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ADAPTIVE COARSE SPACES FOR FETI-DP IN THREE DIMENSIONS

AXEL KLAWONN∗, MARTIN KÜHN∗, AND OLIVER RHEINBACH†

November 23, 2015

Abstract. An adaptive coarse space approach including a condition number bound for FETI-DP meth-
ods applied to three dimensional problems with coefficient jumps inside subdomains and across subdomain
boundaries is presented. The approach is based on a known adaptive coarse space approach enriched by a
small number of additional local edge eigenvalue problems. These edge eigenvalue problems serve to make
the method robust and permit a condition number bound which depends only on the tolerance of the local
eigenvalue problems and some properties of the domain decomposition. Numerical results are presented for
linear elasticity and heterogeneous materials supporting our theoretical findings. The problems considered
include those with random coefficients and almost incompressible material components.

Key words. FETI-DP, eigenvalue problem, coarse space, domain decomposition, adaptive, BDDC, elasticity,
almost incompressible

1. Introduction. Second-order elliptic equations with discontinuous coefficents often
yield very ill conditioned stiffness matrices when discretized by finite elements. Examples
are diffusion problems or elasticity problems with materials having large discontinuities in
the diffusion coefficients and the Young modulus, respectively. Almost incompressible com-
ponents can be also a source of ill-conditionedness in the case of linear elasticity. These
sources of ill-conditionedness can lead to a severe deterioration of the convergence rate of
iterative methods that are used to solve the resulting linear system. Here, we will consider
domain decomposition algorithms as iterative solution methods. A heterogeneous material
can lead to coefficient jumps accross and along subdomain boundaries, especially when an
automatic graph partitioner is used to create the domain decomposition. Certain prob-
lems with special coefficient distributions, such as constant coefficients on subdomains, can
then still be handled by using special scalings; see, e.g., [40, 28, 18, 26, 37, 1]. However,
there are many cases when this is not sufficient and an augmentation of the coarse space
is needed to ensure a small condition number and the convergence of the iterative scheme
within a reasonable number of iterations. An additional approach to enhance the coarse
space of the domain decomposition algorithm is to first solve local (generalized) eigenvalue
problems and then incorporate these eigenvectors appropriately into the coarse space. This
strategy is mostly based on certain user-given tolerances for the eigenvalue problems which
determine the amount of extra work to be carried out in order to obtain good convergence
properties. These adaptive strategies exist for many kinds of domain decomposition algo-
rithms such as overlapping Schwarz, FETI/BDD (Finite Element Tearing and Interconnect-
ing/Balancing Domain Decomposition), or FETI-DP/BDDC (Dual Primal Finite Element
Tearing and Interconnecting/Balancing Domain Decomposition by Constraints); see, e.g.,
[3, 4, 12, 13, 6, 47, 48, 9, 21, 24, 33, 34, 5].

The approach presented in this paper is based on the adaptive coarse space [33] for
FETI-DP. Let us note that some of our results have been presented at the 23rd International
Conference on Domain Decomposition Methods (DD23) [22]. This coarse space was already
tested in 3D in [34] but no theoretical condition number bound exists although a heuristic
indicator was derived in [33]. Recently, in [23] a proof was given for this algorithm in two
dimensions and it was compared to the approaches in [5] and [24]. For FETI instead of

∗Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany;
{axel.klawonn,martin.kuehn}@uni-koeln.de.

†Technische Universität Bergakademie Freiberg, Fakultät für Mathematik und Informatik, Institut für
Numerische Mathematik und Optimierung, 09596 Freiberg, Germany; oliver.rheinbach@math.tu-freiberg.de.

1



FETI-DP, a different algorithm was introduced and analyzed in [48]. This coarse space was
originally established for overlapping Schwarz methods (see [46, 47]) and then transferred to
BDD and FETI. A comparison of different coarse space approaches for FETI-DP and BDDC
methods is provided in [23].

Our extension of the coarse space designed by [33] consists in specific eigenvalue prob-
lems on certain edges that have to be solved in addition. Then, we can guarantee a condition
number bound for the preconditioned FETI-DP operator. We will provide this bound and
its proof for three dimensional elasticity using deflation techniques although other implemen-
tations of the coarse space are also possible. We will also discuss the cost and necessity of
these additional eigenvalue problems. Our results are of equal interest for adaptive BDDC
methods [34].

The remainder of the paper is organized as follows: In Section 2, we introduce the
model problem, mention the corresponding finite element discretizations that will be used
and outline the domain decomposition approach. Sections 3 and 4 give a short introduction
to FETI-DP methods, scalings, preconditioners and projector preconditioning. In Section 5,
we will explain how the operators necessary for computing constraints are established and
how the latter are obtained. Our approach starts with the adaptive coarse space of [33]
and adds constraints from supplementary eigenvalue problems. Based on the new adaptively
computed coarse space, in Section 6, we will give the proof for the bound on the condition
number as mentioned. In Section 7 we outline some ideas on how to reduce the number
of eigenvalue problems and constraints. Section 8 will provide several tests of compressible
and almost incompressible elasticity and compare the algorithms proposed by [33] with the
modified coarse space presented here. Additionally, at the end of the section, we will test
an approach to reduce the number of eigenvalue problems. Eventually, in Section 9, we will
draw conclusions from our theory and simulations and provide advice when the respective
coarse space should be used.

2. Model problem and geometry. Let Ω ⊂ R
d, d = 2, 3 be a bounded polyhedral

domain, let ∂ΩD ⊂ ∂Ω be a closed subset of nonvanishing measure and let ∂ΩN := ∂Ω\∂ΩD.
In addition, we define the Sobolev space H1

0 (Ω, ∂ΩD)d := {v ∈ H1(Ω)d : v = 0 on ∂ΩD},
Young’s modulus E(x) > 0, and Poisson’s ratio 0 < ν(x) < 1

2 for all x ∈ Ω. We consider the
variational formulation of compressible linear elasticity: Find u ∈ H1

0 (Ω, ∂ΩD)d, such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD)d, (2.1)

with a(u, v) :=
∫

Ω
2µε(u) : ε(v)dx+

∫
Ω

λdiv(u)div(v)dx and F (v) :=
∫

Ω
f ·vdx+

∫
∂ΩN

g ·vds.

Here, the Lamé constants λ and µ can be computed from E and ν as λ = Eν
(1+ν)(1−2ν) , µ =

E
2(1+ν) . The product ε(u) : ε(v) of the linearized strain tensor ε(v) with εij(v) = 1

2 (∂vi/∂xj +

∂vj/∂xi) is given by ε(u) : ε(v) =
∑N

i,j=1 εij(u)εij(v). The functions f : Ω → R
d and

g : ∂ΩN → R
d are given volume and surface forces, respectively, prescribed on Ω and the

Neumann boundary ∂ΩN .
With Poisson’s ratio ν approximating 0.5, we speak of almost incompressible elasticity.

For almost incompressible elasticity locking phenomena can occur for the standard formu-
lation and therefore the pressure variable p := λdiv(u) is introduced. Then, we derive the
weak form of the mixed formulation in (u, p). Special care has to be taken when chosing the
finite elements for solving the mixed formulation. It has to be ensured that the chosen finite
elements fulfill the discrete Ladyženskaya-Babuška-Brezzi condition to remain stable.

We decompose Ω into N nonoverlapping subdomains Ωi, i = 1, . . . , N where each Ωi

is the union of shape regular tetrahedral or, in almost incompressible cases, brick elements
of diameter O(h). The diameter of a subdomain is denoted by Hi or, generically, by H.
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Furthermore, we define the interface Γ as the set of values that belong to at least two
subdomains and require that finite element nodes of neighboring subdomains match across
the interface. The interface in three dimensions consists of vertices, edges, and faces, defined
as in [29]. Edges and faces are considered as open sets. We will denote a face between the two
subdomains Ωi and Ωj by F ij , an edge between Ωi, Ωj , Ωl and maybe other subdomains by
E il and a vertex of Ωi touching several subdomains by Vik. We further define Γh and ∂Ωi,h

as the set of finite element nodes on Γ and ∂Ωi, respectively. Eventually, for an arbitrary
face F and an arbitrary edge E we introduce the standard finite element cutoff functions θF

and θE , which are equal to 1 on F and E , respectively, and are zero otherwise.
For the case of compressible linear elasticity, we use P1 conforming finite elements. If

Poisson’s ratio ν approaches the incompressible limit, we take Q2 − P0 conforming finite
elements which are inf-sup stable. In our experiments, we will statically condensate the
pressure variable elementwise. The space of our finite elements on Ωi, consisting of either
standard piecewise linear finite elements or statically condensated Q2 − P0 finite elements,
is denoted by W h(Ωi). In both cases the finite element functions vanish on ∂ΩD. For a part
of the interface Γ′ ⊂ Γ with nonvanishing measure we define the finite element trace space
W h(Γ′) and, in particular, Wi := W h(∂Ωi). Finally, we define W := ΠN

i=1Wi and denote by

Ŵ ⊂ W the space of functions in W that are continuous on Γ.

3. FETI-DP Method. In this section, we will briefly review the standard FETI-DP
algorithm. For a more detailed description on FETI-DP, see, e.g., [11, 10, 49], and, especially
in combination with linear elasticity, [29].

