction on unreacted core

- The following heterogeneous reactions are considered:

 \[2C(s) + O_2 \rightarrow 2CO \]
 \[C(s) + CO_2 \rightarrow 2CO \]
 \[C(s) + H_2O \rightarrow CO + H_2 \]
Numerical models for updraft gasifier

Heterogeneous reactions model

- The unreacted shrinking core model is considered (Wen, 1968)
- Three resistance mechanisms are considered:
 - External gas film
 - Ash layer
 - Reaction on unreacted core
- The following heterogeneous reactions are considered:

 \[
 2C(s) + O_2 \rightarrow 2CO \\
 C(s) + CO_2 \rightarrow 2CO \\
 C(s) + H_2O \rightarrow CO + H_2
 \]
In gas phase the following kinetic mechanism of Jones and Lindstedt (1988) is considered:

\[
\begin{align*}
\text{CH}_4 + \frac{1}{2}\text{O}_2 & \rightarrow \text{CO} + 2\text{H}_2 \\
\text{CH}_4 + \text{H}_2\text{O} & \rightarrow \text{CO} + 3\text{H}_2 \\
\text{CO} + \text{H}_2\text{O} & \rightleftharpoons \text{CO}_2 + \text{H}_2 \\
\text{H}_2 + \frac{1}{2}\text{O}_2 & \rightleftharpoons \text{H}_2\text{O}
\end{align*}
\]
Outlook

1. Air blown Updraft Coal Gasifier
2. Numerical models for updraft gasifier
3. Results
4. Conclusions and future developments
Results
Geometry and simulation conditions

- The numerical simulation is performed considering a simple cylindrical geometry \((D = 30 \text{ cm}, H = 195 \text{ cm})\)
- A initial bed height of 40 cm is assumed, corresponding to 35 kg of coal
 - Only one fuel charge is considered
- Air flow rate: 66.5 kg/s
- Steam flow rate: 9.1 kg/s
- Gasifier time-dependent behaviour is investigated considering a period of 1000 s
- A coal particle diameter of 2 cm is assumed
The numerical simulation is performed considering a simple cylindrical geometry ($D = 30 \text{ cm}$, $H = 195 \text{ cm}$).

- A initial bed height of 40 cm is assumed, corresponding to 35 kg of coal.
 - Only one fuel charge is considered.
- Air flow rate: 66.5 kg/s.
- Steam flow rate: 9.1 kg/s.
- Gasifier time-dependent behaviour is investigated considering a period of 1000 s.
- A coal particle diameter of 2 cm is assumed.
Results

Geometry and simulation conditions

- The numerical simulation is performed considering a simple cylindrical geometry ($D = 30\,\text{cm}, H = 195\,\text{cm}$)
- A initial bed height of $40\,\text{cm}$ is assumed, corresponding to $35\,\text{kg}$ of coal
 - Only one fuel charge is considered
- Air flow rate: $66.5\,\text{kg/s}$
- Steam flow rate: $9.1\,\text{kg/s}$
- Gasifier time-dependent behaviour is investigated considering a period of $1000\,\text{s}$
- A coal particle diameter of $2\,\text{cm}$ is assumed
Results
Geometry and simulation conditions

- The numerical simulation is performed considering a simple cylindrical geometry ($D = 30 \text{ cm}, H = 195 \text{ cm}$)
- A initial bed height of 40 cm is assumed, corresponding to 35 kg of coal
 - Only one fuel charge is considered

- Air flow rate: 66.5 kg/s
- Steam flow rate: 9.1 kg/s
- Gasifier time-dependent behaviour is investigated considering a period of 1000 s
- A coal particle diameter of 2 cm is assumed
Results
Geometry and simulation conditions

- The numerical simulation is performed considering a simple cylindrical geometry \(D = 30 \text{ cm}, \ H = 195 \text{ cm} \)
- A initial bed height of 40 cm is assumed, corresponding to 35 kg of coal
 - Only one fuel charge is considered
- Air flow rate: 66.5 kg/s
- Steam flow rate: 9.1 kg/s
- Gasifier time-dependent behaviour is investigated considering a period of 1000 s
- A coal particle diameter of 2 cm is assumed
Results
Geometry and simulation conditions

- The numerical simulation is performed considering a simple cylindrical geometry \((D = 30 \text{ cm}, H = 195 \text{ cm})\)
- A initial bed height of 40 cm is assumed, corresponding to 35 kg of coal
 - Only one fuel charge is considered
- Air flow rate: 66.5 kg/s
- Steam flow rate: 9.1 kg/s
- Gasifier time-dependent behaviour is investigated considering a period of 1000 s
- A coal particle diameter of 2 cm is assumed
Results

Geometry and simulation conditions

The numerical simulation is performed considering a simple cylindrical geometry ($D = 30 \text{ cm}, H = 195 \text{ cm}$)

- A initial bed height of 40 cm is assumed, corresponding to 35 kg of coal
 - Only one fuel charge is considered

- Air flow rate: 66.5 kg/s

- Steam flow rate: 9.1 kg/s

- Gasifier time-dependent behaviour is investigated considering a period of 1000 s

- A coal particle diameter of 2 cm is assumed
Results

Syngas composition vs. time @exit

The figure shows the instantaneous mass fraction at the exit.

Steady condition is reached within about 600 s.
Results

Syngas composition vs. time @exit

The figure shows the instantaneous mass fraction at the exit.

- Steady condition is reached within about 600 s.
The figure shows the syngas mass fraction along the reactor at 600 s.

