Effects of pressure and CO concentration on petcoke mineral transformations for slag viscosity correlation development

Shubhadeep Banik*, Aditi B. Khadilkar and Sarma V. Pisupati

John and Willie Leone Family Department of Energy and Mineral Engineering
The Pennsylvania State University
USA

Presented at the 9th International Freiberg Conference on IGCC & XtL Technologies
Berlin, Germany, June 3-6, 2018

*sxb5654@psu.edu
Knowledge of oxidation states of transition elements is critical in slag viscosity correlation development.

- Fuels mostly used: coal, pet cokea,b.
- Significant V, Fe and Ni oxides in pet coke ashc.

aHigman & Burgt, 2008; bMurthy et al., 2014; cBennett et al., 2011; dIGCC power plant, Veolia Water Technologies - Puertollano, Spain; eVargas et al., 2001

\begin{itemize}
\item A gasification plantd
\item Schematic of an entrained flow gasifierc
\item Slag flow along hot-face of refractoryc
\end{itemize}

Slag can be considered as a network of tetrahedral SiO\textsubscript{2} units (Si: big circles; O: small circles). Cations could enter that space and modify the network structure and viscositye.
Viscosity correlations not available for petcoke ash slag

- Existing coal ash slag viscosity models: Urbain models⁴,⁵,⁶
- Combustion of petroleum coke: reduced rate of oxidation and excess carbon in fly ash can inhibit formation of corrosive $V_2O_5$⁷,⁸
- Coal-petcoke combustion: no V or Ni phases⁹,¹⁰
 - Petcoke ash and slag experiments in oxidizing and reducing environment:
 - Petcoke combustion ash from CFBC (circulating fluidized bed combustion) boiler– $Ca_2V_2O_7.2H_2O$, $Na_4V_2O_7.18H_2O$¹¹
 - Reducing & oxidizing environment - V_2O_3 addition caused changes in AFT (ash fusion temperature); V_2O_3 and FeV_2O_4 in reducing environment increased AFT and $Ca_2V_2O_7$ in oxidizing environment decreased AFT¹²
 - Effect of CaO, Fe₂O₃, NiO – high melting Ni$_2$SiO$_4$ and low melting $Ca_2V_2O_7$ affect AFTs¹³
 - V volatility behavior studied during gasification - V_2O_3 & FeV_2O_4 found in CO₂ gasified petcoke ashes (1100-1500 °C)¹⁴
 - Volatility of V & Ni studied in steam gasification of petcoke & biomass - V_2O_3, FeV_2O_4, Ni, NiS in gasification ashes¹⁵
 - Petcoke ash experiments with 60% CO (rest CO₂) - V_2O_3 and FeV_2O_4 (high melting point) in quenched slag increase AFT; upon coal & CaO addition Ca$3Fe_2Si_3O_{12}$ & Ca$3V_2O_8$ (low melting phases) decrease AFT¹⁶
 - Ca$_3$SiO$_4$, V$_2$O$_3$ and FeV_2O_4 in petcoke ash resulted in high AFTs; appearance of low melting point calcium vanadium oxide and KAlSi$_2$O$_6$ and reduction in V$_2O_3$ on biomass addition to petcoke ash decreased AFT¹⁷
 - Coal-petcoke quenched slag formed in 64% CO (rest CO₂) had V$_2O_3$ in high petcoke mixtures¹⁸
 - XRD on coal-petcoke ash mixtures heated and quenched – V$_2O_3$, VFe$_2O_4$¹⁹
 - Coal ash with V and Ni – quenched slag had V$_2O_3$, Ni, CaAl$_2$Si$_2$O$_8$²⁰
- Hot stage XRD:
 - phases identified for coal and biomass (co-combustion) ash during heating (up to 1250 °C) and cooling cycles explained viscosity w.r.t. temperature²¹
 - phases identified for coal ash slag under reducing environment²²

*Hurst et al., 1999;¹ Uribain et al., 1981;² Kalmanovitch et al.;³ Bryers, 1996;⁴ Bryers, 1995;⁵ Srikanth et al., 2003;⁶ Wu et al., 2011;⁷ Jia et al., 2002;⁸ Li et al., 2017;⁹ Li et al., 2018;¹⁰ Xiong et al., 2018;¹¹ Srikanth et al., 2003;¹² Nakano et al. 2011;¹³ Nakano et al., 2009;¹⁴ Arvelakis et al., 2006;¹⁵ Schimpke et al., 2017.
Research objectives

• Effect of reducing gas (CO) and pressure on petcoke ash transformations

• Establish slag correlation development by linear regression
Experimental techniques used

High pressure thermogravimetric analyzer (HP TGA): P up to 40 bar, T up to 1260 °C.

X-Ray Diffractometer (XRD) with chamber for reducing gas: T up to 1260 °C.
Superimposition of mass loss curves of V_2O_5, NiO and Fe$_2$O$_3$ on synthetic petcoke ash shows that the mass loss in synthetic petcoke ash is mainly due to reduction of V_2O_5, NiO and Fe$_2$O$_3$.

