Prominent facies from the Lower/Middle Cambrian of the Dead Sea area (Jordan) and their palaeodepositional significance

OLAF ELICKI¹; JÖRG SCHNEIDER² and RAFIE SHINAQ³

Key words. – Lower Cambrian, Middle Cambrian, Burj Formation, Jordan.

Abstract. – New carbonate facies types are reported from the Cambrian Burj Fm. (Bilbilian) of the southern Dead Sea area (Jordan). They indicate the existence of a large low energy lagoon, with restricted water circulation and higher salinity, behind a high energy oolite shoal or shoal complex (back-barrier system). The transition between shoal and lagoon is marked by the interfingering of sediments from both environments, caused by washover events from the shoal into the lagoon behind. The lagoon itself was characterized by a low sedimentation rate and entire bioturbation. In a shoreward direction, the lagoonal facies changed into a microbial-dominated tidal or sabkha flat environment from which sediments were periodically reworked and redeposited into the lagoon. Comparison of our results with investigations of subsurface Cambrian deposits in southeastern and northern Jordan shows that lagoonal environments were the predominant carbonate production centres in this area during the short marine phase in the Cambrian of the Dead Sea area.

Faciès du Cambrien inférieur et moyen de la mer Morte (Jordanie); signification paléoenvironmentale

Mots clés. – Cambrien inférieur, Cambrien moyen, Formation de Burj, Jordanie.

Résumé. – Certains faciès carbonatés sont décrits pour la première fois dans la formation de Burj (Cambrien, Bilbilie), au sud de la mer Morte (Jordanie). Ils indiquent l’existence d’un grand lagon de basse énergie, avec une circulation d’eau réduite et une salinité élevée, derrière un haut-fond oolitique de forte énergie ou un haut-fond complexe (système d’arrière-barrière). La transition entre le haut-fond et le lagon est marquée par des interdigitations de sédiments provenant des deux environnements, avec des phénomènes de débordements, du haut-fond sur le lagon situé en arrière. Le lagon lui-même est caractérisé par un faible taux de sédimentation et une totale bioturbation. En direction de la côte le faciès lagunaire se modifie en un environnement à calcimicrobes dominants, d’estran ou de sabkha, d’où les sédiments étaient périodiquement repris et redéposés dans le lagon. La comparaison avec les recherches sur les dépôts cambriens de subsurface dans le sud-est et le nord de la Jordanie démontrent que les faciès lagunaires étaient les centres prédominaux de production de carbonates dans cette région pendant la courte phase marine du Cambrien de la mer Morte.

INTRODUCTION

The Jordan Cambrian (Ram Group, including up to Arenigian) consists of a sequence of continental siliciclastics (Salib Fm., early Cambrian), followed by shallow marine carbonates and siliciclastics (Burj Fm., higher early to ?middle Cambrian). The overlying continental siliciclastics (Umm Ishrin Fm., Disi Fm., Umm Sahm Fm.) span the ?late Cambrian to Early Ordovician interval (fig. 1). The Burj Fm. carbonate succession represents a relatively short marine transgressive phase. Its exposed outcrops are at the NE edge of the Dead Sea, in some wadis near its southern end, and also some wadis further south. The field area for the results presented here is in the Wadi Tayan, east of the southern edge of the Dead Sea (fig. 2).

Cambrian sediments from the Dead Sea area have been known since the beginning of the last century [for a summary of research history see Elicki and Shinaq, 2000]. Most previous work was focused on fossil reports and on the Cambrian siliciclastics [summaries in Bender, 1968; Amireh, 1991; Amireh et al., 1994; Elicki and Shinaq, 2000]. Some more intense work on the carbonate facies was undertaken during the 1990s [Shinaq, 1990; Shinaq and Bandel, 1992; Rushton and Powell, 1998]. Until now, there has been only one publication on detailed facies investigations of the carbonates – from a part of the succession in the Wadi Zerqa Main section at the NE end of the Dead Sea,

CARBONATE FACIES

Carbonate facies types, already described from surface and subsurface outcrops, include mainly grainstones and rudstones (oolitic, peloidal, bioclastic or oncoidal), indicating higher energy regimes. The bioclast allochems came from trilobites, echinoderms, hyolithes and brachiopods. Only subordinate and rare low-energy mudstones and wackestones (sometimes together with calcimicrobes) are reported from middle and SE Jordan [Shinaq and Bandel, 1992].

In the study area for the southern Dead Sea region, new carbonate facies types have been observed: (i) peloid grainstone, (ii) algal-lump/pseudopeloid float-/grainstone, and (iii) oncoid/oid float-/grainstone.