For every subdomain i = 1, . . . , N we compute the the local stiffness matrix K(i) and
the right hand side f (i). We subdivide the set of degrees of freedom into interior I, dual ∆,
and primal Π degrees of freedom. Interior degrees of freedom will belong to nodes in the
interior of subdomains and on the Dirichlet boundary ∂ΩD while dual and primal degrees
of freedom belong to nodes on the interface Γ. The corresponding variables on Ωi will be

denoted by u
(i)
I , u

(i)
∆ , and u

(i)
Π . The choice of Π will determine the initial coarse space. We

will set all vertices according to the definition of [29] primal and require that there are at
least two primal nodes on every edge E il. Moreover, if E il is a nonstraight edge, we set a third
one primal, that does not lie on a straight line between the other two. This only is an issue
for irregular decompositions of Ω and the necessity of this will be explained in more detail in
Remark 1; see Section 5. Using the notation introduced before, for theoretical purpose, we
can assume the following partitioning

K(i) =




K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ


 , u(i) =




u
(i)
I

u
(i)
∆

u
(i)
Π


 , and f (i) =




f
(i)
I

f
(i)
∆

f
(i)
Π


 .

We also introduce the block diagonal matrices

KII := diagN
i=1 K

(i)
II , K∆∆ := diagN

i=1 K
(i)
∆∆, and KΠΠ := diagN

i=1 K
(i)
ΠΠ.

Combining the index sets I and ∆ to the index set B leads to

K
(i)
BB :=

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, K

(i)
ΠB :=

[
K

(i)
ΠIK

(i)
Π∆

]
and f

(i)
B :=

[
f

(i)T
I f

(i)T
∆

]T

as well as to the block structures

KBB := diagN
i=1 K

(i)
BB , uB :=

[
u

(1)T
B , . . . , u

(N)T
B

]T

, and fB :=
[
f

(1)T
B , . . . , f

(N)T
B

]T

.
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A union of the index sets ∆ and Π results in the index set Γ and the matrices K
(i)
ΓΓ and K

(i)
ΓI

which will be needed for our preconditioner and generalized eigenvalue problems. Further-

more, we need partial assembly operators R
(i)T
Π and RT

Π =
[
R

(1)T
Π , . . . , R

(N)T
Π

]
so that RT

Π

assembles the variables u
(i)
Π , i = 1, . . . , N , associated with primal degrees of freedom. The

space of functions that are continuous in the primal variables will be denoted by W̃ ⊂ W .
We introduce

K̃ΠΠ =

N∑

i=1

R
(i)T
Π K

(i)
ΠΠR

(i)
Π , K̃ΠB =

[
R

(1)T
Π K

(1)
ΠB , . . . , R

(N)T
Π K

(N)
ΠB

]
, f̃ =

[
fT

B , (

N∑

i=1

R
(i)T
Π f

(i)
Π )T

]T

,

and the jump operator B =
[
B(1), . . . , B(N)

]
with Bu = 0 for u ∈ Ŵ . This yields

[
K̃ BT

B 0

] [
ũ
λ

]
=

[
f̃
0

]
.

Here, K̃ and f̃ are of the form

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
and f̃ =

[
fB

f̃Π

]
.

Assuming invertibility of KBB , we can form the FETI-DP coarse operator

S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB .

After a second elimination step, we obtain the FETI-DP system Fλ = d where

F = BBK−1
BBBT

B + BBK−1
BBK̃T

ΠBS̃−1
ΠΠK̃ΠBK−1

BBBT
B ,

d = BBK−1
BBfB + BBK−1

BBK̃T
ΠBS̃−1

ΠΠ

(( N∑

i=1

R
(i)T
Π f

(i)
Π

)
− K̃ΠBK−1

BBfB

)
.

Then, the FETI-DP system can be solved by the preconditioned conjugate gradients (PCG)

algorithm. The appearance of S̃−1
ΠΠ in F provides a coarse problem. This coarse problem is

determined by the size of the primal degrees of freedom and should accelerate convergence.
Other more advanced coarse spaces based on averages or first-order moments over edges

or faces could be used and implemented using a transformation of basis; see, e.g., [11, 30, 29,
32, 26]. Here, for simplicity, we will only consider primal vertex constraints as an initial coarse
space. We will then use adaptive constraints to reduce the condition number as described
in the next section. This will allow us to prove the condition number bound which we will
present in Section 6 for problems with coefficient jumps in 3D.

Next, we introduce the standard Dirichlet preconditioner M−1
D . The extension and re-

striction operators RT
Γ and RΓ from and onto Γ consist of zeros and ones. RT

Γ extends a
vector by zero onto Γ while RΓ restricts a vector correspondingly by removing interior vari-
ables. For x ∈ Γh ∩ ∂Ωi,h let Nx be the set of indices of subdomains that have x on their
boundaries. Then, we define the nodal coefficient evaluation ρ̂i(x) := supx∈supp(ϕx)∩Ωi

ρ(x),
where ϕx is the nodal finite element function at x and supp(ϕx) its support. Let Ωj share
a face or an edge with Ωi and x ∈ ∂Ωi,h ∩ ∂Ωj,h, then, the corresponding nonzero row of

B(j) is scaled by δ†
i (x) := ρ̂i(x)/

∑
k∈Nx

ρ̂k(x) and vice versa; see, e.g., [41, 28, 49]. This
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defines the local scaling matrix D(j) and the scaled jump operator BD =
[
B

(1)
D , . . . , B

(N)
D

]
=[

D(1)B(1), . . . , D(N)B(N)
]
. The standard Dirichlet preconditioner is now given by

M−1
D := BDRT

Γ SRΓBT
D,

where S := diagN
i=1 S(i) and S(i) is the local Schur complement after elimination of the

interior variables from K(i), that is

S(i) := K
(i)
ΓΓ − K

(i)
ΓI

(
K

(i)
II

)−1

K
(i),T
ΓI .

Let us remark that there are other choices for the scaling available in the literature (see,
e.g., [40, 18, 1]), but we restrict ourselves in the numerical results presented in Section 8 to
the case mentioned above and referred to as ρ- or patch-ρ-scaling; cf., [26, 37].

4. Projector Preconditioning, Deflation, and Balancing. In this section, we
briefly explain the deflation/projector preconditioning and the balancing approach. These
approaches provides a mechanism to enhance the coarse space by additional constraints.
Other possibilities are a transformation of basis or optional Lagrange multipliers; see, e.g.,
[25, 29] and [17, 29] , respectively. For a short introduction to deflation and projector pre-
conditioning, especially in the context of FETI-DP and domain decomposition methods, see
[36, 7, 8, 35, 27, 19] and the references therein.

In the following for a matrix A, by A+ we denote an arbitrary pseudoinverse satisfying
AA+A = A and A+AA+ = A+.

The following description is based on [27] extended to the case of a semidefinite matrix
F . Let U = (u1, . . . , uk) be given as the matrix where the constraints are stored as columns.
Then, we define

P := U(UT FU)+UT F.

We have range P = range (U(UT FU)+) and ker P = ker(UT FU)+UT F ). Next, we multiply
the FETI-DP system by (I − P )T , which yields the deflated system

(I − P )T Fλ = (I − P )T d. (4.1)

The deflated system is consistent. Moreover, range U ⊂ ker((I − P )T F ), and therefore
range (F (I − P )) ⊂ ker UT remains valid also for a semidefinite matrix F . Since (I − P )T is
also a projection, we can show that

(I − P )T F = F (I − P ) = (I − P )T F (I − P ).

Therefore, only components of the dual variable in range (I −P ) are relevant to the construc-
tion of the Krylov spaces. By λ∗ we denote the solution of the original system Fλ = d, which
is unique only up to an element in ker BT . Let λ̂ ∈ range (I − P ) be a the solution of (4.1).

Then, λ̂ is identical to (I − P )λ∗ up to an element in ker BT . We have the decomposition

λ∗ = Pλ∗ + (I − P )λ∗ =: λ̄ + (I − P )λ∗,

where λ̄ can be expressed by λ̄ = Pλ∗ = U(UT FU)+UT FF +Fλ∗ = PF +d. Since BT (I −
P )λ∗ = BT λ̂, we can then show that the solution in terms of the displacements does not

change if (I − P )λ∗ is replaced by λ̂, i.e.,

u∆ = S̃−1
(

f̃∆ − BT λ∗
)

= S̃−1
(

f̃∆ − BT (λ̄ + λ̂)
)

.

5



Preconditioning the resulting system of equations by the Dirichlet preconditioner M−1
D gives

M−1
D (I − P )T Fλ = M−1

D (I − P )T d.

Another multiplication with I − P from the left gives the new symmetric preconditioner
M−1

P P := (I − P )M−1
D (I − P )T which is also denoted as the projector or deflation precon-

ditioner. As shown in [27, Theorem 6.1], we do not change the nonzero eigenvalues of the
former left hand side when multiplying with I − P . Therefore, the deflated problem reads:
Find λ ∈ range (I − P ), such that

M−1
P P Fλ = M−1

P P d.

Instead of computing λ̄ a posteriori, the computation can be included into each iteration. This
leads to the balancing preconditioner M̂−1

BP := M−1
P P + PF +. Although the balancing precon-

ditioner for a semidefinite matrix F is then of the form M̂−1
BP = M−1

P P + U(UT FU)+UT FF +

we can equivalently use

M−1
BP = M−1

P P + U(UT FU)+UT

since it will be applied to Fλ = d. Let us note that the Theorems 6.2 and 6.3 in [27] can be
proven for a semidefinite matrix F by replacing F −1 by F + and by following the arguments
given in [27]. As a result, we obtain that the eigenvalues of M−1

BP F and M−1
P P F are essentially

the same.
In order to provide a condition number bound for the deflation and the balancing ap-

proach let us first assume that a standard estimate for the PD := BT
DB operator is given,

i.e., ||PDw||2
S̃

≤ C||w||2
S̃

for all w ∈ {w ∈ W̃ | UT Bw = 0} for C > 0. Then, based on

results of [27], it was shown in [23, Lemma 3.2] that the condition number of the FETI-DP
operator preconditioned by deflation/projector preconditioning or balancing can be bounded
from above by C.