- **TGA results:** 1.01 bar, 70 % CO – 30 % CO$_2$

- **Increment in mass of Fe$_2$O$_3$ and V_2O_5 after 800 °C – formation of some phases**

<table>
<thead>
<tr>
<th>Component</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaO</td>
<td>0.087</td>
</tr>
<tr>
<td>SrO</td>
<td>0.043</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>10.001</td>
</tr>
<tr>
<td>CaO</td>
<td>4.022</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>8.697</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1.848</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>10.219</td>
</tr>
<tr>
<td>MnO</td>
<td>0.076</td>
</tr>
<tr>
<td>MgO</td>
<td>0.326</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1.631</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.652</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.435</td>
</tr>
<tr>
<td>V_2O_5</td>
<td>48.266</td>
</tr>
<tr>
<td>NiO</td>
<td>13.697</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Synthetic petcoke ash composition
Increase in pressure causes reduction reactions to occur at higher temperatures

- High pressure TGA runs showed that the reduction reactions occur at higher temperatures

- Phase formations cause mass gain till 1000 °C (confirmed by equilibrium calculations in FactSage)
V_2O_5 and NiO peaks disappear by 650 °C in 70% CO indicating complete reduction of both V_2O_5 and NiO.

- Atmospheric pressure TGA run: mass loss calculations show that V_2O_5 can transform to V_2O_3 in the reducing environment.

- XRD: V_2O_5 and NiO peaks disappear by 657.8 °C. Sample consisted of SiO$_2$-Al$_2$O$_3$-CaO-Fe$_2$O$_3$-V_2O_5-NiO.
CO-CO$_2$ mixtures (as low as 10% CO) showed complete reduction of V$_2$O$_5$ by 750 °C. Higher CO content causes faster reduction of V$_2$O$_5$ w.r.t. temperature.

A: V$_2$O$_5$; B: Ca$_4$(Al$_8$Si$_8$O$_{32}$)(H$_2$O)$_{18.664}$; C: NiO; D: Fe$_2$O$_3$; E: Fe$_2$O$_3$; F: SiO$_2$; G: AlO(OH)
A generic viscosity correlation was developed for blends of coal - petcoke ash slag based on the work of Wang et al.a and Hurst et al.b

\[
\ln(\eta) = \ln(A) + \ln(T) + \frac{B}{RT}
\]

\[
x = \frac{m_s}{m_s + m_a + m_c + m_f}, \quad y = \frac{m_c + m_f}{m_a + m_c + m_f}
\]

\[
\ln(\eta) = a_0 + a_1y + a_2y^2 + a_3x + a_4xy + a_5xy^2 + a_6x^2 + a_7x^2y + a_8x^2y^2 + a_9x^3 + a_{10}x^3y + a_{11}x^3y^2
\]

Evaluate \(a_0 - a_{11}\) at \(1450^\circ C\) and \(1500^\circ C\)

A and B for a slag composition

\textbullet\ Viscosity data of petcoke ash slag from literature used to develop correlationa

<table>
<thead>
<tr>
<th>\text{CC}a</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO\textsubscript{2}</td>
<td>45.18</td>
</tr>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>29.99</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3}</td>
<td>3.32</td>
</tr>
<tr>
<td>CaO</td>
<td>15.64</td>
</tr>
<tr>
<td>MgO</td>
<td>1.16</td>
</tr>
<tr>
<td>TiO\textsubscript{2}</td>
<td>1.12</td>
</tr>
<tr>
<td>SO\textsubscript{3}</td>
<td>1.64</td>
</tr>
<tr>
<td>K\textsubscript{2}O</td>
<td>0.78</td>
</tr>
<tr>
<td>Na\textsubscript{2}O</td>
<td>0.88</td>
</tr>
<tr>
<td>P\textsubscript{2}O\textsubscript{5}</td>
<td>0.29</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

\textbullet\ \(V_2O_3\) and NiO added to baseline coal composition (CC)

\textbullet\ Compositions normalized to SiO\textsubscript{2} - Al\textsubscript{2}O\textsubscript{3} - CaO - FeO - \(V_2O_3\) - NiO
Model predictions show reasonable agreement with available viscosity data up to 7.5 % \(\text{V}_2\text{O}_5 \) and NiO each and in 60% CO atmosphere (rest being CO\(_2\)).

\[\text{aWang \ et \ al., \ 2014} \]
Path forward....

Based on these results, viscosity correlations will be developed for pet coke compositions with higher proportions of V and Ni oxides.
Conclusions

• Gasifier’s reducing environment clearly reduces \(V_2O_5 \) at or below 750 °C
• At higher pressures experienced in industrial gasifiers the reduction occurs at higher temperatures
• This study clearly demonstrated that the phases to be used in correlating slag viscosity with chemical composition for V, Ni and Fe should be \(V_2O_3 \), NiO and FeO.
Thank you

Danke Shon!

Questions?
References

R. W. Bryers, "Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels." Progress in energy and combustion science 22, no. 1, pp. 29-120, 1996.

