Michael Fritsch
Viktor Slavtchev

Universities and Innovation in Space
The Faculty of Economics and Business Administration is an institution for teaching and research at the Technische Universität Bergakademie Freiberg (Saxony). For more detailed information about research and educational activities see our homepage in the World Wide Web (WWW): http://www.wiwi.tu-freiberg.de/index.html.

Addresses for correspondence:

Prof. Dr. Michael Fritsch†
Technical University of Freiberg
Faculty of Economics and Business Administration
Lessingstraße 45, D-09596 Freiberg (Germany)
Phone: + +49 / 3731 / 39 24 39
Fax: + +49 / 3731 / 39 36 90
E-mail: michael.fritsch@tu-freiberg.de

Dipl.-Volksw. Viktor Slavtchev
Technical University of Freiberg
Faculty of Economics and Business Administration
Lessingstraße 45, D-09596 Freiberg (Germany)
Phone: + +49 / 3731 / 39 20 27
Fax: + +49 / 3731 / 39 36 90
E-mail: viktor.slavtchev@tu-freiberg.de

† German Institute for Economic Research (DIW) Berlin, and Max-Planck Institute of Economics, Jena, Germany.

ISSN 0949-9970

The Freiberg Working Paper is a copyrighted publication. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, translating, or otherwise without prior permission of the publishers.

Coordinator: Prof. Dr. Michael Fritsch

All rights reserved.
Contents

Abstract / Zusammenfassung .. II

1. Introduction .. 1

2. The role of academic institutions in the (regional) innovation system 1

3. Spatial distribution of academic institutions, private sector R&D, and regional patent output... 5

4. Measurement issues ... 11

5. Contribution of universities and technical colleges to regional innovative output 14

6. Summary and Conclusion ... 18

References ... 20
Abstract

We investigate the role of universities as a knowledge source for regional innovation processes. The contribution of universities is tested on the level of German NUTS-3 regions (Kreise) by using a variety of indicators. We find that the intensity and quality of the research conducted by the universities have a significant effect on regional innovative output while pure size is unimportant. Therefore, a policy that wants to promote regional innovation processes by building up universities should place substantial emphasis on the intensity and quality of the research conducted there.

JEL-classification: O31, O18, R12
Keywords: Universities, innovation, knowledge, spillovers, patents, regional analysis.

Zusammenfassung

"Universitäten und Innovation im Raum"

Wir untersuchen die Rolle der Universitäten als Wissensquelle für regionale Innovationsprozesse. Für diese Analyse auf der Grundlage von NUTS-3 Regionen (Kreise) werden vielfältige Indikatoren herangezogen. Die Intensität und die Qualität der Forschung an Universitäten haben einen signifikanten Einfluss auf den regionalen Innovationsoutput. Demgegenüber erweist sich die Größe der Universitäten als unbedeutend. Eine Politik, die regionale Innovationsprozesse durch Errichtung oder Ausbau von Universitäten fördern will sollte daher ein starkes Augenmerk auf die Intensität und die Qualität der in diesen Einrichtungen betriebenen Forschung legen.

JEL Klassifikation: O31, O18, R12
Schlagworte: Universitäten, Innovation, Wissen, Spillovers, Patente, Regionalanalyse.
1. Introduction

Academic institutions for education and research are assumed to be a key element of regional innovation systems. There are many different ways in which they may have an effect on economic activities. However, the main element of these mechanisms seems to always be the same: academic institutions contribute to the performance of the innovation systems by generating and diffusing knowledge. Policy has frequently adopted this view and has used the establishment of academic institutions as a means to promote regional innovation processes and stimulate economic growth. However, our knowledge about the role of academic institutions in innovation systems is still quite fragmentary and can only provide insufficient guidance for policy.

In this paper, we analyze the effect of universities on regional innovative output in West Germany. We are able to build on a rich data set which provides a variety of indicators for the size of universities1 as well as for the intensity and quality of their research and development (R&D) activities. Based on a review of possible contributions of universities to innovation processes (section 2), we investigate their spatial distribution and their relationship with private sector R&D (section 3). Section 4 discusses the measurement issue based on the framework of a knowledge production function. The contribution of universities is then analyzed in section 5. Concluding, the results are summarized in the final section (section 6).