5. Adaptive coarse spaces, geometry issues for irregular partitioning, and

enforcing constraints. In the following we will introduce a modified variant of the 3D
algorithm presented in [33] extended by some new edge eigenvalue problems of similar pattern.

Let us consider the face F ij between the subdomains Ωi and Ωj as well as its closure F ij
.

For the basic algorithm we proceed as in [33] by using the notation from [23] and define

BFij
= [B

(i)
Fij

B
(j)
Fij

] as the submatrix of [B(i)B(j)] consisting of all the rows that contain exactly

one +1 and one −1. Analogously, BD,Fij
= [B

(i)
D,Fij

B
(j)
D,Fij

] will be the scaled submatrix of

[B
(i)
D B

(j)
D ]. We then define

Sij :=

[
S(i) 0

0 S(j)

]
, PDij

:= BT
D,Fij

BFij
.

By W̃ij we denote the space of functions in Wi×Wj that are continuous in the primal variables

shared by Ωi and Ωj and by Πij the ℓ2-orthogonal projection from Wi × Wj to W̃ij . We
introduce a second ℓ2-orthogonal projection from Wi × Wj to range (ΠijSijΠij + σ(I − Πij))
which is denoted by Πij , and where σ is a positive constant, e.g., the maximum of the
diagonal entries of Sij . We just note that we build both of them so that they are symmetric
and we will explain in detail how to obtain Πij and Πij after Remark 1.
We now establish and solve the following generalized eigenvalue problems

ΠijΠijP T
Dij

SijPDij
ΠijΠijwk

ij = µk
ij(Πij(ΠijSijΠij + σ(I − Πij))Πij + σ(I − Πij))wk

ij ,

(5.1)
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for µk
ij≥TOL. Thus, for every eigenvalue problem for wij ∈ Wi × Wj we will just consider

the jumps wi − wj across the closure F ij
of the face F ij . We remark that Πij removes the

rigid body modes of each of the single substructures Ωi and Ωj while I −Πij is an orthogonal
projection onto the space of rigid body modes that are continuous on Wi × Wj and move Ωi

and Ωj as a connected entity. Consequently, the right hand side of the eigenvalue problem
(5.1) is symmetric positive definite; cf. [33]. Note that the eigenvalue problems are defined
for closed faces. As already proposed in [34, p.1819], we split the computed face constraint
columns uk

ij := BD,Fij
SijPDij

wk
ij into several edge parts uk

ij,Em
and a part on the open face

uk
ij,F , all extended by zero to the closure of the face. We then enforce not only the open face

constraint but all the constraints

uk T
ij,Em

BFij
wij = 0, m = 1, 2, . . . , (5.2)

uk T
ij,F BFij

wij = 0. (5.3)

We will refer to the edge constraints in (5.2) as “edge constraints from face eigenvalue prob-
lems”; see also the numerical experiments in Section 8. Clearly, since uk

ij = uk
ij,F +

∑
m uk

ij,Em
,

we then also have uk T
ij BFij

wij = 0. With this approach, we avoid coupling of constraints
on the closure of the faces which would spoil the block structure of the constraint matrix U ;
cf. [34].

In order to control the jumps wi − wl for subdomains Ωi, Ωl that only share an edge;
compare Figure 5.1, we additionally solve the eigenvalue problems

ΠilΠilP
T
Dil

SilPDil
ΠilΠilw

k
il = µk

il(Πil(ΠilSilΠil + σ(I − Πil))Πil + σ(I − Πil))w
k
il (5.4)

for µk
il≥TOL and with Πil and Πil constructed in the same manner as Πij and Πij before.

Ωi Ωj

Ωk Ωl

Figure 5.1: Cross section view of four
subdomains sharing an edge in a regu-
lar partition; Ωi shares faces with Ωj

and Ωk but only an edge with Ωl.

Clearly, this only has to be carried out for edges
shared by more than three subdomains and also in some
cases where the open face does not contain any nodes.
We refer to [39] where experiments showed that typically
around 99% of the edges are common to exactly three
subdomains when an automatic graph partitioner is used.
Hence, for automatically partitioned domains, which we
consider as the standard case, these new eigenvalue prob-
lems just come into play for an either small number of
edges or a slightly larger number of small edges. There-
fore, the extra work for solving the edge eigenvalue prob-
lems is small. We will come back to this matter and dis-
cuss the cost and necessity of edge eigenvalue problems
in practice in Section 8. Finally, the constraints resulting
from edge eigenvalue problems are

wk T
il P T

Dil
SilPDil

wil = 0.

As in the two-dimensional case (see [23]), locally, for wij ∈ Wi × Wj , wil ∈ Wi × Wl which
satisfy the constraints, the estimates

wT
ijΠijΠijP T

Dij
SijPDij

ΠijΠijwij ≤ TOL wT
ijΠijΠijSijΠijΠijwij , (5.5)

wT
il ΠilΠilP

T
Dil

SilPDil
ΠilΠilwil ≤ TOL wT

il ΠilΠilSilΠilΠilwil (5.6)

hold. With [2], this can be derived from the fact that Πij and Πij commute; the same applies
for the edge operators, of course. Note that Πis(I − Πis)wis = (I − Πis)wis since (I − Πis) is
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an orthogonal projection onto the space of rigid body modes that are continuous on Wi ×Ws.
Obviously, (5.6) does only apply for subdomains Ωi having edges E shared by subdomains
Ωl without a respective face F il.

We will now use the index s ∈ {j, l} to describe simultaneously face (s = j) and edge
(s = l) eigenvalue problems and their operators.

We still have to show that the local estimates from above, for functions fulfilling the
constraints, are also valid for all wis ∈ Wi × Ws derived from a restriction of w ∈ W̃ to
Wi × Ws, since this will be used in the FETI-DP condition number proof. Hence, for s = j
or s = l let Πis be as above. Then, for w ∈ W̃ we have

[
R(i)w
R(s)w

]
∈ W̃is, and therefore Πis

[
R(i)w
R(s)w

]
=

[
R(i)w
R(s)w

]
. (5.7)

Exactly as in [23], we argue as follows. Πis(I − Πis)wis = (I − Πis)wis yields PDis
Πis(I −

Πis)wis = 0 and SisΠis(I − Πis)wis = 0. Since we can split any wk
is resulting from the local

eigenvalue problem (5.1) or (5.4) as wk
is = (I − Πis)wk

is + Πiswk
is it therefore holds

wT
isΠisP T

Dis
SisPDis

Πiswis ≤ TOLwT
isΠisSisΠiswis (5.8)

for all wis in Wi × Ws with wk T
is P T

Dis
SisPDis

wis = 0, µk
is ≥ TOL. Therefore, the estimate is

valid for wis ∈ W̃is which satisfies the constraints; cf. [33].

Remark 1. In order to guarantee that TOL is finite for all wis ∈ W̃is we have to treat
the kernel of Sis correctly. As already mentioned by [33, Assumption 8] we have to ensure,

∀wis ∈ W̃is : Siswis = 0 ⇒ Biswis = 0. (5.9)

Thus, we have to be aware of dim(Πis ker SisΠis) = 7 if ker Sis = 12 (or comparably if at
least one subdomain has Dirichlet boundary conditions). This can result from an additional
hinge mode, i.e., a rigid body rotation of the two subdomains around the common edge. In
order to ensure the assumption (5.9) we select at least two primal vertices on straight edges.
For nonstraight or bent edges we will have to select a third primal vertex that is not located
on the straight line between the other two vertices on the edge; to prevent the hinge mode
that would violate (5.9). We remark that the existence of sufficient vertices on an edge is,
in general, not ensured if we use a graph partitioner and a common understanding of edges
and vertices; see, e.g., [29]. We thus transform arbitrary dual nodes that fulfill the given
restrictions into primal vertices.

Completely analogously to [38], we build Πis and Πis. By defining R
(k)T
is , k = i, s as the

assembly operator of primal variables on ∂Ωi ∩ ∂Ωs and identity on the rest of Γ(i) × Γ(s),
we obtain

Ris :=

(
R

(i)
is

R
(s)
is

)

and the orthogonal projection onto W̃is,

Πis := Ris(RT
isRis)−1RT

is.

We note that the inverse can be computed cheaply since Ris contains a large identity block
and a very small block of the size of the number of the degrees of freedom that are common
to the two subdomains. For the construction of Πis we exploit the fact that I − Πis is an
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orthogonal projection onto the rigid body modes that are continuous on Wi×Ws. For straight
edges and subdomains only connected by this edge and without sufficient Dirichlet boundary
the hinge mode mentioned before is in fact a rigid body mode and will be used to establish the
projection Πil. If {r̃1, . . . , r̃k} is the set of rigid body modes that are continuous on Wi × Ws

we use a modified Gram-Schmidt method to create an orthonormal basis {r1, . . . , rk} and

define Πis = I −∑k
i=1 rir

T
i . The adaptively computed constraints coming from eigenvalue

problems will then be enforced by a deflation approach; in all simulations we exclusively use
the balancing preconditioner.

6. Condition number estimate. Before we are able to provide the theoretical bound
on the condition number of the preconditioned FETI-DP operator we have to present an
analytical expression for the application of the localized PD-operator.

