Entrained-flow gasification to convert biomass into synthesis gas

CCT, Dresden, May 2009

Matthias Rudloff, Marketing and Sales Manager
CHOREN
• German gasification technology company
• first Mover in BTL-Technology: Gasification / Fischer Tropsch
• established out of the former DBI after the German reunification (1990)

• 280 Employees (2008)
• Private co., partnership with Shell since 2005 and with Daimler and VW since Oct 2007, total < 50%
• Capital employed > €180 Mio.
• located in Germany (Freiberg & Hamburg), China and USA

• world’s first continuous non-laboratory 100% BTL production process (2003)
• world’s first commercial BTL facility (2009)
• patented Carbo-V® process
Why entrained flow gasification for syngas production?

Due to their high operation temperature (> 1200°C), just entrained flow gasifiers ensure:

- tar content below detection limit
- minimum methane
- max. CO + H₂

Diagram: Relative decrease of the synthesis gas (H₂+CO)- quantity (thermodynamical equilibrium) as function of the CH₄-content.
Challenges of entrained flow gasification for biomass

Classical entrained flow gasifiers
- only achieve limited cold gas efficiency (due to high end temperatures)
- cannot be fed with solid biomass

The Carbo-V® process was designed to
- increase efficiency via
 - chemical quenching by blowing charcoal into hot gas
 - decreasing losses in combustion chamber
- increase feedstock flexibility by transforming solid feedstock to gas and coal dust via autothermal pyrolysis (NTV)
Allothermal contra autothermal pyrolysis

Allothermal

- heating via
 - heat carrier (sand, ...)
 - transfer through the wall / steam tube inside

+ lower CO₂ content in gas
+ higher coal yield
- big reactors necessary
- no reliable reactors for operation under pressure available

Autothermal

- heating via partial oxidation of coal in the reactor
+ very compact and reliable reactor (2 to 3 times smaller than allothermal units)
The Carbo-V® Process

Low-temperature-gasifier (NTV) → Carbo-V®-Gasifier → Gas-conditioning → Gas-usage

Biomass → Pyrolysis gas → oxygen → Carbo-V®-Gasifier → Raw gas (free of tar) → Heat exchanger → syngas → deduster → Residual char, ash → Gas srubber → Waste water

Vitrified slag
NTV ~ Low Temperature Gasifier

- Rotating equipment
- Pressurized 5 bar
- Thermal cycling
Low-temperature-gasifier (NTV)

Alpha plant, 1 bar, 550°C, 1 MW

Beta Plant, Freiberg, 5 bar, 550 °C, 15 MW
HTV ~ HT Gasifier with Chemical Quench

- stationary equipment
- pressurized 5 bar suppressing methane formation
- design expertise from coal gasification
- slag protected refractory
- cracking of tars separate to char – tar free syngas
HTV ~ HT Gasifier with Chemical Quench

- thermal quench of HTV
- exit gas temperature 800-900°C
- standard downstream equipment
HTV – 45 MW HT Gasifier (Beta Plant)
Carbo-V® – gas composition

gasification of wood, gas after gas scrubber

<table>
<thead>
<tr>
<th>Component</th>
<th>Mol % in dry gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>41.2</td>
</tr>
<tr>
<td>CO₂</td>
<td>24.0</td>
</tr>
<tr>
<td>H₂</td>
<td>33.7</td>
</tr>
<tr>
<td>CH₄</td>
<td>< 0.1</td>
</tr>
<tr>
<td>N₂</td>
<td>1.1</td>
</tr>
<tr>
<td>H₂S</td>
<td>< 0.02</td>
</tr>
</tbody>
</table>

Carbo-V 160/5
O₂ (99.5%)
CHOREN gasifier

Carbo-V® - 45 / 5 (Beta)

Carbo-V® - 160 / 5 (Sigma)

Clean Carbon Gasifier (CCG)
CHOREN Gasification Application Overview

Feedstock Prep and Handling
- Biomass
- Waste
- Coal
- Petcoke / Residuals

Entrained Flow Gasification Carbo-V® and CCG (Coal)