2. The role of academic institutions in the (regional) innovation system

It can hardly be disputed that scientific knowledge can play an essential role for innovation and economic development. Two main sources of such knowledge may be distinguished; namely, university R&D and R&D conducted by private sector firms (Nelson 1993; Edquist 1997). Both knowledge sources are, however, of a quite distinct nature.

1 Universities here include the German Fachhochschulen (Universities of Applied Sciences) which provide undergraduate education mainly in engineering and in management. The level of research at the Fachhochschulen is relatively low and predominantly for practical purposes.
Universities are assumed to accomplish a number of different functions in a regional innovation system. By conducting R&D activities, they generate and accumulate knowledge and make this knowledge available for other actors. There are various ways in which this knowledge can be transferred. One important transfer channel is the teaching and training of the students, which increases the knowledge of the labor force. This may also strengthen the absorptive capacity of the private sector and lead to improved innovative performance. Academic knowledge can also disseminate through R&D cooperation with private sector firms or by providing innovation related services (Mansfield and Lee 1996). Moreover, universities may serve as an “incubator” for knowledge intensive spin-offs. Scientific publications, seminars, workshops, and informal relationships can also be important ways of a transfer of academic knowledge to the private sector. Since academic institutions are predominantly focused on basic research, the knowledge they provide can hardly be directly commercialized and is often complementary to the R&D activities in the private sector.

The strength of a university’s impact on innovative performance of private sector firms may differ considerably according to the quality of the university research and to the intensity in which they interact with other actors in the regional and national innovation system (e.g., Feldman and Desrochers 2003; Mansfield and Lee 1996). Therefore, the mere presence of a university seems to be in no way a guarantee for a significant contribution to the performance of an innovation system. Thus far, our knowledge about the factors that determine the impact of universities in innovation systems and the different functions they may accomplish is rather incomplete.

In contrast to universities, industrial R&D is mainly directed towards commercial ends, striving to apply knowledge, and transforming it into marketable products or production

4 See Mansfield (1995), Beise and Stahl (1999), Blind and Grupp (1999), Hall, Link, and Scott (2003); Knowledge flows between universities and private sector firms may be in both directions: from the universities to the private sector and vice versa (Kline and Rosenberg, 1986). Hence, private sector R&D can constitute an important input for university R&D (Nedeva, Georghiou, and Halfpenny 1999; Schartinger, Schibany, and Gassler 2001; Blind and Grupp 1999).
technologies. Accordingly, the basic knowledge that results from university R&D may be an important input for private sector innovative activity and may even induce private sector R&D (Jaffe 1989). One can, therefore, expect that the effect of university R&D on economic development is more indirect in nature than private sector R&D. Due to such indirect effects of universities on the output of the innovation system, an assessment of their relative importance is a rather difficult task. Taking, for example, the share of patents held by academic institutions may severely underestimate their contribution to the innovative output of the whole innovation system.5

In order to capture the effects of academic institutions on innovative output, Griliches (1979) introduced the concept of a knowledge production function (see section 4 for details). Based on this concept, Jaffe (1989) found a significantly positive contribution of university R&D to innovative output as indicated by corporate patents at the US-state level. Based on innovation count data from the US Small Business Administration, Acs, Audretsch, and Feldman (1991) and Feldman (1994) identified an even stronger impact of university research on regional innovative output. There are a number of empirical studies that analyze the impact of universities on regional innovative output in European countries.6 Licht and Zoz (1998) and Becker (2003) confirm the importance of academic knowledge for private sector innovative activities in Germany. However, since the unit of investigation in these studies is the firm, activities of multi-plant firms cannot be unambiguously assigned to certain regions; thus, the spatial dimension of university R&D is not adequately accounted for. Blind and Grupp (1999) found a strong impact of universities’ R&D as indicated by the number of universities’ patents on private sector patenting activities in different industries with the example of two West German NUTS-1 regions (Länder). In general, the empirical evidence

5 According to Greif and Schmiedl (2002), only about four percent of the West German patent applications between 1995 and 2000 can be directly traced to academic institutions. This figure, however, underestimates the number of patents generated in academic institutions due to the fact that since 2002 inventors working in German universities were entitled to freely control the rights of their inventions. Hence, the greater majority of patents from academic research were officially attributed to private individuals.

shows that the contribution of universities to private sector R&D is largely limited to the university’s vicinity indicating the significant importance of space.