The local operators PDij
and PDil

on the closure of the face and edge, respectively, are

PDij
=

[
B

(i)T
D,Fij

B
(i)
Fij

B
(i)T
D,Fij

B
(j)
Fij

B
(j)T
D,Fij

B
(i)
Fij

B
(j)T
D,Fij

B
(j)
Fij

]
and PDil

=

[
B

(i)T
D,Eil

B
(i)
Eil

B
(i)T
D,Eil

B
(l)
Eil

B
(l)T
D,Eil

B
(i)
Eil

B
(l)T
D,Eil

B
(l)
Eil

]
;

see [23]. For a face F ij with edges E ij
1 , . . . , E ij

m , m ≥ 3, we define the cutoff function on the
closure of the face

ϑFij := θFij +

m∑

p=1

θEij
p

. (6.1)

We can use the cutoff function θEij
p

on the open edge since all vertices were chosen to be

primal. For w ∈ W̃ , this gives

PDij

[
R(i)w
R(j)w

]
=

[
Ih(ϑFij Dj(wi − wj))
Ih(ϑFij Di(wj − wi))

]
, (6.2)

where Ih is the finite element interpolation operator on Ωi and Ωj , respectively. For the sake

of simplicity, we assume that just E ij
1 = E il has a multiplicity greater than three and equal to

four with wi −wl as the problematic jump between two subdomains sharing at least one edge
but no face; see Figure 5.1. Other cases can be handled in the same way. The application of
the local PD-operator of the edge eigenvalue problem yields

PDil

[
R(i)w
R(l)w

]
=

[
Ih(θEilDl(wi − wl))
Ih(θEilDi(wl − wi))

]
. (6.3)

Let U = (u1, . . . , uk) be given as the matrix where the adaptively computed constraints are

stored as columns. By W̃U := {w ∈ W̃ | UT Bw = 0} we denote the subspace of W̃ which

contains those elements w ∈ W̃ satisfying the new constraints, i.e., Bw ∈ ker UT .
Lemma 6.1. Let NF denote the maximum number of faces of a subdomain, NE the

maximum number of edges of a subdomain, ME the maximum multiplicity of an edge and
TOL a given tolerance for solving the local generalized eigenvalue problems. We assume that
all vertices are chosen to be primal. Then, for w ∈ W̃U , we have

|PDw|2
S̃

≤ 4 max{NF , NEME}2TOL|w|2
S̃

.

9



Proof. We first have a closer look at the global operator PD and its restriction to a
subdomain. Since all vertices are primal, we obtain

vi := R(i)PDw =
∑

Fij⊂∂Ωi

Ih(θFij vi) +
∑

Eil⊂∂Ωi

Ih(θEilvi); (6.4)

see, e.g., [49, Sec. 6.4.3].
In contrast to other proofs on the condition number of the FETI-DP system, where the

additive terms of (6.4) are bounded separately, we will now rearrange these additive terms.
This is due to the fact that the face eigenvalue problems are solved on the closure of the
faces.

Therefore, we introduce a global and N local sets of pairs of indices {i, l}, where each
index pair represents an edge eigenvalue problem on E il and vice versa, i.e.,

E∗ := {{j, l} : 1 ≤ j, l ≤ N, µ1(∂Ωj ∩ ∂Ωl) > 0, µ2(∂Ωj ∩ ∂Ωl) = 0}
and E∗

i := {{j, l} ⊂ E∗ : j = i ∨ l = i}, i = 1, . . . , N.

Here, µd is the d-dimensional Lebesgue measure. Thus, {j, l} ∈ E∗ means that the subdo-
mains Ωj and Ωl share at least an edge but no face. In general, for subdomains obtained from
graph partitioners, these sets do not contain many elements as already mentioned before.

For a given face F ij , we now denote the edges which are part of the closure of the
face by E ij

1 , . . . , E ij
m . In order to avoid the proliferation of indices we take an arbitrary edge

E ij ∈ {E ij
1 , . . . , E ij

m} that is shared by Ωi and Ωr1
, . . . , Ωrp

with r1, . . . , rp ∈ {1, . . . , N} \ {i}.
We then have the interpolation operators

Ih(θFij vi) = Ih(θFij Dj(wi − wj)), (6.5)

Ih(θEij vi) = Ih(θEij (Dr1
(wi − wr1

) + . . . + Drp
(wi − wrp

)). (6.6)

Obviously, for each edge E ij ∈ {E ij
1 , . . . , E ij

m} the term Ih(θEij (Dj(wi − wj)) is part of (6.6).
For each edge E ij , we subtract it from (6.6) and add it to (6.5). The remaining jumps in
(6.6) can then either be added analogously to the corresponding face term

Ih(θFirs Drs
(wi − wrs

))

(cf. (6.5)), if such a face exists, or they remain in (6.6).
If this is carried out for all faces and edges analogously (6.4) becomes

R(i)PDw =
∑

Fij⊂∂Ωi

Ih(ϑFij Dj(wi − wj)) +
∑

{i,l}∈E∗

i

Ih(ϑEilDl(wi − wl)). (6.7)

Here, we have replaced the cutoff functions for the open edges by those for the closure of
these edges, that is ϑE = 1 at the endpoints of the edge and ϑE = θE for all other nodes
of the mesh. This can be done since all vertices are primal. We define the Sk-seminorm
| · |Sk

:= 〈·, S(k)·〉 for k = i, j.
Then, we estimate the face terms in (6.7) similar to the edge terms in 2D; see [23]. The

remaining edge terms in (6.7) can be estimated by using the constraints obtained from the
edge eigenvalue problems.
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For w ∈ W̃U , wk = R(k)w, k ∈ {i, j, l}, we have

|PDw|2
S̃

=
N∑

i=1

|R(i)PDw|2Si

(6.7)

≤ 2 max{NF , NEME}
N∑

i=1


 ∑

Fij⊂∂Ωi

|Ih(ϑFij Dj(wi − wj))|2Si

+
∑

{i,l}∈E∗

i

|Ih(ϑEilDl(wi − wl))|2Si




= 2 max{NF , NEME}
[ ∑

Fij⊂Γ

[
|Ih(ϑFij Dj(wi − wj))|2Si

+ |Ih(ϑFij Di(wj − wi))|2Sj

]

+
∑

{i,l}∈E∗

[
|Ih(ϑEilDl(wi − wl))|2Si

+ |Ih(ϑEilDi(wl − wi))|2Sl

]



(6.2),(6.3),(5.7)
= 2 max{NF , NEME}

[ ∑

Fij⊂Γ

[
wi

wj

]T

ΠijP T
Dij

[
S(i) 0

0 S(j)

]
PDij

Πij

[
wi

wj

]

+
∑

{i,l}∈E∗

[
wi

wl

]T

ΠilP
T
Dil

[
S(i) 0

0 S(l)

]
PDil

Πil

[
wi

wl

]


(5.8)

≤ 2 max{NF , NEME}TOL

[ ∑

Fij⊂Γ

[
wi

wj

]T

Πij

[
S(i) 0

0 S(j)

]
Πij

[
wi

wj

]

+
∑

{i,l}∈E∗

[
wi

wl

]T

Πil

[
S(i) 0

0 S(l)

]
Πil

[
wi

wl

]


(5.7)
= 2 max{NF , NEME}TOL


 ∑

Fij⊂Γ

[
|wi|2Si

+ |wj |2Sj

]
+

∑

{i,l}∈E∗

[
|wi|2Si

+ |wl|2Sl

]



≤ 2 max{NF , NEME}TOL

[
2 max{NF , NEME}

N∑

i=1

|R(i)w|2Si

]

= 4 max{NF , NEME}2TOL|w|2
S̃

.

In the next theorem, we provide a condition number estimate for the preconditioned
FETI-DP algorithm with all vertex constraints being primal and additional, adaptively cho-
sen edge and face constraints.

Theorem 6.2. Let NF denote the maximum number of faces of a subdomain, NE the
maximum number of edges of a subdomain, ME the maximum multiplicity of an edge and
TOL a given tolerance for solving the local generalized eigenvalue problems. If all vertices
are chosen to be primal, the condition number κ(M̂−1F ) of the FETI-DP algorithm with

adaptive constraints as described, e.g., enforced by the projector preconditioner M̂−1 = M−1
P P

or the balancing preconditioner M̂−1 = M−1
BP , satisfies

κ(M̂−1F ) ≤ 4 max{NF , NEME}2TOL.
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Proof. The condition number bound for the projector preconditioner can be given with
Lemma 6.1 and [23, Lemma 3.2]. The relation between the eigenvalues of M−1

P P F and M−1
BP F

can be found in [35], or, in our notation in [27].

7. Reducing the number of eigenvalue problems. In this section, we briefly de-
scribe strategies which can help to keep the number of eigenvalue problems as well as the
size of the coarse problem small – while still obtaining an acceptable condition number. The
first two ideas aim at reducing the number of edge eigenvalue problems; see Section 7.1.
The second approach aims at reducing the number of edge constraints; see Section 7.2. The
third reduction approach, first suggested in [24], is based on considering the preconditioned
starting residual to detect critical edges; see Section 7.3. This strategy was proposed but not
implemented in [24].

7.1. Reducing the number of edge eigenvalue problems.

7.1.1. Short edges. In order to reduce the number of edge eigenvalue problems while
keeping the theoretical condition number bound, we eliminate all eigenvalue problems related
to short edges. There, we set all edge nodes belonging to edge eigenvalue problems as primal
if there are not more than k dual nodes on the edge. Throughout this paper, we consider
edges as short if they consist of only a single node, i.e., in our experiments, we use k = 1.
Note that in unstructured decompositions, e.g., from METIS, most edges have a multiplicity
of only three. As a result, edge eigenvalue problem are necessary only for a small number of
edges and this strategy applies only to the short edges among these. This strategy is always
used in our numerical experiments.

