Options for Upgrading & Refining Fischer-Tropsch Liquids

- **Major factors affecting XtL product yields & properties**
 - Plant siting issues
 - Focus on transportation fuels

- **Comparison of petroleum & FT liquids**
 - Fluid composition & distillation
 - Refining options

- **Chemistries for refining FTLs**
 - Achieving product slate flexibility with XtL

- **Blending FT & petroleum liquids & biofuels**
 - Briefly discuss fuel properties

- **Closing thoughts**
Many factors can affect XtL product yields & properties

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Gasification Options</th>
<th>Xtl Plant Siting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal (rank)</td>
<td>POX vs. Reforming</td>
<td>Distance to refineries & markets</td>
</tr>
<tr>
<td>Pet Coke & Residuals</td>
<td>Temperature</td>
<td>Mode of feed & product transport</td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>All-Fuels Product</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>Co-Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-Generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO₂ Capture</td>
<td></td>
</tr>
<tr>
<td>Feed Composition</td>
<td>Production Options</td>
<td></td>
</tr>
<tr>
<td>Ultimate Analysis</td>
<td>FT Conversion Options</td>
<td></td>
</tr>
<tr>
<td>H / C Ratio</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>Catalyst (α, P/O)</td>
<td></td>
</tr>
<tr>
<td>Contaminants</td>
<td>- Iron vs. Cobalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reactor Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fixed-Bed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fluid-Bed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Slurry-Bed</td>
<td></td>
</tr>
</tbody>
</table>

Up-Stream

Down-Stream

Product End-Use

- Transportation - existing vs. future fuels
- SNG or Hydrogen
- Chemicals
- Combined Heat & Power
Siting Issues Affecting XtL Yields & Properties

XtL Plant Siting

- **On-Site Refining**
 - Refining & Blending within Dedicated FTLs Refinery
 - Batch-Shipments of Finished Fuel Blendstocks via Clean-Product Pipelines
 - Blending with Petroleum Fuels or Ethanol at Product Terminal

- **Across-The-Fence Refining**
 - Refining & Blending within Existing Petroleum Refinery
 - FTL Fractionation / Batch or Pooled Processing with Petroleum Intermediates

- **Remote Refining**
 - Partial Upgrading for Crude-Oil Pipeline Transport
 - Batch-Shipments of FT Syncrude
 - FTL Fractionation / Batch or Pooled Processing with Petroleum Intermediates
 - Shipment of FT Syncrude/Petroleum Mixture
 - Fractionation and Upgrading with Petroleum

Inside XtL fence

Offsite
Assays for Petroleum & FT Liquids

Graphs

- **Lo-S/Lgt Crude Oil**
- **Hi-S/Hvy Crude Oil**
- **Hi-S/VHvy Crude Oil**
- **Hi-T FTS**
- **Lo-T FTS**
- **FT Syncrude**

Table

<table>
<thead>
<tr>
<th>Property</th>
<th>Lo-S/Lgt</th>
<th>Hi-S/Hvy</th>
<th>Hi-S/VHvy</th>
<th>Hi-T FTS</th>
<th>Lo-T FTS</th>
<th>FT Syncrude</th>
</tr>
</thead>
<tbody>
<tr>
<td>°API</td>
<td>39.5</td>
<td>27.4</td>
<td>14.7</td>
<td>N/A</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.4%</td>
<td>2.8%</td>
<td>2.7%</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.5%</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>Oxygen</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>N/A</td>
<td>1%</td>
<td>nil</td>
</tr>
<tr>
<td>RON</td>
<td>N/A</td>
<td>50</td>
<td>65</td>
<td>~20</td>
<td>~20</td>
<td>~40</td>
</tr>
<tr>
<td>CN</td>
<td>50</td>
<td>N/A</td>
<td>39</td>
<td>>70</td>
<td>>70</td>
<td>>70</td>
</tr>
<tr>
<td>Asphalt.</td>
<td>0.2%</td>
<td>N/A</td>
<td>8.7%</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
</tbody>
</table>
Chemical Composition of Petroleum & FTL

Virgin Crude Oil
- paraffins: n-butane, isoctane (Octane)
- naphthenes: methyl cyclopentane, cyclohexane
- aromatics: benzene, alkyl benzene
- polyaromatics: naphthalene
- asphaltenes: during processing
- olefins: isobutylene, isoctene

Raw FT Liquids
- n-paraffins: n-octane, n-hexadecane (Cetane)
- α-olefins: 1-butene, 1-octene
- n-alcohols: 1-octanol
- during processing: isoparaffins, 1-methyl heptane
- Internal olefins: 2-butene, isoamylenes
- isoolefins: during processing
Petroleum Refining