Obviously, academic knowledge tends to be spatially bounded so that knowledge spillovers between actors which are located in different regions may be seriously constrained. The obvious reason for such constraints of transferring academic knowledge is that part of this knowledge is tacit in nature (Polanyi 1967). Transmission of such tacit knowledge requires particular channels and media – often frequent face-to-face contact – and becomes increasingly costly with geographical distance (von Hippel 1994). Therefore, spatial proximity can be rather conducive to communicating of academic knowledge (Audretsch 1998; Krugman 1998). Another reason for the spatial limitations to communication of certain types of academic knowledge may be caused by the fact that scientists and graduates who are leaving the universities tend to work in places which are located in closed proximity to their academic origin (Jaffe 1989). Analyzing location decisions of newly founded innovative firms in Germany, Bade and Nerlinger (2000), Audretsch, Lehmann, and Warning (2004) and Audretsch and Lehmann (2005) found that spatial proximity to universities obviously plays a significant role. This suggests that these firms try to capture localized knowledge spillovers through the choice of their location.

With regard to the spatial scope of knowledge spillovers from academic institutions, Anselin, Varga, and Acs (1997; 2000) and Acs, Anselin, and Varga (2002) found that in the US the significant effects of university R&D on innovation output of private sector firms are limited to a distance of about 75 miles. Autant-Bernard (2001) analyzed the geographical dimension of knowledge spillovers from public research in France by using the number of scientific publications. According to this study, sources located outside the region have only a relatively weak effect on regional innovation output. Based on about 2,300 responses to a postal questionnaire, Beise and Stahl (1999) found the impact of public research institutions in Germany on corporate innovations to be concentrated in spatial proximity to the respective source. More than half of the firms that had introduced university-based innovations were located in a distance of up to 100 km from the particular knowledge source. According to an innovation survey in selected European regions, most of the private sector cooperation partners of universities are located in relatively close distance (Fritsch 2003; 2005). Assuming
that a cooperative relationship between universities and private sector firms serves as a vehicle for spillovers, this finding also supports the limited spatial scope of academic knowledge.\footnote{Peri (2005) analyzed the geographical dimension of knowledge flows by using patent citations across regions in Europe and North America. He found that on the average only about twenty percent of the newly generated knowledge spills over to locations outside the region of origin and only nine percent cross the country’s border. This study was, however, not limited to academic knowledge.}

As a tentative conclusion from the theory and the available empirical evidence, we can state that the amount of local R&D input as well as spatially bounded knowledge spillovers may cause pronounced differences in regional innovative performance. As a result, innovative activities can be expected to be unevenly distributed over space and concentrated in locations with a relatively rich knowledge base.

3. **Spatial distribution of academic institutions, private sector R&D, and regional patent output**

Our measure for innovative output is based on the number of regional patent applications in the years 1995 to 2000 which is taken from the database of the German Patent Office \textit{(Deutsches Patent- und Markenamt)} as published in Greif and Schmiedl (2002). A number of limitations of the number of patents as a measure of the regional innovative output should be mentioned. First, patents reflect an invention which is not necessarily transformed into an innovation (new product or new production technology) that is introduced in the market. Second, since there are other possibilities to appropriate the benefits of an invention (cf. Cohen, Nelson, and Walsh 2000), the number of patents may underestimate the innovative output. Third, because universities are focused on basic research that produces results which cannot be patented, the number of patents may capture the university’s impact on innovative output rather incompletely. Furthermore, the patent applications in our data are assigned to the residence of inventors. If the inventor’s place of employment and the place of residence are not located in the same district, the spatial distribution of innovative output may be distorted to a certain degree (Deyle and Grupp 2005). Since R&D facilities tend to be located
Figure 1: Spatial distribution of innovative input and output (average yearly values)
in the center, the innovative output of large cities (kreisfreie Städte) may be underestimated if R&D employees reside in a surrounding district. Accordingly, the level of innovation output of these surrounding districts, as provided by the number of patents, may be somewhat overrated.