7.1.2. Edges at a distance from heterogeneities. Additionally, for compressible
elasticity, if no coefficient jumps occur in the neighborhood of an edge, we do not take the
corresponding eigenvalue problems into consideration. This is related to slab techniques; see,
e.g., [15, 14, 23]. If the coefficient distribution is not available, the diagonal entries of the
stiffness matrix can be considered instead. Let us note that, after reducing the number of edge
eigenvalue problems, our explicit condition number bound of Theorem 6.2 might not hold
anymore in this form. Nevertheless, based on the theory of slab techniques, the condition
number is expected to stay bounded independently of the coefficient jumps. This will be
confirmed by our numerical experiments in Section 8. The strategy can be implemented by
traversing the respective nodes and evaluating the coefficients (or checking the corresponding
diagonal entries of the stiffness matrix). In presence of coefficient jumps combined with
almost incompressible components this technique is not advisable since constraints enforcing
the zero net flux condition may be removed from the coarse space.

7.2. Reducing the number of edge constraints from face eigenvalue problems.

The same idea as in Section 7.1.2 can be used to discard certain edge constraints from face
eigenvalue problems in order to reduce the size of the coarse problem: Edge constraints from
face eigenvalue problems are not added to the coarse space if no coefficient jump is detected
in the neighborhood of the edge.

7.3. Heuristics to reduce the number of eigenvalue problems based on the

residual. We follow an idea of [24] and assume that the residuals on faces and edges without
any jumps are several magnitudes smaller than those on faces and edges with jumps along or
across the interface. Therefore, for the closure of any face or edge, generically denoted by Λ,
with n Lagrange multipliers we compute r := M−1

D (d − Fλ) and restrict the preconditioned
residual to the closure of the face or edge, that is rΛ = r|Λ.
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Then, we compute rΛ,2 := 1/
√

n‖rΛ‖2 to check its magnitude. Another reasonable
approach would be to compute the maximum norm of rΛ, i.e., rΛ,∞. In our experiments, we
take a combination of these two and check simultaneously for every face or edge if rΛ,n < τ2

and rΛ,∞ < τ∞. If this is the case we do not consider the corresponding eigenvalue problem
and discard it (with all possible constraints). Otherwise we continue as before and compute
the constraints from our eigenvalue problems. If the energy norm is used this approach is
remotely related to the computation of Rayleigh coefficients in [45].

Note that this approach can significantly reduce the number of eigenvalue problems but
often results in a coarse space of comparable size. But due to the smaller number of eigenvalue
computations, the heuristic approach presented here is computationally less expensive.

8. Numerical results. In this section, we show numerical results for linear elasticity
using FETI-DP with the adaptive coarse space strategies discussed before. We compare the
coarse spaces introduced in [33, 34] and our new coarse space with edge constraints from
edge eigenvalue problems presented in Section 5. We recall that by “edge constraints from
face eigenvalue problems” we refer to edge constraints which result from splitting constraints
originating from eigenvectors computed on the (closed) face; see (5.2) in Section 5.

We have implemented the new coarse space covered by our theory, see Lemma 6.2, and
two modifications thereof. In our tables, the three approaches will be denoted by ’Algo-
rithms Ia, Ib, and Ic’. ’Algorithm Ia’ is the algorithm covered by our theory. It will make
use of the largest number of eigenvalue problems and will lead to the most generous coarse
problem. ’Algorithm Ib’ uses the neighborhood approach of Section 7.1.2 to reduce the num-
ber of edge eigenvalue problems if they are not needed. ’Algorithm Ic’ makes use of the
neighborhood approach described in Section 7.2, in addition to the reduction approach of
Section 7.1.2, to reduce the size of the coarse space by discarding edge constraints from face
eigenvalue problems which are not needed.

Furthermore, we will test two variants of the classical approach of [33, 34]. These ap-
proaches do not use edge eigenvalue problems. As ’Algorithm II’ we will denote the coarse
space proposed in [33, 34], where all edge constraints from face eigenvalue problems are en-
forced as additional constraints. To the best of our knowledge this approach has not been
implemented and tested before; cf. [42, 43, 34, 44]. As ’Algorithm III’ we will denote the
“classic” adaptive approach already tested extensively in [33, 34]. In this approach all edge
constraints from face eigenvalue problems are simply discarded, which results in a smaller
coarse problem at the cost of losing robustness.

We use balancing to implement all adaptive constraints; cf. Section 4. For all algorithms,
the columns of U are orthogonalized blockwise by a singular value decomposition with a
drop tolerance of 1e − 6. Let us note, again, that our current theory from Lemma 6.2 covers
Algorithm Ia. Although Algorithm Ib and Ic are both not covered by the theory lined out
in this paper, we will show that in our experiments they will give almost the same results as
Algorithm Ia. Algorithm II and III are not covered by the theory, and our numerical results
will indeed show that they cannot guarantee low condition numbers and iterations counts for
all our test cases.

In all cases of either compressible or incompressible linear elasticity the edge eigenvalue
reduction strategy from Section 7.1.1 is used. Since the strategies used in Algorithm Ib and Ic
are based on Young’s modulus E, and not Poisson’s ratio ν, we will not use the strategies
for our test problems of almost incompressible elasticity. For these problems, we will only
report on Algorithm Ia.

For simplicity, we always assume the parameters E and ν to be constant on each fine
element. As scaling we use ρ-scaling in form of patch-ρ-scaling, and we set Young’s modulus
at a node by the maximum of all values over the support of the corresponding nodal basis
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function; cf. [26].

In the experiments, regular as well as irregular decompositions are tested. The irreg-
ular decomposition is performed by the METIS graph partitioner [20] using the options
-ncommon=3 for compressible, -ncommon=4 for incompressible elasticity and -contig to avoid
noncontiguous subdomains as well as additional hinge modes inside single subdomains.

In all tables, “κ” denotes the condition number of the preconditioned FETI-DP operator,
“its” is the number of iterations of the pcg algorithm and “|U |” denotes the size of the
corresponding second coarse space implemented by deflation or balancing; see Section 4. By
N , or for regular decompositions 1/H = 3

√
N , we denote the number of subdomains. For our

modified coarse space, we also give the number of edge eigenvalue problem as “#Eevp“ and in
parentheses the percentage of these in the total number of eigenvalue problems. Our stopping
criterion for the pcg algorithm is a relative reduction of the starting residual by 10−10, and
the maximum number of iterations is set to 500. The condition numbers κ, which we report
in the tables, are estimates from the Krylov process. In our tables, we will mark (estimated)
condition numbers below 50 in bold face to indicate that a sufficently large coarse space has
been found by the adaptive method.

It is clear that Algorithms Ia, Ib, and II will result in a larger coarse space than Algo-
rithm III or Algorithm Ic. For simple test examples, Algorithm Ic should reduce to Algo-
rithm III. Our numerical results will show that, in certain difficult cases, the larger coarse
space is indeed necessary.

8.1. Composite materials.

Regular partitioning. We consider a linear elastic and compressible material on a unit
cube, see Figures 8.1 and 8.2, using a structured fine mesh consisting of cubes each decom-
posed into five tetrahedral finite elements. We enforce zero Dirichlet boundary conditions
on the face with x = 0 and have zero Neumann boundary conditions elsewhere. We apply a
volume force f := [0.1, 0.1, 0.1]T .

First, we use ν = 0.3 for the complete computational domain, and we test different
distributions of Young’s modulus E. Our first examples are two different (model) composite
materials consisting of a soft matrix material with E1 = 1 and stiff inclusions with E2 =
1e + 06. The stiff inclusions in the form of beams, arranged in a regular pattern, span from
the face with x = 0 straight to the face with x = 1. In the first composite material there
are N2/3 many beams. In a regular decomposition into cubes we have one centered beam
per subdomain, precisely; see Figure 8.1. The intersection of the beams with the face x = 0

Figure 8.1: Composite material no. 1 using a regular (left) and an irregular (right) decomposition. High
coefficients E2 = 1e + 06 are shown in dark purple in the picture, subdomains shown in different colors in the
background and by half-transparent slices. Visualization for N = 8 and H/h = 3.
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Figure 8.2: Composite material no. 2 using a regular (left) and an irregular (right) decomposition. High
coefficients E2 = 1e + 06 are shown in dark purple in the picture, subdomains shown in different colors in the
background and by half-transparent slices. Visualization for N = 8 and H/h = 5.

represents 1/9th of the area of the face. The second composite materials consists of 4N2/3

many beams as depicted in Figure 8.2. The intersection of the beams with the face x = 0
here represents 4/25th of the area of the face.

If a regular decomposition is used with these coefficient configurations, already the classic
approach from [33] performs well. We therefore only briefly present the composite material
no. 2 in Table 8.1. We see that for this simple case, where the jumps do not cut through
edges, all approaches lead to low condition numbers and a low number of iterations. The
most simple algorithm, i.e., Algorithm III performs well while resulting in the smallest coarse
space. Algorithm Ic automatically reduces to Algoritm III, and therefore gives the same per-
formance. This illustrates the effectiveness of the neighborhood strategies from Section 7.1.2
and 7.2. For this problem, the use of edge constraints can reduce the number of iterations
further but not significantly. This shows that edge constraints from face eigenvalue problems
(Algorithm II) are not needed, here. The same is true for edge eigenvalue problems (Algo-
rithm Ia).