(i) peloid grainstone facies (pl. 1, fig. 1A)

This facies is characterized by uniform grain sizes and by lack of internal sedimentary structures. The principal components are very small peloids (round and oval fecal pellets, mostly less than 0.1 mm in diameter). Other components (extremely rare single ooids and bioclastic relicts) are practicaly absent. No terrigenous influx was observed. This facies is disconformably overlain by type (ii).

(ii) algal-lump/pseudopeloid float-/grainstone facies (pl. 1, fig. 1B-3)

Large algal lumps (up to 5 mm) within a grainstone matrix of pseudopeloids are the typical textural features of this facies type. The base is erosive; no other sedimentary layering is visible, but bioturbation is common. The pseudopeloids are distinctly larger (around 0.5 mm) than in type (i) and irregular in shape, so that a lithoclast nature is strongly indicated. Further components are single glauconite grains and a distinct amount of quartz. Bioclasts (trilobite and undeterminable shelly remains) occur infrequently. The algal lumps are cloud-shaped and float irregularly within the grainy matrix. Ooids were not observed.

(iii) oncoid/oid float-/grainstone facies (pl. 1, fig. 4-8)

The main textural feature of this bioturbated facies type is the occurrence of very large (“giant”) oncoids up to 40 mm in diameter, embedded within an ooid grainstone matrix. The oncoids constitute about 30 percent of the rock. Their cores are made up of different components (intracalclasts of the grainstone matrix; smaller oncoids; or aggregate grains [algal lumps]). The microbial envelopes are mostly clearly visible and represent *Girvanella*-type cyanobacteria (a morphological group of *Oscillatoriaeacean* affinity). Furthermore, reworked stromatolites (domed-subospherical) of similar size as the oncoids occur. The ooids of the grainstone matrix are between 0.2 mm and 0.5 mm in diameter. Mostly they show an intact radial internal structure. However, some are collapsed (distorted ooids) because of early dissolution of the cores and subsequent compaction. Disarticulated bioclasts (brachiopods, echinoderms, trilobites) are frequent and have oncoidal coatings. Algal lumps (several millimeters in diameter) are rather rare. Lithoclasts (grainstone intraclasts) are common, and
peloids sometimes occur. Terrigenous input was very low; represented only by some clay accumulation in pressure solution sutures.

DEPOSITIONAL AND PALAEOGEOGRAPHIC DISCUSSION

The study area was thoroughly checked for carbonate facies types, permitting a more complete and comprehensive reconstruction of the marine depositional system than those given by Amireh et al. [1994] and Rushton and Powell [1998]. The investigations led to recognition of some distinct lithologies that allow interpretation of the main sedimentary processes in context with the previously recognized facies belts.

The monotonous, unlayered peloid grainstone facies (i), with its overwhelming abundance of fecal pellets and the total lack of muddy matrix, points to a nearly complete sediment-recycling by non-skeletal invertebrates typical for some lagoonal environments. The small amount of fine terrigenous material was brought in by aeolian transport only; there was no fluvial input. The environment is interpreted as lagoonal, with low energy and low sedimentation rate, and perhaps with reduced water circulation.

In contrast, the algal-lump pseudopeloid float-/grainstone facies (ii) shows a distinctly wider variety of components. Especially, the large algal lumps point to shallow and low energy conditions within a protected area with a low sedimentation rate [tidal flat, sabkha; Flügel, 1978; Scholle et al., 1991]. Life forms are mainly represented by calcimicrobes and non-skeletal invertebrates. Glaucolite grains occur. They are commonly interpreted to form in mid-shelf to upper slope positions [e.g. Bathurst, 1971; Rösler, 1980; for discussion see Chafetz and Reid, 2000]. Many authors, in contrast, pointed out that such a mineral formation is also possible in deeper environments during times of low sedimentation rates [e.g. Tucker and Wright, 1990]. Chafetz and Reid [2000], however, report glauconite from a Cambro-Ordovician (?higher salinity) tidal flat environment in Texas and New Mexico. Life conditions documented in the facies of the Jordan material seem to be only acceptable for calcimicrobes and some resistant bioturbating invertebrates. The environment can most probably be interpreted as a relatively low energy – but higher than type (i) – proximal and restricted-lagoonal to tidal flat/sabkha area [compare Flügel, 1978; Reineck and Singh, 1986; Tucker and Wright, 1990; Demicco and Hardie, 1994]. However, the preservation of the algal lumps (sometimes torn to pieces) and the common occurrence of erosive surfaces (very distinct at the base but also common within this facies type) where the bioturbation traces start, indicates periodic redeposition from the proximal lagoonal or tidal flat/sabkha environment into the lagoon.