The distribution of innovative output across West German NUTS-3 regions (table 1 and figure 1) clearly shows an uneven spread. The large difference between the median and the mean values results in a rather skewed distribution. The yearly number of patents varies between two in rural regions located southeast of Hamburg and 1,470 in the city of Munich. Not surprisingly, the number of patents tends to be relatively high in agglomeration areas such as Cologne, Frankfurt, Hamburg, Munich, and Stuttgart (figure 1). However, there is a remarkable concentration in southwestern Germany and in the Munich region.

As an indicator of private sector R&D, we use the number of R&D employees in that sector. Employees are assumed to work in R&D if they have a tertiary degree in engineering or in natural sciences. The information on R&D employment is taken from the German Social Insurance Statistics (Statistik der sozialversicherungspflichtig Beschäftigten). Comparing the spatial distribution of the number of patents with the number of private sector R&D employees shows a considerable degree of correspondence. At the level of districts, the Pearson correlation coefficient between the number of patents and the number of private sector R&D employees is 0.73, indicating that regions with a high number of R&D employees also tend to have a relatively large number of patents.

The Lorenz curves for different measures of innovation activity (figure 2) and the respective Gini coefficients (table 2) show a remarkable degree of spatial inequality. This concentration is particularly high for the variables which are related to universities such as the universities regular funds and their external research funds. One explanation for the higher

8 German NUTS-3 regions coincide with districts (Kreise).
9 For a detailed description of the regional distribution of innovative input and output see Greif and Schmiedl (2002) and Fritsch and Slavtchev (2005).
10 For detailed description see Fritsch and Brix (2004).
Table 1: Descriptive statistics (pooled yearly values)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>PATa</th>
<th>RDPRIVa</th>
<th>URFa</th>
<th>ERFa</th>
<th>MSI</th>
<th>POPa</th>
<th>ICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patents (PAT)</td>
<td>96.13</td>
<td>116.14</td>
<td>2</td>
<td>1,470</td>
<td>61</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of private sector R&D employees (RD_{PRIV})</td>
<td>1,745.28</td>
<td>3,267.21</td>
<td>60</td>
<td>35,254</td>
<td>659</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universities’ regular funds (URF)</td>
<td>33,017.59</td>
<td>97,571.27</td>
<td>0</td>
<td>1,201,834</td>
<td>0</td>
<td>0.27</td>
<td>0.55</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External research funds (ERF)</td>
<td>5,289.83</td>
<td>17,182.66</td>
<td>0</td>
<td>221,675.7</td>
<td>0</td>
<td>0.26</td>
<td>0.58</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing specialization index (MSI)</td>
<td>0.056</td>
<td>0.159</td>
<td>-0.439</td>
<td>0.433</td>
<td>0.07</td>
<td>0.19</td>
<td>-0.02</td>
<td>-0.26</td>
<td>-0.32</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population (POP)</td>
<td>195,551.3</td>
<td>164,524.8</td>
<td>35,400</td>
<td>1,708,000</td>
<td>145,450</td>
<td>0.72</td>
<td>0.75</td>
<td>0.35</td>
<td>0.34</td>
<td>-0.06</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Industrial concentration index (ICI)</td>
<td>0.753</td>
<td>0.029</td>
<td>0.694</td>
<td>0.902</td>
<td>0.751</td>
<td>-0.16</td>
<td>-0.11</td>
<td>-0.15</td>
<td>-0.13</td>
<td>0.13</td>
<td>-0.30</td>
<td>1.00</td>
</tr>
</tbody>
</table>

a Statistical correlation in terms of Pearson’s coefficient after taking a logarithm of the respective variable.
spatial concentration of university related indicators is that more than half of the West German districts (170 out of 327; i.e., about 52 percent) do not have a university located within the region while R&D employment and patent output can be found in every region. While half of the number of patents and private sector R&D employees are concentrated in eighteen percent and ten percent of the districts, respectively, nearly half of the universities’ regular research funds can be found in less than six percent of the regions. Universities’ regular funds are resources for teaching and training but also for various kinds of equipment, and they indicate the mere size of the academic institution. Since the allocation of university regular funds in Germany is largely based on the number of students and personnel, these resources are concentrated to about the same degree in space as the number of universities’ scientific and teaching personnel.

