Investigation of potential alkali getters for gasification using a new high temperature pressurized simultaneous thermal analyzer (P-STA)

Franz Hauk, Stephan Gleis, Hartmut Spliethoff

Institute of Energy Systems
Technische Universität München
Motivation: Alkali Removal at highest temperatures

Goal for IGCC power plant:
Prevention of hot gas (alkali) corrosion at minimum loss of efficiency

“State of the art”
Massive cooling of crude syngas + subsequent cleaning

Solution:
Hot Gas Cleaning - Usage of ceramic high temperature getter materials
(kaolin, bauxite, sands, … aluminosilicates with large-scale availability)
“Hot” - Temperatures up to 1800 °C
Approach

Tools:
High-temperature Pressurized simultaneous thermal analyzer (P-STA)
Allows experimental conditions close to power plants
FactSage – Thermochemical equilibrium calculations

Experiments:
Investigation of Alkali chemisorption capacity of getter
Experimental + theoretical methods
What is thermal analysis (TA)?

Techniques where a physical property of a substance is measured as a function of temperature (or time) while being exposed to a controlled temperature program.

e.g. Thermogravimetry (TG)

- Continuous recording of sample mass during controlled heating program

Other representatives of TA:
- DTA Differential Thermal Analysis
- DSC Differential Scanning Calorimetry

Combination of TG and DTA/DSC

Simultaneous Thermal Analysis (STA)
Overview of Pressurized Thermogravimetry

![Graph showing pressure vs. temperature with marked Commercial and Research facilities at 6 bar and 1750 °C]
P-STA at Institute of Energy Systems, TUM

High density + purity alumina tube, pressure loaded; Finite creep strength!

Sample

Volumetrically tared high precision beam balance

Pressure vessel

Source: Linseis Messgeräte GmbH, Selb, Germany
P-STA at Institute of Energy Systems, TUM

High temperature Furnace (1750 °C)

P-STA PT-1750, 5 bar

TGA

DTA / H-DSC

Gas box (Pressure control, reaction gas supply)
Experiments – Chemisorption capacity of Kaolin Suprex

How much NaCl can be sorbed by Suprex depending on temperature and pressure?

Chemical Analysis of Suprex, a hard kaolin (aluminosilicate):

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>P₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass-%</td>
<td>45.1</td>
<td>38.1</td>
<td>Trace</td>
<td>0.2</td>
<td>0.02</td>
<td>Trace</td>
<td>1.6</td>
<td>1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Method: 2 subsequent experiments

1000 mg Suprex + 100 mg NaCl

1000 mg Suprex (pure)

Sorbed Alkali Mass
Results – Development of mass release curves

Continuous trend of temperature dependent sorption capacity and release velocity

Reducing atmosphere (5 vol.-% H₂ in N₂), reaction gas flow 2.0 l/h, heating rate 10 K/min, dense Al₂O₃ crucible, Suprex
Results – Mass release and release rate

Reducing atmosphere (5 vol.-% H₂ in N₂), reaction gas flow 2.0 l/h, heating rate 10 K/min, dense Al₂O₃ crucible, Suprex

- 550 °C: < 2 % released
- 590/570 °C: first local release speed max.
- 801 °C: melting point NaCl
- 970 °C: absolut (amb.)/local (0.5 MPa) maximum
- 1060 °C: local max. (amb.)
- 1110 °C: absolut max.(0.5 MPa)
- 1600 °C: 72 % (amb.)/ 68 % (0.5 MPa) of NaCl released
Results – Experiments vs. Thermochemical calculations

Ambient pressure
At 0.5 MPa: For 1400 °C max. sodium release: 20 mass-% of added Na

Na release (calc.)
0.5 MPa

Reducing atmosphere (5 vol.-% H₂ in N₂), reaction gas flow 2.0 l/h, heating rate 10 K/min, dense Al₂O₃ crucible, Suprex;
Thermochemical calculations: FactSage 5.5
Conclusions

- Pressurized STA with outstanding parameters was developed:
 1750 °C / 0.5 MPa overpressure

- Chemisorption capacity experiments are a good tool for classification of potential getter materials

- Thermochemical calculations reflect experiments in wide areas

- Pressure has significant effect on alkali (Na) release…

Outlook

- Experiments at higher pressures!
- In-situ optical measurements

Thank you for your Attention!

This work is part of a project supported by Bundesministerium für Wirtschaft und Technologie and industrial partners under contract number 0327773A. The first author also thanks the German National Academic Foundation for support in the form of a doctoral scholarship.