Syngas for Gas Turbine Combustion

P. Kutne, W. Meier, M. Aigner

Institute of Combustion Technology,
German Aerospace Center (DLR), D-70569 Stuttgart
Research Targets for GT-Combustion

Objectives:

• Reduction of pollutants
 - NOx at increased TIT and p
 - soot particles, UHC

• Reliability of combustion processes
 - ignition, extinction, thermoacoustic

• Fuel flexibility
 - varying natural gas quality
 - alternative fuels, syngas
Real Fuel
chemical composition not defined exactly

Ignition delay

Soot

\[\text{NO}_x \]

CO

Heat-release

Mechanism Reduction (target specific)

Validation at technical scale

Validation at laboratory scale

Model-fuels
composition exactly defined

Validation Experiments
Current Activities

HEGSA „High Efficient Gas Turbine with Syngas Application“
(EC project, started 2002)

- **Goal:** Development of a gas turbine burner optimized for syngas combustion

- **DLR-Part:** Development of a reduced reaction model for syngas combustion on the basis of detailed reaction mechanisms found in literature. Validation experiments for CFD simulations at pressures of 1 and 2 bars.

- **Problem:** No validated mechanism for syngas combustion under GT conditions exists. Validation experiments have been made only up to 2 bars.
Current Activities

ENCAP - SP2 „Enhanced Capture of CO₂“
(EC project, started 2004)

- **Goal (WP 2.3):** Test and simulation of a gas turbine combustor for H₂ combustion

- **DLR-Part:** Validation experiments under GT conditions are planned with different H₂ / N₂ mixtures at the high pressure test rig at the DLR in Stuttgart.

- **Problem:** The influence of hydrocarbons on the combustion process is not considered. No detailed measurements for validation of the simulation are planned.
Objectives of VESKO

- Development and validation of a CFD model for turbulent syngas combustion under gas turbine specific conditions

- Generation of a fundamental database for syngas combustion under atmospheric conditions and elevated pressure

- Identification of the reaction mechanisms relevant for the combustion process under GT conditions (temperature ~1400 K, pressure up to 20 bars)

- Development of a detailed reaction model, reduction and validation

- Provide an interface between gasification process and gas turbine
CFD-simulation

- Adaptation and implementation of a combustion model for the use of a reduced reaction mechanism in 3D simulations

- Evaluation of the accuracy of the combustion model and the reduced reaction mechanism

- Test-related computer simulations for preparation of experiments and interpretation of the experimental data
Development and validation of a reaction mechanism

- Experimental and theoretical formulation of a complete base mechanism

- Validation through quantitative analysis of the reaction products of different syngas mixtures in single pulse shock tube experiments (GT conditions: temperature 1400 -2000K, pressure up to 20 bars)

- Reduction of the reaction model to include approx. 20 species

- Further reduction to a global mechanism with 4-6 species, usable in CFD simulations
Investigations under atmospheric conditions

- Measurement of flame structure with planar laser induced fluorescence (PLIF)

- Measurement of the flow fields and velocity fields with particle image velocimetry (PIV)

- Measurement of temperature, mixture fraction and main species concentrations with laser Raman scattering
Investigations under gas turbine specific conditions

- Measurement of flame structure and flame stabilization zones with PLIF

Technical data of the test facility:

fuels:
- gaseous: mixtures of CH$_4$, H$_2$, CO, propane, N$_2$
- liquid: kerosene (up to 100 bars)

max. pressure: 41 bars

Air: max. 1 kg/s (up to 800 K)

optical access at 4 sides
Outlook

- Extension of the reaction model for the simulation of syngas combustion with syngas from different feed materials

- Implementation of the reaction models in commercial CFD programs

- Design and optimization of gas turbine combustion chambers for real syngas with the extended CFD programs

- Assistance to the COORIVA group in the conception, design, realization and commission of an optimized IGCC power plant
Syngas for Gas Turbine Combustion

P. Kutne, W. Meier, M. Aigner

Institute of Combustion Technology,
German Aerospace Center (DLR), D-70569 Stuttgart