Figure 2: Lorenz curves of spatial inequality of innovative input and output (average yearly values)
Table 2: Spatial inequality of innovative input and output

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Donaldson-Weymark relative S-Gini inequality measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patents</td>
<td>0.50</td>
</tr>
<tr>
<td>No. of private sector R&D employees</td>
<td>0.63</td>
</tr>
<tr>
<td>Graduates from universities</td>
<td>0.84</td>
</tr>
<tr>
<td>No. of scientific and teaching personnel at universities</td>
<td>0.88</td>
</tr>
<tr>
<td>University regular funds</td>
<td>0.89</td>
</tr>
<tr>
<td>External research funds (total)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Significantly higher concentrations can be found for the universities’ external research funds. The amount of external research funds comprises funds attracted from private sector firms, from the German Science Foundation (DFG), from government departments as well as from other institutions such as municipalities, foundations, international organizations, etc. Such external funds are scarce and are predominantly allocated by means of highly competitive procedures. Hence, they indicate high intensity and quality of research.\(^{11}\) This is, particularly, true for external funds from the German Science Foundation which are designated to basic research. Funds from private firms indicate university-industry linkages and may lead to relatively pronounced knowledge spillovers.\(^{12}\) Thus, external R&D funds indicate excellence and are, therefore, concentrated at universities which attain a high quality of research (see Fritsch and Slavtchev 2005).

There is a remarkable degree of correspondence of the spatial distribution of patents and of the universities’ external research funds (figure 1). Obviously, regions with a high number of patents (e.g., the two extreme cases of Munich and Stuttgart) are characterized by high quality universities which attract great volumes of external resources for research. Regions that attain a relatively high number of patents without having a university are rather the exception. However, there is hardly any location which does not also have a university within a 100 km distance. Nevertheless, there may be further factors such as the intensity and quality

\(^{11}\) According to Hornbostel (2001), there is a pronounced correspondence between indicators that are based on external research funds and bibliometric indicators for high quality research such as SCI publications.

\(^{12}\) External research funds from the German Science Foundation and from private firms comprised about two-thirds of the total amount of external research funds obtained by academic institutions in the period of analysis.
11

of interaction of the different elements of the regional innovation system (Fritsch 2004; 2005; Fritsch and Slavtchev 2006) that determine the efficiency of that system.

4. Measurement issues

We use a knowledge production function as introduced by Griliches (1979) for analyzing the contribution of academic institutions to regional innovative output. The knowledge production function describes the relationship between innovative input and innovative output, i.e.,

\[R&D \text{ output} = f (R&D \text{ input}). \]

Adopting the Cobb-Douglas form of a production function, the basic relationship can be written as

\[R&D \text{ output} = a (R&D \text{ input})^b, \]

with the term \(a\) representing a constant factor and \(b\) giving the elasticity by which R&D output varies in relation to the input to the R&D process. When relating innovative input to innovative output, a time lag of three years is assumed, i.e., innovative output for the years 1995 to 2000 is related to innovative input for the years 1992 to 1997.\(^{13}\) This is done for a number of reasons. First, R&D activity requires time for attaining a patentable result. Second, patent applications are published only about twelve to eighteen months after submission. This is the time necessary to verify whether an application fulfills the basic preconditions for being granted a patent or to complete the patent document (Greif and Schmiedl 2002). Taking the natural logarithms of both sides and adding a regional index \(r\) as well as a time index \(t\) (year) we get

\[\ln (R&D \text{ output})_{rt} = \ln a + b (\ln R&D \text{ input})_{rt-3}. \]

The coefficients of this equation can be estimated by applying standard regression techniques. Different estimated values of output elasticity b for the innovative inputs imply differences in the impact of the respective knowledge sources on innovative output. The coefficients of output elasticity are dimensionless; thus, the relative importance of the different knowledge sources can be directly assessed by comparing the respective estimates. The constant term a captures the impact of inputs which are not represented by the other variables of the empirical model and may signify the random character of innovation processes (Fritsch, 2002; Fritsch and Franke, 2004).

