3-D Inversion of Helicopter Electromagnetic Data

M. Scheunert1, M. Afanasjew2, R.-U. Börner\textdagger, M. Eiermann2, O. G. Ernst2, and K. Spitzer1

1Institute of Geophysics and Geoinformatics
2Institute of Numerical Analysis and Optimisation
TU Bergakademie Freiberg (Germany)

SUMMARY

Helicopter electromagnetic (HEM) measurements can manage huge surveys in a very short time. Due to the enormous data and model sizes, laterally constrained 1-D inversion schemes for the entire surveys are still state of the art, for parts of the survey where 3-D conductivity anomalies are expected.

We present the framework of an inversion scheme capable of revealing an anomalous three-dimensional conductivity structure in the subsurface for restricted survey parts where 3-D anomalies are expected. For solving the inverse problem, we apply a straightforward Gauss-Newton method and a Tikhonov-type regularization scheme. The derived linear least squares problem is solved with Krylov subspace methods, such as LSQR, that are able to deal with the inherent ill-conditioning. We reformulate the discrete forward problem in terms of the secondary electric field, employing both finite difference and finite element methods. The resulting systems of linear equations subsequently yield expressions for the gradient and approximate Hessian of the minimization problem. Resulting from the unique transmitter-receiver relation of the HEM problem, an explicit representation of the Jacobian matrix is used. To handle the sensitivity related quantities, a tensor-based problem formulation is exploited.

For application studies we consider a 3-D model problem as published by Siemon, Auken, and Christiansen (2009) using a finite difference discretization. We present first inversion results for synthetic data with a noise level of up to 5%.

Keywords: HEM, 3-D inversion, explicit Jacobian, FD and FE, Gauss-Newton

INTRODUCTION

To take advantage of a full 3-D inversion, restrictive approaches are required to overcome the enormous data and model sizes. An obvious way is to limit the inversion area to the size of the effective footprint of the measurement setup (Cox & Zhdanov, 2007). In contrast, our focus is on locating and extracting only those parts of an entire survey which are actually affected by a 3-D anomaly (Ullmann & Siemon, 2012). We show the concept of a full 3-D inversion scheme based on this restriction. We examine the theoretical background of effectively calculating the Jacobian matrix and demonstrate inversion results for airborne electromagnetics.

HEM FORWARD PROBLEM

When information on the background conductivity distribution is available, a secondary electric field approach seems practical. Maxwell’s curl-curl equations in their quasi-static approximation can therefore be expressed within a bounded domain ($\mathbf{\Omega} \subseteq \mathbb{R}^3$) as

\[
\nabla \times E_{\text{sec}} + i\omega \mu_0 \sigma E_{\text{sec}} = -i\omega \mu_0 j_{\text{pri}} \quad \text{in } \mathbf{\Omega},
\]

\[
\nabla \times E_{\text{sec}} = 0 \quad \text{at } \partial\mathbf{\Omega},
\]

with

\[
E = E_{\text{pri}} + E_{\text{sec}},
\]

where $j_{\text{pri}}(r) = \sigma(r) - \sigma_{\text{pri}}(z) E_{\text{pri}}(r)$ acts as a source current density driven by the primary electric field of a dipole source located above a stratified earth with electrical conductivity $\sigma_{\text{pri}}(z)$.

After spatial discretization on a finite difference (FD) or finite element (FE) grid, the continuous boundary value problem can be transformed into a system of linear equations:

\[
A(\sigma) u = b \quad \text{with } u = u_{\text{pri}} + u_{\text{sec}},
\]

\[
A(\sigma) u_{\text{sec}} = -A(\sigma) u_{\text{pri}} + A(\sigma_{\text{pri}}) u_{\text{pri}},
\]

where $A(\sigma) = K + i\omega M(\sigma)$ is a sparse, complex-valued, symmetric, and typically large matrix. The right-hand side of (5) contains the discretized source terms. The solution of the linear system yields the discrete secondary electric field u_{sec}.
HEM INVERSE PROBLEM

Generally, the spatial locations of sampled field components differ from the location of the discrete field components within the computational domain. Therefore, a mapping or measurement operator Q has to be defined yielding the total fields at the distinctive receiver sites

$$d = Qu.$$ (6)

We aim at finding a model parameter distribution, i.e.,

$$m = \log (\sigma), m \in \mathbb{R}^M,$$

such that the difference between measured data d^{obs} and predicted data from the forward solution $d(m) = QA^{-1}(m) b$ for a given model parameter set m, as well as the parameter roughness are minimal:

$$\Phi(m) = \frac{1}{2} \left\| d^{\text{obs}} - d(m) \right\|_2^2 + \frac{\lambda}{2} \left\| W (m - m_{\text{ref}}) \right\|_2^2 \rightarrow \text{min } m. \quad (7)$$

Applying the Gauss-Newton method, an approximation of $d(m)$ is derived from a linear Taylor series expansion

$$d(m) \approx d(m_0) + J(m_0) \cdot (m - m_0), \quad (8)$$

where

$$m = m_0 + \Delta m,$$ (9)

and $J(m) = \frac{\partial d(m)}{\partial m}$ denoting the partial derivatives of the data vector with respect to the model parameter m. The resulting linearized least squares problem

$$\Phi(m) = \frac{1}{2} \left\| \left[\sqrt{\lambda} W (m_0 - m_{\text{ref}}) - J(m_0) \Delta m \right] \right\|_2^2, \quad (10)$$

with

$$\Delta d = d^{\text{obs}} - d(m_0), \quad (11)$$

can be solved for the model update Δm by Krylov subspace methods, such as CG or LSQR.