Gas Cleanup

Utility Integration

Product Conversion Technologies*
- Synthesis Gas
- Methanol
- Ethylene
- Propylene
- Acetic Acid
- \(\text{H}_2 \)
- DME
- Ammonia
- Ethanol
- Urea
- SNG
- FT-Products
- Power / Steam

*Non-exhaustive technologies list for clarity
Biomass-to-Electricity Direct Firing (BtE)

CO₂-Neutral Electricity or Fuel Gas via Biomass Syngas Direct Firing

Biomass → Carbo-V® Gasification → Gas Cleanup → Existing Boiler → Heat Recovery and Steam Turbine → Electricity
Biomass-to-Electricity (BtE)

CO$_2$-Neutral Electricity via Biomass Integrated Combine Cycle (BIGCC)

Biomass → Carbo-V® Gasification → Gas Cleanup and Compression → SynGas Turbine → Heat Recovery and Steam Turbine → Electricity
Biomass-to-Liquids (BtL)

“Green” SynFuels for high Energy Independence

Biomass → Carbo-V® Gasification → Gas Cleanup and Compression → FT-Synthesis → SynFuel
Biomass and Coal-to-Liquids (BCtL)

CO₂-Balance Improved Coal-to-Liquids Production, Large Scale

Biomass → Carbo-V® and/or Coal Gasification → Gas Cleanup and Compression → FT-Synthesis → SynFuel
Biomass and Coal-to-Electricity (BCtE)

CO₂-Balance Improved Electricity via Biomass and Coal Integrated Combine Cycle

- Carbo-V® and Coal Gasification
- Gas Cleanup and Compression
- SynGas Turbine
- Heat Recovery and Steam Turbine
Carbo-V®-Development stages

Pilot plant with air blown gasifier

Alpha 1 MW O₂

Scaleup * 45 (one line)

BETA Freiberg First commercial BTL plant 45 MW

Beta: 15 ktpa

15 MW air

30 MW O₂

45 MW O₂ HTV

Scaleup * 4 (multiple lines)

Sigma plant 640 MW 4 parallel gasifiers à 160 MW

BTL Sigma: 200 ktpa

Scouting FED 1-3 FID Execution Operation
Beta-Plant

45 MW thermal 68,000 t/a feedstock 18.0 mio. l SunFuel

1. Alpha-Plant
2. Biomass storage (wood chips)
3. Carbo-V\textregistered Gasifier
4. Power station
5. Fischer-Tropsch-synthesis
6. Tank farm
Start of Commissioning – April 17th 2008
Beta project schedule

2003
Construction begins 2003 Phase I – NTV & HTV

Carbo-V® in operation

2004
Banking finance & loan guarantee program

2005
Construction continues 2005/06 Phase II Fischer-Tropsch

Technical up-grade & review of safety systems

2006
April 2008 – Mechanical completion

Implement SIL & red loop checks

Commissioning

2007

2008

2009

Beta plant – Carbo-V® in operation
Σ Schwedt

- 640 MW_{th}
- 1.000.000 t/a biomass
- 200.000 t/a BTL

Advantages:
- Biomass availability
- Refinery integration
- Logistics
- Infrastructure
- Public support
Current Layout Status (08.01.2008)
CHOREN Industries GmbH, Freiberg
CHOREN services for biomass gasification plants

Licence for Carbo-V® technology

Feasibility studies

Services (obligation if licence agreement signed)

- PDP / Basic-Engineering-Package
- Supply of main components (Proprietary Equipment)
 - Low Temperature Gasifier
 - High Temperature Gasifier incl. burners
 - coal fluidisation and transport system
- Commissioning
 - monitoring / support
 - operator training

Additional services

- detail engineering for special components:
 - feedsystem for feedstock
- After Sales Service
Disclaimer: The document is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by CHOREN. Certain statements that are included in this presentation are forward-looking in nature. There are associated risks and uncertainties inherent in such statements and actual results may differ materially from those expressed or implied by the forward-looking statements. CHOREN doesn't assume any liability for those statements. There is no requirement or obligation for CHOREN to update these forward looking statements.