In order to test for knowledge spillovers from neighboring regions, we sum up the values of the different knowledge sources (private sector R&D as well as university R&D) for all the adjacent districts that have their geographic center within a 50 km radius of the district under inspection. These districts form the “first ring.” Applying the same procedure, a “second ring” is built for all other districts with centers within a distance of 50 and 75 km. A significantly positive impact of innovative resources located in neighboring districts implies the presence of knowledge spillovers between the regions. Moreover, identifying a first and a second ring enables us to test the hypothesis that the significance of spatial knowledge spillovers decreases with distance, i.e., between the first and the second ring.

A large body of empirical literature has shown that economies external to the firm but internal to the spatial units in which they operate may be conducive to their innovative activities. On the one hand, it is argued that the geographical concentration of firms belonging to the same industry may constitute an advantage by creating a large pool of common inputs or by making a high degree of labor division possible. Such effects are labeled Marshall-Arrow-Romer (MAR) externalities (Glaeser et al. 1992). On the other hand, the exchange of complementary knowledge between agents of different industries may also stimulate the generation of new ideas. Thus, a broader variety of economic activities can play an important role for innovative activities (Jacobs externalities according to Jacobs 1969). To account for the effects of concentration in certain industries, we include the industrial concentration index (IC_l). Being calculated as the Gini coefficient based on the number of employees in the different industries, this index ranges between 0 and 1. The larger this value, the higher the degree of industrial concentration. Thus, an estimated positive sign for the variable suggests a
significant impact of concentration for innovative activities and vice versa. In order to control for the effects of the size of the region, which may lead to economies of scale, we include the number of regional population into the model. A positive sign of this variable suggests the existence of such scale economies. Furthermore, to account for the higher propensity of patenting in the manufacturing sector as compared to the service sector, we include a manufacturing specialization index (MSI_r) that indicates the share of the district’s manufacturing employment as compared to the national average.14 If innovation activities in manufacturing industries are closer related to each other than in service industries, the MSI may also capture some types of MAR-externalities.

Our dependent variable, which is the number of patents, has the form of a non-negative integer. Assuming that the number of patents is generated by a Poisson-like process, the Poisson-regression analysis may be applied. However, we applied the negative-binomial regression because it is based on somewhat more general assumptions than Poisson regression.15 Due to the characteristics of the data set, panel estimation techniques should be applied in order to control for unobserved region-specific effects. Such fixed effects estimates may, however, not be appropriate because the impact of those variables which exhibit only slight changes over time may be wrongfully included in the fixed effects. Accordingly, we focus our interpretation on the random effects estimates (table 3) but also provide information about the fixed effects estimates.16

14 The specialization in the manufacturing sector for each region (SM_r) was calculated as the regional employment share of manufacturing relative to the national average. Employment data are taken from the German Social Science Insurance Statistics. If the share of the region’s manufacturing employment is the same as in the economy as a whole, then the SM_r assumes the value of unity. For regions with an above average share of manufacturing employment, the value of SM_r is above unity and vice versa. According to Paci and Usai (1999), the manufacturing specialization index (MSI_r) was calculated as $[SM_r-1]/[SM_r+1]$. Thus, MSI is symmetrically distributed within the interval between -1 and +1.

15 Negative binomial regression allows for greater variance of observations than the Poisson regression. For a more detailed description of these estimation methods see Greene (2003: 740-745). We find at least one patent per year for each district in our data; hence, the problem of having “too many zero values” does not apply. To adjust the information of the number of patents to the assumptions of the negative-binomial estimation approach, the number of regional patents has been rounded up.

16 To prevent a priori exclusion of districts without universities, which causes a non-defined logarithm of zero, we add a unity to all values of the variables for university related funds (10,000 Euro). Thus, after logarithmizing districts without external research funds become the value zero.
5. Contribution of universities and technical colleges to regional innovative output

The results of multiple negative-binomial panel regressions for the determinants of the number of regional patents are reported in table 3. We find the strongest impact on patenting for private sector R&D employment.