Sensitivity equation for secondary field approach

While using a FD or FE discretization an inherent approach for calculating the partial derivatives of the data with respect to the model parameter (sensitivities) is the so-called sensitivity equation. It exploits the capability of expressing the action of the forward operator in terms of the solution of a linear system of equations. Due to the measurement, containing a superposition of the primary and secondary field components, the inverse problem is based on the total field data u. The derivative of the total field with respect to the model parameter m is given by:

$$\frac{\partial u}{\partial m} = \frac{\partial A^{-1}(m) \partial b}{\partial m} \quad (12)$$

For

$$m = m_{\text{pri}} + m_{\text{sec}}, \quad (13)$$
$$u_{\text{pri}} = u_{\text{pri}}(m_{\text{pri}}), \quad (14)$$
$$u_{\text{sec}} = u_{\text{sec}}(m_{\text{sec}}), \quad (15)$$

and supposing the primary field u_{pri} being evoked by the total field source b

$$A(m_{\text{pri}}) u_{\text{pri}} = b, \quad (16)$$

(12) could be reformulated, using (5):

$$\frac{\partial A(m)}{\partial m} u_{\text{sec}} + A(m) \frac{\partial u_{\text{sec}}}{\partial m} = - \frac{\partial A(m)}{\partial m} u_{\text{pri}} - A(m) \frac{\partial u_{\text{pri}}}{\partial m} + \frac{\partial}{\partial m} (A(m_{\text{pri}}) u_{\text{pri}}). \quad (17)$$

Finally including (6), this leads to the sensitivity matrix J, i.e., the partial derivative of the reduced total field with respect to the model parameters

$$J(m) := \frac{\partial d}{\partial m} = Q \left(\frac{\partial u_{\text{pri}}}{\partial m} + \frac{\partial u_{\text{sec}}}{\partial m} \right) = -QA(m)^{-1} L(m) \quad (18)$$

with

$$L(m) = \frac{\partial b}{\partial m} - \frac{\partial M(m)}{\partial m} \times_2 u. \quad (19)$$

$T = \frac{\partial M}{\partial m}$ is a three-way tensor. \times_2 denotes the tensor product multiplication along the second dimension of the tensor, i.e.,

$$\frac{\partial M(m)}{\partial m} \times_2 u = \sum_j T_{i,j,k} \cdot u_j. \quad (20)$$

TX-RX relation in HEM

The HEM is typically organized such that only one field value has to be taken for every transmitter position and frequency. Thus, the numerical effort in calculating data for each transmitter and frequency as well as the numerical costs in providing the sensitivity can be reduced remarkably. Concerning the Jacobian matrix, the explicit calculation by solving forward problems with A^{-1} is limited to the minimum number of data (N) values or model parameters (M), respectively. The computational effort therefore can be reduced by using Krylov subspace methods that only requires the solution of two forward problems ($J_{x\sigma}$ and $J_{y\sigma}$) per source term and iteration. Other CSEM applications may combine a source with many receivers, whereas in HEM only one transmitter-receiver pair occurs at every transmitter position and frequency. Hence, assuming $N < M$, this inevitably leads to the
fact that calculating the Jacobian matrix explicitly requires only half of the number of forward solves that would be required to implicitly calculate their action on vectors for only one Gauss-Newton iteration. This property gets lost rapidly with increasing number of receivers per transmitter.

Explicit calculation of the Jacobian

To reduce the computational costs of an explicit calculation of \(J \) from (18), it seems reasonable to exploit the sparsity of the measurement operator \(Q \). In fact, only \(C \) columns of \(Q \) include non-zero elements, whereas usually \(C < K \) holds. The idea is to identify those non-zero columns of \(Q \) which are associated with the rows of \(A^{-1} \).