The oncoid/ooid float-/grainstone facies contrasts strongly with the other types described. Most ooids are radially structured, indicating a moderate rather than a low or high energy regime [shallow shelf or lagoon, for discussion see Flügel, 1978]. The radial internal structure may also point to a higher salinity [Bathurst, 1971]. The water energy was higher than in types (i) and (ii), but not as strong as in a shoal environment (where cross bedded ooids occur). This energy index is consistent with the origin of the “giant” oncoids, typical for lagoons [Elicki, 1999]. The occurrence of distorted ooids may be a further argument for higher salinity because early dissolution of the cores is more understandable if they were sulfate-rich. In contrast, the normal-marine skeletal fossils, as well as the few occurrences of cross-bedded ooids, came from a higher energy and more open area (shoal). Thus, the depositional environment indicates an infingering of low energy lagoonal and high energy shoal sediments. Such interactions are characteristic for intertidal-lagoonal back-barrier systems [Read, 1985]. Within such facies realms, washover events, transporting shoal material into the quiet-water lagoon behind, are common. During these processes a mixing of the components from the different environments usually took place, however during more infrequent stronger events (storms),
lagoonal and shoal layers characteristically alternate [Tucker and Wright, 1990].

These newly discovered carbonate facies types from the Wadi Tayan area indicate the existence of a large low energy lagoon with restricted water circulation and higher salinity behind a high energy oolite shoal or shoal complex (back-barrier system). The transitional area between shoal and lagoon is characterized by an infilling of the different sediment types caused by washover events from the oolite shoal into the quiet water behind. In the lagoon, the sedimentation rate was low and the sediment was fully bioturbated. Shoreward, the lagoonal facies changed into a microbial dominated tidal or sabkha flat environment from which the sediments were periodically reworked and redeposited into the lagoon (fig. 3).

Generally, the Jordan Cambrian represents a braided-stream-dominated coastal system unconfomable on the Proterozoic Arabian-Nubian Shield, and burying a distinct palaeorelief [Bender, 1968, 1975; Segev, 1984]. From south to north some characteristic facies belts have developed: proximal alluvial fans, braided river sandflats, deltaic braidplain, and marine facies [tidal flats/sabkhas, lagoons, ramp carbonates; Amireh et al., 1994]. The source area for the terrigenous material was probably only some tens of kilometers east of the present outcrops [Schneider et al., 1984; Amireh, 1987, 1991]. The marine phase within the Jordan Cambrian was geologically very short (early Bilblian). Because of the trilobite content, this depositional area was seen as the westernmost part of the Pacific faunal province by Richter and Richter [1941].

CONCLUSIONS

Newly described carbonate facies from the marine Cambrian of the southern Dead Sea region (Jordan) enable a more detailed insight into the sedimentary processes and regional palaeogeography of this area for early Bilblian time. All described facies types indicate a large lagoonal environment.

An unlayered peloid grainstone facies consists nearly completely of fecal pellets and was deposited within a low energy lagoon with a low sedimentation rate. It is disconformably overlain by an algal-lump/pseudopeloid float-/grainstone facies which indicates a microbial dominated protected lagoonal environment (tidal flat or sabkha), but with a little higher energy level. The sedimentation rate most possibly was low so that an entire recycling of the sediment has taken place. Broken fossils and internal erosive surfaces indicate periodic redepositional processes. An oncoid/oolid float-/grainstone facies was deposited within a moderate energy lagoon with higher salinity. Mixed (by washover events and storms) low energy lagoonal and high energy shoal sediments, characteristic for intertidal-lagoonal back-barrier systems are typical for these deposits. Thus, the existence of deposition controlled by a predominant lagoonal environment is demonstrated for this palaeogeographic region. Comparing these results with...
other reports from subsurface deposits in southeastern and northern Jordan [Shinaq and Bandel, 1992], lagoonal environments were the most important and predominant carbonate production centres for much the maximum Cambrian marine transgressive phase in this area.

Acknowledgements. – One of the authors (O.E.) thanks very much the German Research Foundation (DFG) and the Jordan Higher Council for Science and Technology whose interest and financial support made it possible to organise and realise the research trip to the Jordan Cambrian in preparation for a German-Jordan geological research project. Further, we thank Klaus Bandel (Hamburg) for stimulating discussions and the Yarmouk University (Irbid/Jordan) for logistic support. Many thanks for the kindly help with the languages go to A.R. Palmer (Boulder/Colorado) and Francoise Debrenne (Paris/France). Thanks also to the latter and to Daniel Vachard (Lille/France) for the critical review of the manuscript.

References