Table 3: Determinants of the regional number of patents – results of multiple negative-binomial panel regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>random effects</td>
<td>fixed effects</td>
<td>random effects</td>
<td>fixed effects</td>
</tr>
<tr>
<td>R&D employment (ln)</td>
<td>0.224**</td>
<td>0.168**</td>
<td>0.238**</td>
<td>0.140**</td>
</tr>
<tr>
<td></td>
<td>(6.27)</td>
<td>(5.44)</td>
<td>(4.40)</td>
<td>(2.65)</td>
</tr>
<tr>
<td>R&D employment 0-50 km (ln)</td>
<td>0.170**</td>
<td>0.261**</td>
<td>0.124*</td>
<td>0.358**</td>
</tr>
<tr>
<td></td>
<td>(4.85)</td>
<td>(8.89)</td>
<td>(2.06)</td>
<td>(4.93)</td>
</tr>
<tr>
<td>R&D employment 50-75 km (ln)</td>
<td>0.072*</td>
<td>-0.025</td>
<td>0.296**</td>
<td>0.170*</td>
</tr>
<tr>
<td></td>
<td>(2.42)</td>
<td>(0.99)</td>
<td>(4.82)</td>
<td>(2.21)</td>
</tr>
<tr>
<td>Manufacturing specialization index (MSI)</td>
<td>1.139**</td>
<td>0.670**</td>
<td>0.310</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>(6.83)</td>
<td>(5.04)</td>
<td>(1.05)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Industrial concentration index (ICI)</td>
<td>-3.322**</td>
<td>0.034</td>
<td>-10.091**</td>
<td>-8.098**</td>
</tr>
<tr>
<td></td>
<td>(3.34)</td>
<td>(0.04)</td>
<td>(5.14)</td>
<td>(3.24)</td>
</tr>
<tr>
<td>Population (ln)</td>
<td>0.436**</td>
<td>0.770**</td>
<td>-0.145</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>(6.56)</td>
<td>(13.83)</td>
<td>(1.04)</td>
<td>(0.80)</td>
</tr>
<tr>
<td>Regular funds (ln)</td>
<td>-0.006</td>
<td>-0.007</td>
<td>-0.001</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.82)</td>
<td>(1.19)</td>
<td>(0.08)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>External funds (ln)</td>
<td>0.029**</td>
<td>0.017*</td>
<td>0.035**</td>
<td>0.024*</td>
</tr>
<tr>
<td></td>
<td>(3.01)</td>
<td>(2.11)</td>
<td>(3.18)</td>
<td>(2.47)</td>
</tr>
<tr>
<td>External funds in surrounding districts (ln)</td>
<td>0.057**</td>
<td>0.005</td>
<td>0.134**</td>
<td>0.054**</td>
</tr>
<tr>
<td>0-50 km</td>
<td>(4.67)</td>
<td>(0.56)</td>
<td>(8.32)</td>
<td>(4.05)</td>
</tr>
<tr>
<td>Residual from surrounding districts 0-75 km</td>
<td>-</td>
<td>0.985**</td>
<td>-</td>
<td>0.956**</td>
</tr>
<tr>
<td>Intercept</td>
<td>-3.374**</td>
<td>-8.809</td>
<td>6.513**</td>
<td>2.567</td>
</tr>
<tr>
<td></td>
<td>(2.85)</td>
<td>(8.78)</td>
<td>(2.69)</td>
<td>(0.89)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1.962</td>
<td>1.962</td>
<td>1.962</td>
<td>1.962</td>
</tr>
<tr>
<td>Number of districts regions</td>
<td>327</td>
<td>327</td>
<td>327</td>
<td>327</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-8,327.24</td>
<td>-7,962.97</td>
<td>-6,093.58</td>
<td>-5,847.61</td>
</tr>
</tbody>
</table>

+ Absolute value of z-statistics in parentheses, * significant at the 5% level, ** significant at the 1% level