This leads to reduced forms of the operator \(Q \) and the inverse \(A^{-1} \):

\[
Q \in \mathbb{R}^{N \times K} \Rightarrow Q_r \in \mathbb{R}^{N \times C}, \quad (21)
\]

\[
A^{-1} \in \mathbb{R}^{K \times K} \Rightarrow A^{-1}_{r} \in \mathbb{C}^{C \times K}. \quad (22)
\]

Due to the symmetry of \(A^{-1} \) there holds:

\[
QA^{-1} = (A^{-1}Q^T)^T \in \mathbb{C}^{N \times K}, \quad (23)
\]

\[
Q_r A^{-1}_r = (A^{-1}_r Q_r^T)^T \in \mathbb{C}^{N \times K}. \quad (24)
\]

It therefore is necessary to calculate \(C \) forward problems with the corresponding unit vector as right-hand side:

\[
A^{-1}_r e_c = A^{-1}_{r,c} \quad \text{where} \quad c = c_1, \ldots, c_C. \quad (25)
\]

Hence it seems possible to explicitly form \(QA^{-1} = Q_r A^{-1}_r \) as well as to carry out the matrix-matrix multiplication with \(-L\) to provide the sensitivity matrix \(J \).

Moreover, the symmetry of \(A^{-1} \) can be exploited to solve \(D \) forward problems associated with the \(D \) rows of \(Q \) and the \(D \) columns of \(Q^T \), respectively. This is especially useful when \(Q \) has more non-zero columns than rows, i.e., \(C > D \).

A factorization of the system matrix \(A \) can substantially reduce the numerical effort required for the solution of systems with multiple right-hand sides.

Modeling area versus inverse area

In addition to the restriction of the solution vector, our approach utilizes a rough inverse grid that is the point of departure for an (adaptive) refined forward grid. Based on the cumulative sensitivities (footprint) of the background conductivity known a-priori, we define an active or inner area as part of the inverse parameterization where changes in \(m := \log (\sigma_{\text{act}}) \) are explicitly allowed. A projection operator \(E \) finally maps the inversion results back to the forward grid, such that

\[
\sigma (m) = E \sigma_{\text{act}} (m) + \sigma_{\text{inact}} \in \mathbb{R}^S, \quad (26)
\]

with

\[
E \in \mathbb{R}^{S \times M}, \quad \sigma_{\text{act}} (m) \in \mathbb{R}^{M}. \quad (27)
\]

Fig. 1 shows a typical parameter grid. The active area is outlined by a black box. It includes parameter cells associated with uniform colors. The parameter cells are a combination of a finer forward grid. The latter is indicated by white lines.

TENSOR BASED EXPRESSION OF THE MASS MATRIX

We apply a tensor based implementation of the mass matrix assembly by exploiting the properties of the three-way tensor

\[
\tilde{T} = \frac{\partial M}{\partial \sigma} \in \mathbb{R}^{K \times K \times S}, \quad (29)
\]

that is the naturally expression of the (\(\sigma \)-independent) derivative of the mass matrix. The mass matrix assembly can then be carried out by

\[
M(m) = \tilde{T} \times_3 \sigma (m). \quad (30)
\]

Another useful property of \(\tilde{T} \) is that it provides

\[
\frac{\partial M}{\partial m} = \tilde{T} \times_3 [E \, \text{diag} (\sigma_{\text{act}})], \quad (31)
\]

where

\[
\frac{\partial \sigma (m)}{\partial m} = E \, \frac{\partial \sigma_{\text{act}} (m)}{\partial m} \in \mathbb{R}^{S \times M}, \quad (32)
\]

\[
\frac{\partial \sigma_{\text{act}} (m)}{\partial m} = \text{diag} (\sigma_{\text{act}}) \in \mathbb{R}^{M \times M}. \quad (33)
\]

For repeated multiplications with the tensor \(\frac{\partial M}{\partial m} \) it is useful to store \(\tilde{T} \times_3 E \) as it is independent of \(m \), and therefore needs to be computed only once.

Scheunert et al., 2013, 3-D Inversion of Helicopter Electromagnetic Data
RESULTS

For numerical simulations and inversion studies we have defined a synthetic model (1200 m × 1800 m × 350 m) based on Siemon et al. (2009) where a rectangular block (500 m × 100 m × 20 m) is embedded in a horizontally layered half-space (Fig. 2). We aim at reconstructing the conductivity distribution of \(M = 13104 \) cells of the active inverse area.

Figure 2. Sketch of the conductivity structure used for providing synthetic data.

The data points are aligned along three parallel profile lines shown in Fig. 3. The inter-line spacing is 200 m. Along the profile, data is sampled at every 4 m. The height of the transmitter-receiver pair is \(h = 30 \) m. Samples of the vertical magnetic field have been collected for five frequencies. The synthetic data set comprises \(N = 3765 \) data points.

Figure 3. Anomalous structure and simulated flight lines.

Therefore a relative data residual of \(1.3 \cdot 10^{-2} \) could be achieved (Fig. 5).

Figure 5. Convergence of data and model residuals.

OUTLOOK

Further studies will incorporate more involved weighting strategies for unstructured grids as well as the exploration of automatic updating schemes for the regularization parameter. Additionally, we aim at the investigation of case studies for real helicopter measurement data at the Rotschlammdeponie near Stade, Germany.

REFERENCES

ACKNOWLEDGMENTS

This research has been carried out in the AIDA project funded by the German Ministry of Education and Research BMBF under the Geotechnologien Programme, grant 03G0735D.