%Distilled Off (ASTM D-86)
- 95% @ -38°C max
- 10% @ 50-70°C max
- 50% @ 77-121°C range
- 90% @ 185-190°C max
- EP @ 225°C max
- 10% @ 205°C max
- EP @ 300°C max
- 90% @ 282-338°C range

Premium Products
- LPG
- Jet Fuel
- Diesel Fuel

TBP Cut Points
- -42°C (C3-C4)
- 27-32°C (C5-C11)
- 166-193°C (C10-C15)
- 216-271°C (C15-C20)
- 321-343°C (>C20 & <C25-C50)
- 427-566°C (>C25-C50)

Processes:
- Hydrotreating
- Isomerization or Cat Reforming
- Alklation
- Cat Cracking or Hydrocracking
- Coking or Visbreaking
- Resid Hydroprocessing

Products:
- Fuel Gas
- Naphtha RGLs
- Heavy Gas Oil
- Diesel
- Kerosene
- Premium Products
- RFO
FT Liquids Refining

Premium Products

- **LPG**
 - 95% @ -38°C max
- **Gasoline**
 - 10% @ 50-70°C max
 - 50% @ 77-121°C range
 - 90% @ 185-190°C max
 - EP @ 225°C max
- **Jet Fuel**
 - 10% @ 205°C max
 - EP @ 300°C max
- **Diesel Fuel**
 - 90% @ 282-338°C range

%Distilled Off

- (ASTM D-86)
 - 95% @ -38°C max
 - 10% @ 50-70°C max
 - 50% @ 77-121°C range
 - 90% @ 185-190°C max
 - EP @ 225°C max
 - 10% @ 205°C max
 - EP @ 300°C max
 - 90% @ 282-338°C range

TBP Cut Points

- -42°C (C3-C4)
- 27-32°C (C5-C11)
- 166-193°C (C10-C15)
- 216-271°C (C15-C20)
- 321-343°C (C20-C50)
- 427-566°C (>C50)

FT Waxes

Special Naphthas

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization or Alkylation
- Olefin Metathesis

Diesel

- Cat Cracking or Hydrocracking
- Hydrotreating

Kerosene

- Cat Cracking or Hydrocracking
- Hydrotreating

Naphtha

- Cat Cracking or Hydrocracking
- Hydrotreating

Naphtha RGLs

- Cat Cracking or Hydrocracking
- Hydrotreating
- Isomerization or Cat Reforming

Oligomerization or Alkylation

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization

Olefin Metathesis

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization

Isomerization & Dehydrogenation

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization

Hydrotreating

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization

Hydrocracking

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization

Cat Reforming

- Isomerization & Dehydrogenation
- Hydrotreating
- Isomerization or Cat Reforming
- Oligomerization
FT Light-Ends Work-Up

- **Paraffin Isomerization**
 \[R \cdot CH_2 - CH_2 - CH_3 \xrightarrow{BM \text{ on acidic support}} R \cdot CH - CH_3 + \text{heat} \]

- **Dehyrogenation**
 \[R \cdot CH_2 - CH_2 - R' \xrightarrow{CrA} R \cdot CH = CH - R' + H_2 \]

- **Olefin Isomerization I**
 \[R \cdot CH_2 - CH = CH_2 \xrightarrow{Zeolite} R \cdot CH - CH - CH_3 \]

- **Olefin Isomerization II**
 \[R \cdot CH = CH - CH_3 \xrightarrow{Zeolite} R \cdot C = CH_2 + \text{heat} \]

Not typically found in pet refinery
FT Light-Ends Work-Up
(continued)

- Alkylation
 isobutylene alkylation

- Catalytic Polymerization
 isobutylene dimerization

Not typically found in pet refinery
FT Naphtha & Distillates Work-Up

- **Hydrotreating** olefin saturation
 \[R - CH_1 = CH_2 + H_2 \xrightarrow{BM \text{ on acidic support}} R - CH_2 - CH_3 + \text{heat} \]

- **Isomerization**
 \[R - CH_2 - CH_2 - CH_3 \xrightarrow{NM \text{ on acidic support}} R - CH - CH_3 + \text{heat} \]

- **Catalytic Reforming**
 \[R - C_6H_{13} + \text{heat} \xrightarrow{NM \text{ on acidic support}} 4H_2 + R - C_6H_5 [\text{aromatic}] \]

- **Olefin Metathesis I**
 \[R_1 - CH = CH - R_2 + R_5 - CH = CH - R_6 \xrightarrow{W \text{ or Mo w/Pt}} R_1 - CH = CH - R_2 + R_5 - CH = CH - R_4 \]

\[4 < \text{CN} < 9 \quad \text{and} \quad 9 < \text{CN} < 18 \]