In structured decompositions, we have a high number of edge eigenvalue problems in
Algorithm Ia, i.e., around 50%; if the strategy to reduce the number of edge eigenvalue
problems from Section 7.1.2 is applied, all edge eigenvalue problems are discarded while the
results remain good; cf. Algorithm Ib and column 6 “Eevp” in Table 8.1. This is possible in
this simple setting where there are no cuts of coefficient jumps through edges. Note that we
do not reduce the coarse problem size; see Table 8.1. In addition, we see that Algorithm Ic
reduces to Algorithm III in these cases.

Remark 2. We always use the strategy described in Section 7.1.1, i.e., on short edges
we never compute edge eigenvalue problems but rather set the corresponding edge nodes as
primal. This means that our initial coarse space for all algorithms, i.e., Algorithm I, II,
and III, is richer than the standard vertex coarse space.

Irregular partitioning. In a next step, we consider an irregular decomposition; see Ta-
bles 8.2 and 8.3 for composite material no. 1 (H/h = 3 and H/h = 6) and Tables 8.4 and 8.5
for composite material no. 2 (H/h = 5 and H/h = 10).

In this case, jumps along and across subdomain edges are very likely to occur. For all
these test cases discarding the edge constraints from face eigenvalue problems never seems to
be a good option and often results in nonconvergence (its = 500); but also for Algorithm II
a large condition number and a large number of iterations are observed. On the other hand,
our Algorithm Ia, which makes use of our new coarse space, in accordance with the theory,
results in small condition numbers for all cases – while, compared to Algorithm II, adding
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Composite material no. 2, regular partitioning and H/h = 10

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

1/H κ its |U | #Eevp κ its |U | κ its |U |

3
a) 3.38 15 2768 72 (57.1%)

3.37 15 2640 3.55 18 576b) 3.37 15 2640 0 (0%)
c) 3.55 18 576 0 (0%)

4
a) 3.36 15 7956 216 (60%)

3.36 15 7560 3.54 18 1584b) 3.36 15 7560 0 (0%)
c) 3.54 18 1584 0 (0%)

5
a) 3.39 15 17216 480 (61.5%)

3.39 15 16320 3.54 17 3360b) 3.39 15 16320 0 (0%)
c) 3.54 17 3360 0 (0%)

Table 8.1: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems. H is the size of the subdomains, i.e., (1/H)3 is the number of subdomains, κ
is the estimated condition number, ’its’ is the number of PCG iterations, |U | is the size of the adaptive coarse
space, #Eevp is the number of eigenvalue problems computed (and the percentage wrt. the total number of
eigenvalue problems). Condition numbers below 50 are marked in bold face.

around or fewer than 5% of additional constraints to the coarse space. Algorithms Ib and Ic
can reduce the number of edge eigenvalue problems significantly, e.g., around 50%. However,
for Algorithm Ib this still results in an almost identical coarse space. The coarse space of
Algorithm Ic is always significantly smaller than the one of Algorithm Ib and Algorithm II.
Nevertheless, condition number and iteration counts of Algorithm Ic are comparable to those
of Algorithm Ia while Algorithm II cannot ensure this.

In general, for irregularly partitioned domains, we see that that the amount of edge
eigenvalue problems is between 0% and 12% for Algorithm Ia while this can be reduced to
0 to 7% by Algorithms Ib and Ic. For Algorithm Ib, in the mean, we get about 2% to 3%
edge eigenvalue problems and, compared to Algorithm II, 1% to 2% additional constraints;
see Tables 8.2, 8.3, and 8.4, and 8.5. There are also cases when Algorithm Ib and II coincide;
see, e.g., Table 8.5.

Figure 8.3: Coefficient distribution on a
representative volume element (RVE). An
irregular partitioning is used. High coef-
ficients E2 = 1e + 06 are shown in dark
purple, subdomains are shown in differ-
ent colors in the background and by half-
transparent slices.

For irregularly partitioned domains the compu-
tational overhead of Algorithm Ic, compared to the
“classic” approach in Algorithm III, might be of up to
7% of extra eigenvalue problems and up to 2-3 times
as many constraints but is then mostly mandatory
for convergence and to reduce the condition number
from 1e + 05 to 10; see, Tables 8.2, 8.3, and 8.4, and
8.5. However, compared to Algorithm II we can save
up to 40% of the constraints by using Algorithm Ic.

We conclude that the additional edge eigenvalue
problems and the resulting constraints are often nec-
essary to obtain a small condition number and even
mandatory if pcg is expected to converge in a small
number of iterations. The only configurations when
Algorithm III converged in fewer than 100 itera-
tions were cases when coefficient jumps did not ap-
pear at subdomain edges, or in small examples with
fewer subdomains, when the influence of the Dirichlet
boundary was still strong.
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Composite material no. 1, irregular partitioning and H/h = 3

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N κ its |U | #Eevp κ its |U | κ its |U |

33

a) 8.55 30 93 7 (11.9%)
8.55 31 90 8.43e+05 61 50b) 8.55 30 93 4 (7.1%)

c) 8.55 30 84 4 (7.1%)

53

a) 14.48 37 278 14 (5.2%)
14.48 37 264 3.35e+05 229 153b) 14.48 37 278 8 (3.0%)

c) 14.48 37 227 8 (3.0%)

73

a) 14.08 40 605 48 (6.0%)
2.97e+05 118 569 3.00e+05 445 358b) 14.08 41 602 21 (2.7%)

c) 14.08 41 506 21 (2.7%)

93

a) 16.45 42 1088 90 (5.2%)
3.02e+05 121 1039 4.76e+05 500 708b) 16.45 42 1086 45 (2.7%)

c) 16.45 43 941 45 (2.7%)

113

a) 15.87 43 1792 167 (5.2%)
2.69e+05 189 1682 3.718e+05 500 1180b) 15.87 43 1788 95 (3.0%)

c) 15.87 43 1598 95 (3.0%)

133

a) 17.32 45 3099 303 (5.6%)
2.79e+05 359 2937 3.42e+05 500 2044b) 17.32 44 3096 171 (3.3%)

c) 17.32 44 2779 171 (3.3%)

Table 8.2: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems.

Composite material no. 1, irregular partitioning and H/h = 6

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N κ its |U | #Eevp κ its |U | κ its |U |

33

a) 8.70 34 662 2 (2.0%)
8.70 34 662 1.37e+06 76 194b) 8.70 34 662 1 (1.0%)

c) 8.72 34 416 1 (1.0%)

53

a) 9.77 36 3449 25 (4.2%)
11.43 37 3440 5.54e+05 206 962b) 9.77 36 3449 12 (2.1%)

c) 10.62 37 2187 12 (2.1%)

73

a) 10.91 37 9772 65 (3.6%)
10.91 37 9730 1.22e+06 471 2785b) 10.91 37 9771 27 (1.5%)

c) 13.48 38 6575 27 (1.5%)

Table 8.3: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems.

8.2. Steel microstructure. In this section, we will consider a representative volume
element (RVE) representing the microstructure of a modern steel; see Figure 8.3.

The RVE has been obtained from the one in [31, Fig. 5.5] by resampling; see also the
discussion below. As in [31], we use ν = 0.3, E1 = 210 and E2 = 210000 as (artificial)
material parameters. There, about 12% of the volume is covered by the high coefficient E2.
We have resampled the RVE from 64 × 64 × 64 to 32 × 32 × 32 voxels. Here, the coefficient
was set to E2 if at least three of the original voxels had a high coefficient. This procedure
guarantees that the ratio of high and low coefficients is not changed.

We see from our results in Table 8.6 that Algorithms Ia, Ib, and II do behave quite
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Composite material no. 2, irregular partitioning and H/h = 5

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N κ its |U | #Eevp κ its |U | κ its |U |

33

a) 14.12 37 1315 0 (0%)
14.12 37 1315 2.39e+05 468 524b) 14.12 37 1315 0 (0%)

c) 14.12 37 1116 0 (0%)

53

a) 13.91 39 5691 23 (4.1%)
13.91 39 5654 3.06e+05 500 2267b) 13.91 39 5691 19 (3.5%)

c) 13.92 39 4854 19 (3.5%)

73

a) 14.57 42 15317 89 (5.5%)
1.81e+05 81 15171 4.94e+05 500 6448b) 14.57 42 15317 70 (4.4%)

c) 14.58 42 13397 70 (4.4%)

93

a) 16.24 44 32154 165 (4.6%)
6.66e+03 66 31963 3.16e+05 500 13621b) 16.24 44 32154 138 (3.9%)

c) 16.24 44 28439 138 (3.9%)

Table 8.4: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems.

Composite material no. 2, irregular partitioning and H/h = 10

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N κ its |U | #Eevp κ its |U | κ its |U |

33

a) 9.86 36 4530 1 (1.0%)
9.86 36 4530 3.62e+05 237 1128b) 9.86 36 4530 0 (0%)

c) 11.25 37 3434 0 (0%)

43

a) 9.60 35 10646 0 (0%)
9.60 35 10646 8.88e+05 377 2623b) 9.60 35 10646 0 (0%)

c) 10.21 36 7500 0 (0%)

53

a) 9.90 36 23129 13 (2.0%)
9.90 36 23128 1.04e+06 500 5619b) 9.90 36 23129 2 (0.3%)

c) 11.13 37 17567 2 (0.3%)

Table 8.5: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems.

the same. The amount of extra work for our modified coarse space in Algorithms Ia and
Ib compared to Algorithm II is small. Algorithm Ic uses a reduced coarse space that still
guarantees small condition numbers and convergence within a comparable number of pcg
iterations while the smallest coarse space, represented by Algorithm III, gives larger condition
numbers and iteration counts.