- O\textsubscript{2} is consumed in the first 15 cm of the bed.
- Most part of reactions occurs at the bottom of the reactor.
Results

Syngas composition vs. height @600 s

The figure shows the syngas mass fraction along the reactor at 600 s.
- O_2 is consumed in the first 15 cm of the bed.
- Most part of reactions occurs at the bottom of the reactor.
Results

Syngas composition vs. height @600 s

The figure shows the syngas mass fraction along the reactor at 600 s. O$_2$ is consumed in the first 15 cm of the bed. Most part of reactions occurs at the bottom of the reactor.
Results

Bed height variation

- The animation shows the variation of char mass fraction with time.
- The model accounts for the char consumption and the bed height variation.
- The bed height reduction is related to the mass transfer between solid and gas phase.
Results

Bed height variation

- The animation shows the variation of char mass fraction with time.
- The model accounts for the char consumption and the bed height variation.
- The bed height reduction is related to the mass transfer between solid and gas phase.
Results

Bed height variation

The animation shows the variation of char mass fraction with time.

The model accounts for the char consumption and the bed height variation.

The bed height reduction is related to the mass transfer between solid and gas phase.
Outlook

1. Air blown Updraft Coal Gasifier

2. Numerical models for updraft gasifier

3. Results

4. Conclusions and future developments
Conclusions
General observations

- A preliminary CFD model of air-blow updraft coal gasifier is developed
- The model is based on the Eulerian-Eulerian hydrodynamic theory of solid-gas multiphase flows
- Solid stress is modeled considering granular theory
- At the moment drying and devolatilization are not considered
- Heterogeneous and homogeneous reactions are accounted in the model
- Gas and solid velocities, species concentrations, temperatures are evaluated in function of time and space
Conclusions

General observations

- A preliminary CFD model of air-blow updraft coal gasifier is developed
- The model is based on the Eulerian-Eulerian hydrodynamic theory of solid-gas multiphase flows
- Solid stress is modeled considering granular theory
- At the moment drying and devolatilization are not considered
- Heterogeneous and homogeneous reactions are accounted in the model
- Gas and solid velocities, species concentrations, temperatures are evaluated in function of time and space
Conclusions

General observations

- A preliminary CFD model of air-blow updraft coal gasifier is developed
- The model is based on the Eulerian-Eulerian hydrodynamic theory of solid-gas multiphase flows
- **Solid stress** is modeled considering granular theory
 - At the moment drying and devolatilization are not considered
 - Heterogeneous and homogeneous reactions are accounted in the model
- Gas and solid velocities, species concentrations, temperatures are evaluated in function of time and space
Conclusions

General observations

- A preliminary CFD model of air-blow updraft coal gasifier is developed
- The model is based on the Eulerian-Eulerian hydrodynamic theory of solid-gas multiphase flows
- Solid stress is modeled considering granular theory
- At the moment drying and devolatilization are not considered
- Heterogeneous and homogeneous reactions are accounted in the model
- Gas and solid velocities, species concentrations, temperatures are evaluated in function of time and space
Conclusions

General observations

- A preliminary CFD model of air-blow updraft coal gasifier is developed
- The model is based on the Eulerian-Eulerian hydrodynamic theory of solid-gas multiphase flows
- Solid stress is modeled considering granular theory
- At the moment drying and devolatilization are not considered
- Heterogeneous and homogeneous reactions are accounted in the model
- Gas and solid velocities, species concentrations, temperatures are evaluated in function of time and space
Conclusions
General observations

- A preliminary CFD model of air-blow updraft coal gasifier is developed.
- The model is based on the Eulerian-Eulerian hydrodynamic theory of solid-gas multiphase flows.
- Solid stress is modeled considering granular theory.
- At the moment drying and devolatilization are not considered.
- Heterogeneous and homogeneous reactions are accounted in the model.
- Gas and solid velocities, species concentrations, temperatures are evaluated in function of time and space.
Conclusions
Future developments

- Include **drying** and **devolatilization** submodels
- Improve numerical stability of the model
- Include **coal inlet and ash removal** in the model
- Consider more complex geometries
- Validate the model considering experimental data
Conclusions

Future developments

- Include **drying** and **devolatilization** submodels
- Improve **numerical stability** of the model
- Include **coal inlet** and **ash removal** in the model
- Consider **more complex** geometries
- Validate the model considering **experimental data**
Conclusions

Future developments

- Include drying and devolatilization submodels
- Improve numerical stability of the model
- Include coal inlet and ash removal in the model
- Consider more complex geometries
- Validate the model considering experimental data
Conclusions
Future developments

- Include drying and devolatilization submodels
- Improve numerical stability of the model
- Include coal inlet and ash removal in the model
- Consider more complex geometries
- Validate the model considering experimental data
Conclusions

Future developments

- Include drying and devolatilization submodels
- Improve numerical stability of the model
- Include coal inlet and ash removal in the model
- Consider more complex geometries
- Validate the model considering experimental data
This work has been carried out in the framework of the research project Development of technologies for the production and treatment of syngas from coal with production and use of energy carriers of high environmental value and hydrogen in particular and “Research and development program for near zero emission technologies of coal utilization in distributed power micro-generation” funded by the Italian Ministry for Education, Universities and Research (MIUR).
Thank for your attention!

Two-Dimensional CFD Model of an Air-Blown Updraft Coal Gasifier

Stefano Murgia Michele Vascellari Giorgio Cau
michele.vascellari@unica.it

Department of Mechanical Engineering
University of Cagliari