Not typically found in pet refinery
FT Wax Work-Up

- **Hydrocracking with olefin saturation**
 \[R - CH_2 - CH_2 - CH_1 = CH_2 + H_2 \rightarrow RH + CH_3 - CH_2 - CH_3 + \text{heat} \]
 with NM or BM on acidic support

- **Hydrocracking with isomerization**
 \[R' - CH_2 - CH_2 - CH_2 - R'' + H_2 \rightarrow R' - C - CH_3 + R'' H + \text{heat} \]
 with Zeolite

- **Catalytic Cracking**
 \[R' - CH_2 - CH_2 - R'' + \text{heat} \rightarrow R' = CH_2 + R'' = CH_2 + H_2 \]

- **Olefin Metathesis II**
 \[R_1 - CH = CH - R_2 + R_5 - CH = CH - R_6 \leftrightarrow R_1 - CH = CH - R_2 + R_5 - CH = CH - R_4 \]

Not typically found in pet refinery
Adjusting Gasoline-to-Distillate Ratio

to Increase G/D
- Minimize Wax-Make
 - raise FT Reactor Temp
- Alkylation or Cat Poly to Gasoline
- Wax Catalytic Cracking
- Wax / Distillate Hydrocracking
 - gasoline mode

to Decrease G/D
- Maximize Wax-Make
 - lower FT Reactor Temp
- Cat Poly to Kero or Diesel
- Wax Hydrocracking
- Olefin Metathesis I
 - Naphtha to Kero/Diesel
- Olefin Metathesis II
 - Wax to Kero/Diesel
Estimated Product Distributions from Upgrading & Refining FTLs

Maximum Gasoline
- Gasoline: 65%
- Distillate Fuels: 15%
- LPG: 20%

G/D = 4.2

Maximum Distillate Fuel
- Gasoline: 67%
- Distillate Fuels: 26%
- LPG: 7%

G/D = 0.4

Minimum Upgrading for Transport
- Gasoline: 25%
- LPG: 6%
- Heavy Gas Oil: 32%
- Distillate Fuels: 38%

The Current fuels market in U.S.
G/D = 0.91

Upgrading flexibility leads to higher utility for FT syncrude within petroleum refinery and thus higher premium.
Improving FT Gasoline Quality

- In general, FT Naphtha has low octane number
- However, it is of high quality in other respects
 - zero sulfur, benzene & aromatics
 - olefins can be saturated
- To increase octane:
 - alkylate & isomerize
 - blend with higher-octane petroleum blendstocks
- Catalytic reforming is least desirable option
 - produces aromatics
 - volume loss
 - n-paraffins are poor feedstocks for reforming
Closing Observations

- **Plant location & scale will strongly influence degree of FTL upgrading that will occur at XtL plant**
 - logistically complex - many options to consider
 - Small scale & remote location would seem to favor minimal FTL upgrading strategies
 - However, no studies have been done to quantify from an economic, environmental, or security perspective, when and where it might makes sense to upgrade and refine FT liquids
 - Alberta oil sands industry may be a “model” for XtL infrastructure development

- **Near term, distillate fuels will be focus of XtL**
 - FT naphtha production will be minimized and sold for other non-fuel applications, e.g. steam cracker feed to produce ethylene/propylene

- **Longer term, FT naphtha may need to be refined into gasoline**
 - Refining LP models can be used to help determine the optimum product slate for any given XtL development scenario
Closing Observations

- **Refining technologies exist to upgrade FTL to premium fuels – gasoline, jet & diesel fuels**
 - However, they may be configured and operated in ways quite different from current refining practice with naturally occurring petroleum crude oils
 - *e.g.* FT medium-heavy naphtha might be isomerized, something not considered viable for petroleum naphtha
 - And, are at various states of development and commercialization
 - Therefore, there are R&D opportunities in this arena

- **Continuing evolution of clean transportation fuels in U.S. and Europe favors XtL over other liquefaction technologies**
 - This is unlikely to change
 - FTLs can be produced from renewable biomass or blended with other biofuels
One Last Thought

To paraphrase Marcus Samuel, the founder of Shell:

“\textit{The mere production of oil* is almost its least value and its least interesting state. Markets have to be found}” --- circa. 1900

*can substitute ‘GTL’, ‘CTL’ or ‘BTL’ for ‘oil’

From \textit{The Prize} by Daniel Yergin, 1991 ---- *my interpretation
Options for Upgrading & Refining Fischer-Tropsch Liquids

2nd International Freiberg Conference on IGCC & XtL Technologies, May 8-12, 2007 Freiberg, Germany

for copies of this presentation, along with transcript, please contact John J. Marano, Ph.D. at:

marano@zoominternet.net