8.3. Randomly Distributed Coefficients. We turn towards randomly distributed
coefficients and now perform 100 runs with different coefficients for every configuration. We
consider a linear elastic and compressible material on a discretization of the unit cube, i.e.,
a structured fine mesh consisting of cubes each containing five tetrahedra. We enforce zero
Dirichlet boundary conditions just for the face with x = 0 and zero Neumann boundary
conditions elsewhere. We apply the volume force f := [0.1, 0.1, 0.1]T .

We have seen in the preceding examples that the coarse space of Algorithm Ib only differs
to a minor degree or not at all from that of Algorithm Ia. Therefore, we will restrict ourselves
to testing Algorithms Ib, II and III for the last examples of this section.
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Representative Volume Element with E1 = 210, E2 = 210000,
regular and irregular partitioning, N = 83 and H/h = 4

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

part. κ its |U | #Eevp κ its |U | κ its |U |

reg.

a) 7.49 29 10014 2352 (63.6%)
7.49 29 9302 241.2 76 1884b) 7.49 29 10014 736 (35.4%)

c) 7.68 30 6102 736 (35.4%)

irreg.

a) 10.07 36 775 114 (5.6%)
10.07 36 759 364.8 98 369b) 10.07 36 772 27 (1.4%)

c) 12.91 37 638 27 (1.4%)

Table 8.6: Compressible linear elasticity. Coarse spaces for TOL = 10 for all generalized eigenvalue prob-
lems.

a) 50% high coefficients. a) 20% high coefficients.

Figure 8.4: Randomly distributed coefficients on Ω with irregular partitioning. High coefficients (E2 =
1e + 06) are shown in dark purple in the picture, subdomains shown in different colors in the background and
by half-transparent slices; visualized for N = 8 and H/h = 5. We perform 100 runs for each setting.

Besides N , we vary the number of tetrahedra with a high coefficient. We test a 50/50
and 20/80 ratio of high and low coefficients; see Figure 8.4. In Tables 8.7 and 8.8, we present
the arithmetic mean x, the median x̃ and the standard deviation σ for different numbers N
of subdomains (H/h = 5).

Again, we see that discarding the edge constraints resulting from face eigenvalue problems
can result in large condition numbers and iteration counts; see the results for Algorithm III
in Tables 8.7 and 8.8. Nonetheless, keeping these edge constraints does, again, not always
guarantee a small condition number and fast convergence, as the results for Algorithm II
show. The number of extra eigenvalue problems for Algorithm Ib is either 0% or 4% for our
examples. Since there are no egde eigenvalue problems for N = 27 subdomains Algorithm Ib
and II coincide in that case. Moreover, since the edge eigenvalue problems always produce
fewer than 1% of additional constraints the computational overhead for Algorithm Ib is
quite moderate compared to Algorithm II; see Tables 8.7 and 8.8. As the median shows for
N ∈ {64, 125} in Table 8.7 and N = 64 in Table 8.8, the majority of problems is well solved
by the coarse space of Algorithm II. However, the arithmetic mean points out that there are
several problems with a high condition number if this coarse space is used. Let us just note
that “several problems” for N = 64 subdomains and Table 8.8 even means 47 of 100 runs.
Even worse, for N = 125 subdomains, Algorithm II exhibited in 21 and in 87 of 100 runs a
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Randomly distributed coefficients with 50% high and 50% low coefficients,
irregular partitioning, and H/h = 5.

Algorithm Ib Algorithm II Algorithm III

N κ its |U | #Eevp κ its |U | κ its |U |

33

x 9.95 34.88 210.29 0 (0%) 9.95 34.88 210.29 7.53e+05 135.67 68.31
x̃ 9.84 35 213.5 0 (0%) 9.84 35 213 6.89e+05 134.5 68.5
σ 0.51 0.57 25.73 - 0.51 0.57 25.73 2.19e+05 27.97 8.24

43

x 10.20 35.67 448.65 9 (3.7%) 6.85e+04 37.09 446.15 1.02e+06 223.89 157.09
x̃ 10.06 36 446 9 (3.7%) 10.17 36 444 1.01e+06 222.5 157
σ 0.43 0.49 31.06 - 1.83e+05 3.50 30.83 2.31e+05 30.70 11.43

53

x 10.45 36.03 910.59 23 (4.1%) 9.42e+05 38.51 905.23 8.54e+05 278.06 302.50
x̃ 10.28 36 903 23 (4.1%) 10.55 36 895.5 8.12e+05 274 299
σ 0.55 0.41 62.05 - 2.13e+05 5.21 61.90 1.90e+05 39.12 19.79

Table 8.7: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems.

Randomly distributed coefficients with 20% high and 80% low coefficients,
irregular partitioning, and H/h = 5.

Algorithm Ib Algorithm II Algorithm III

N κ its |U | #Eevp κ its |U | κ its |U |

33

x 8.18 30.33 1362.46 0 (0%) 8.18 30.33 1362.46 3.99e+05 481.25 521.90
x̃ 8.21 30 1359 0 (0%) 8.21 30 1359 3.73e+05 500 518
σ 0.69 0.97 61.14 - 0.69 0.97 61.14 1.41e+05 28.62 30.93

43

x 8.95 32.52 2802.38 9 (3.7%) 6.74e+04 39.21 2782.14 5.57e+05 500 1155.18
x̃ 8.95 33 2808 9 (3.7%) 218.5 36.5 2783 5.22e+05 500 1153.5
σ 0.51 0.70 78.98 - 1.16e+05 7.93 78.93 1.85e+05 0 42.65

53

x 9.11 32.84 6342.28 23 (4.1%) 9.30e+04 57.25 6290.03 4.98e+05 500 2506.83
x̃ 9.07 33 6333 23 (4.1%) 6.92e+04 55.5 6287 4.62e+05 500 2506
σ 0.56 0.61 139.97 - 9.37e+04 17.10 139.51 1.38e+05 0 70.92

Table 8.8: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for TOL = 10 for all
generalized eigenvalue problems.

condition number of at least 1e+04, as well as in 21 and in 33 cases even a condition number
of 1e + 05 or higher; see Tables 8.7 and 8.8.

We see that, by investing fewer than 1% of additional constraints resulting from our edge
eigenvalue problems, our Algorithm Ib can guarantee a condition number around TOL. This
shows that this additional amount of work is worthwile and can guarantee a small condition
number and convergence within a reasonable number of pcg iterations.

8.4. Almost incompressible linear elasticity. In this section, we consider a linear
elastic material which consists of compressible and almost incompressible parts. The com-
pressible material parts have a Poisson ratio of ν = 0.3 and for the almost incompressible
parts we consider different values of Poisson’s ratio with 0.45 ≤ ν < 0.5. We also consider dif-
ferent distributions of Young’s modulus in the material, allowing for large coefficient jumps.
Let us note that such large coefficient jumps in Young’s modulus and simultaneously letting
Poisson’s ratio ν almost approach the incompressible limit 0.5 for some parts of the material,

can lead to very ill-conditioned local matrices K
(i)
BB .

As before, we consider the unit cube but we slightly increase the volume force f =
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Layered distribution of compressible and almost incompressible materials,
irregular partitioning, H/h = 5, and 1/H = 4.

Algorithm Ia Algorithm II Algorithm III

ν1 κ its |U | #Eevp κ its |U | κ its |U |

0.45 6.32 27 4531 15 (4.8%) 6.32 27 4514 7.70 29 854
0.499 6.97 27 4783 15 (4.8%) 6.97 27 4766 7.82 29 904

0.49999 7.01 27 4793 15 (4.8%) 7.01 28 4776 7.89 29 906
0.4999999 7.02 27 4793 15 (4.8%) 7.02 28 4776 7.89 29 906

0.499999999 7.02 27 4793 15 (4.8%) 7.02 28 4776 7.89 29 906

Table 8.9: Almost incompressible linear elasticity with ν1 as given, ν2 = 0.3, E = 1 constant. Coarse spaces
for TOL = 10 for all generalized eigenvalue problems.

[−1, −1, −1]T , pushing the domain towards the Dirichlet boundary. We use inf-sup stable
Q2 − P0 finite elements for both, the compressible and the almost incompressible parts. We
present numerical results for three different material distributions.

In our first set of experiments, we consider a distribution of the Poisson ration in layers
of ν1 and ν2. The layers have a thickness of two elements in x3 direction. Here, ν1 takes
different values whereas ν2 = 0.3. We have E = 1 on the complete domain Ω. For all three
algorithms, the condition numbers and iteration counts are uniformly bounded with respect
to ν2 approaching 0.5. All algorithms also yield condition numbers and iteration counts of
a comparable size; see Table 8.9. For the material distributions considered in this example,
Algorithm III seems to be sufficient.

The second example will be the composite material no. 2 from Section 8.1. Here, we
use E1 = 1 and E2 = 1e + 03. We consider a variable Poisson ratio ν1 ∈ [0.3, 0.5) for all
finite elements with E1 = 1 and a fixed Poisson ratio ν2 = 0.3 for those finite elements
with E2 = 1e + 03. Table 8.10 indicates uniformly bounded condition numbers and iteration
counts for Algorithms Ia and II. For Algorithm III, the condition number and the iteration
counts still seem to bounded but at a higher level. Algorithms Ia and II perform as in the
compressible case but at the cost of a larger coarse space.

In our third set of experiments, we consider an almost incompressible material with both,
ν and E = 1 constant on the complete domain. Table 8.11 shows that this becomes a hard
problem for Algorithm III and also for Algorithm II. With ν approaching the incompressible
limit, the condition number of the mentioned algorithms will be several magnitudes larger
than this of Algorithm Ia. In contrast to the other algorithms, Algorithm Ia can guarantee
a small condition number and an almost constant number of pcg iterations.

Remark 3. Note that the automatic coarse space constructed here for the almost incom-
pressible case is slightly larger than the a priori coarse spaces constructed in [14] and [16],
which introduce only a single (additional) constraint for each subdomain in 2D to cope with
almost incompressible elasticity [14], or where all face constraints can be summed to a single
constraint in 3D [16].

8.5. Heuristic approach on reducing the number of eigenvalue problems and

constraints based on the residual. We now consider the heuristic approach described in
Section 7.3 to reduce the number of (edge) eigenvalue problems. We apply this approach to
our Algorithm Ib for compressible elasticity and to Algorithm Ia for almost incompressible
test problems. Note that this approach can equally be adopted for the coarse spaces of
Algorithms Ic, II, or III. We report the number of eigenvalue problems solved and denoted
by “#EVPU ”, as well the number of eigenvalue problems discarded by our heuristic approach,
denoted by “#EVPdisc”; see Tables 8.12, 8.13, and 8.14. In this section, we report λmin and
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Composite material no. 2, irregular partitioning, H/h = 5, and 1/H = 4.

Algorithm Ia Algorithm II Algorithm III

ν1 κ its |U | #Eevp κ its |U | κ its |U |

0.45 8.53 31 6972 15 (4.8%) 8.53 31 6952 12.19 36 1327
0.499 10.07 32 7680 15 (4.8%) 10.07 32 7660 34.78 49 1479

0.49999 8.53 30 7882 15 (4.8%) 8.53 30 7860 590.2 97 1527
0.4999999 8.76 31 7885 15 (4.8%) 8.76 31 7863 796.2 103 1528

0.499999999 8.78 31 7885 15 (4.8%) 8.78 31 7863 799.7 115 1528

Table 8.10: Almost incompressible linear elasticity with ν1 as given, ν2 = 0.3, E1 = 1, E2 = 1e+03. Coarse
spaces for TOL = 10 for all generalized eigenvalue problems.

Homogeneous material, irregular partitioning, H/h = 5, and 1/H = 4.

Algorithm Ia Algorithm II Algorithm III

ν κ its |U | #Eevp κ its |U | κ its |U |

0.45 6.43 27 4744 15 (4.8%) 6.43 27 4727 7.66 29 894
0.499 7.12 28 5314 15 (4.8%) 7.12 28 5296 21.70 42 1007

0.49999 6.54 28 5462 15 (4.8%) 8.15 28 5441 1.96e+03 84 1042
0.4999999 6.60 27 5466 15 (4.8%) 641.9 36 5445 1.96e+05 107 1043

0.499999999 6.60 28 5466 15 (4.8%) 6.40e+04 67 5445 1.96e+07 147 1043

Table 8.11: Almost incompressible linear elasticity with ν as given, E = 1 constant. Coarse spaces for
TOL = 10 for all generalized eigenvalue problems.

λmax instead of κ.
We also consider different values of τ2, namely τ2 ∈ {0.01, 0.001}, each with τ∞ = 10τ2.

Using a larger value of τ2, e.g., setting τ2 = 0.1, does not give acceptable results anymore in
about half of our test cases. We refrain from reporting the details here.

For our composite material no. 1 we observe good or acceptable behavior of our heuristics,
and up to roughly 50% of the eigenvalue problems are saved; see Table 8.12. Nevertheless,
to keep the condition number at the order of TOL, we have to use τ2 = 0.001.

We again turn towards randomly distributed cofficients which turned out to be the
most challenging problem in the previous sections. For the corresponding Table 8.13, we
additionally report that with τ2 = 0.001 the condition number was low in all runs, and the
iteration number did not exceed 40. The heuristics thus worked well.

From our results in Table 8.14 we see that we can save a substantial number of eigenvalue
problems when ν is still far away from the incompressible limit. As ν approaches the limit
the computational savings will become lower.
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Composite material no. 1, irregular partitioning, and H/h = 6

τ2 = 0.01, τ∞ = 10τ2

N λmin λmax its |U | #EVPU #EVPdisc

33 1 8.79 35 643 63 36
53 1 15.69 40 3332 313 279
73 1 120.1 71 9385 937 812

τ2 = 0.001, τ∞ = 10τ2

N λmin λmax its |U | #EVPU #EVPdisc

33 1 8.79 35 646 64 35
53 1 10.63 37 3369 327 265
73 1 15.37 39 9572 998 751

Table 8.12: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse space of Algorithm Ib
with heuristically reduced number of eigenvalue problems according to Section 7.3 using TOL = 10 for all
generalized eigenvalue problems. For the results without heuristic of Section 7.3, see Table 8.3.

Randomly distributed coefficients with 20% high and 80% low coefficients,
irregular partitioning, and H/h = 5

τ2 = 0.001, τ∞ = 10τ2

N λmin λmax its |U | #EVPU #EVPdisc

53

x 1 9.15 32.85 6336.48 530.42 24.57
x̃ 1 9.09 33 6331 530.5 24.5
σ 0 0.55 0.59 141.38 4.35 4.33

Table 8.13: Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse space of Algorithm Ib
with heuristically reduced number of eigenvalue problems according to Section 7.3 using TOL = 10 for all
generalized eigenvalue problems. For the results without heuristic of Section 7.3, see Table 8.8.

Composite material no. 2, irregular partitioning, H/h = 5, and 1/H = 4

τ2 = 0.01, τ∞ = 10τ2

ν1 λmin λmax its |U | #EVPU #EVPdisc

0.45 1 29.70 53 4087 93 217
0.499 1 64.98 55 6819 253 57

0.49999 1 36.39 48 7254 272 38
0.4999999 1 36.40 49 7257 272 38

Table 8.14: Almost incompressible linear elasticity with ν1 as given, ν2 = 0.3, E1 = 1, E2 = 1e+03. Coarse
space of Algorithm Ia with heuristically reduced number of eigenvalue problems according to Section 7.3
using TOL = 10 for all generalized eigenvalue problems. For the results without heuristic of Section 7.3, see
Table 8.10.
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9. Conclusion. We have presented an adaptive coarse space approach for FETI-DP
methods (Algorithm Ia) including a condition number bound for general coefficient jumps
inside subdomains and across subdomain boundaries as well as almost incompressible elastic-
ity in 3D. The bound only depends on geometrical constants and a prescribed tolerance from
local eigenvalue problems. Our approach is based on the classic adaptive approach from [33]
but we use a small number (fewer than 5 percent) of additional edge eigenvalue problems.
Our experiments support our theory and show that the new method is able to cope with
situations where the classic approach fails. Moreover, we have given two techniques on how
to reduce the number of eigenvalue problems and constraints from Algorithm Ia which work
very well, i.e., Algorithm Ib and Ic.

We have seen in our numerical experiments that the classic coarse space of [33] (Algo-
rithm III) can be sufficient if coefficient jumps do only occur at subdomain faces. However,
if jumps are present across or along subdomain edges, in general, neither a small condition
number nor a low count of Krylov iterations (or even convergence) can be guaranteed by
Algorithm III, which does not use any edge constraints. For difficult coefficient distributions,
at least the edge constraints resulting from face eigenvalue problems should be added to the
coarse space. The resulting approach (Algorithm II) then can cope with a larger number of
test problems. However, only Algorithms Ia, Ib, and Ic have been able to guarantee a low con-
dition number for all our test cases. Although only Algorithm Ia is covered by our provable
bound, Algorithm Ib performs almost identically. Algorithm Ic performs still comparably but
can also save a considerable number of constraints; e.g., up to 40%. In simple cases, where
Algorithm III is already successful, Algorithm Ic indeed reduces to Algorithm III. Moreover,
our experiments show that the condition number can quite precisely be controlled by the tol-
erance TOL even if the reduction strategies of Section 7.1.2 (Algorithm Ib) or, additionally,
Section 7.2 are used (Algorithm Ic). For our problems from almost incompressible elasticity,
among Algorithms Ia, II, and III, only Algorithm Ia performed well for all our test problems.

For regular decompositions, the number of edge eigenvalue problems in Algorithm Ia
is quite high, but can be reduced considerably by switching to Algorithms Ib and Ic. For
irregular decompositions, which is the more relevant case, the number of additional edge
eigenvalue problems to be computed by Algorithm Ia is often only in a low single-digit
percentage range and can further be reduced by switching to Algorithm Ib and Ic.

Compared to Algorithm II, the number of additional constraints in Algorithm Ia and Ib
is typically small, i.e., for our test problems, the mean is only between 1% to 3% of addi-
tional constraints. Moreover, compared to Algorithm II, Algorithm Ic reduces the number
of edge constraints from face eigenvalue problems. Comparing the computational overhead
of Algorithms Ia, Ib, and Ic to Algorithm III is in some way difficult since the additional
constraints are mostly necessary to obtain convergence.

Our heuristic strategy to reduce the number of eigenvalue problems (see Section 7.3) can
save a substantial amount of computational work but requires some tuning of tolerances. In
our numerical experiments, selecting a tolerance 0.001 ≤ τ2 ≤ 0.01 with τ∞ = 10τ2 saved
work while keeping the algorithm stable and reliable.
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