According to the random effects estimates (model 1 and 2), the production elasticity of a region’s private sector R&D employment has a value of about 0.22 and 0.17, respectively. The estimated elasticity of private R&D resources in the adjacent regions with an average
The highly significant positive coefficients for the manufacturing specialization index (model 1 and 2) confirm the expected higher propensity to patent in manufacturing as compared to the service sector. This result is particularly consistent with Blind and Grupp (1999) who found no significant impact of the share of employment in services on regional patent output for selected German regions. The negative sign for the industrial concentration index suggests that diversity may be favorable for the performance of regional innovation systems. This finding is consistent with Greunz (2004) who tested the impact of industrial structure on innovation in European regions by means of Gini coefficients as well as with Paci and Usai (1999) who used the Herfindahl index as a measure of industrial diversity. Furthermore, there are positive scale effects as indicated by the number population (model 1 and 2).

It is rather remarkable that the size of the universities’ regular budget has no significant effect on the regional number of patents. Obviously, the mere size of a university is not important for the innovative output of a region. The same result is obtained if the number of scientific and teaching personnel at the universities or the number of students or the number of university graduates is taken as a measure of the size of academic research and education. Since there is a close statistical correlation between these indicators and the universities’ regular budget, we do not include these alternative indicators in the regression in order to avoid multicollinearity problems. A positive impact on a region’s innovative output can, however, be found for the amount of external funds that the academic institutions attract. This indicates that it is the intensity and quality of the research at the universities and technical colleges that is important for their contribution to the innovation system and not their size. We also find a statistically significant impact of external research funds of universities institutions located within the first ring, i.e., in districts within an average distance of up to 50 km.

17 Non-linearities of the impact of this indicator could not be identified.
External funds of more remote academic institutions have no statistically significant impact on the number of regional inventions as indicated by patent applications. This pattern is highly consistent with Beise and Stahl (1999).

In order to account for spatial autocorrelation, we included the average mean residual of the adjacent regions in a distance of up to 75 km. The highly significant positive values of the respective coefficients indicate that neighboring regions share some common influences which are not measured by the other variables included in the model. If a control for spatial autocorrelation is included (models 2 and 4 in table 3), the effect of private as well as university R&D is smaller than without such a control. Particularly, the coefficient for external research funds of universities in adjacent regions decreases considerably but still remains statistically significant. Moreover, when controlling for unobserved spatial dependencies the industrial concentration index (ICl) becomes insignificant (model 2). All models have been run for all districts as well as only for those districts which include a university. We find a somewhat stronger effect of universities in this sub-sample because districts with a considerable number of patents but no university are excluded. However, in qualitative terms the results are the same as those in the models reported here.18

Our estimates of the production elasticity of universities’ R&D are considerably smaller than what has been found in many studies for other countries, particularly in studies for the USA (table 4). This indicates that the innovative output or the technology transfer from German universities into the private sector is comparatively weak.19 However, the value of the coefficient for the contribution of university knowledge becomes nearly twice as large if we restrict the estimates to those districts in which a university is located.

18 For a detailed analysis according to the type of university as well as according to the type of department see Fritsch and Slavtchev (2005).
19 A detailed discussion of the technology transfer from German universities is provided in Abramson et al. (1997: 272-302).
<table>
<thead>
<tr>
<th>Study / country</th>
<th>Estimated output elasticity for private sector R&D</th>
<th>Estimated output elasticity for university R&D</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaffe (1989) / USA</td>
<td>0.60** - 0.89**</td>
<td>Not significant - 0.33**</td>
<td>Regression method: OLS pooled. Dependent: number of corporate patents. Independent: industry as well as univ. R&D expenditures. Sector level: all / four technological areas. Spatial level: US states.</td>
</tr>
<tr>
<td>Acs, Audretsch and Feldman (1991) / USA</td>
<td>Not significant - 0.65*</td>
<td>0.33* - 0.52**</td>
<td>Regression method: OLS. Dependent: innovation counts. Independent: industry as well as univ. R&D expenditures. Sector level: all / two technological areas. Spatial level: US states.</td>
</tr>
<tr>
<td>Anselin, Varga, and Acs (1997) / USA</td>
<td>0.51** (US states) 0.54** (MSA’s)</td>
<td>0.57** (US states) 0.11** (MSA’s)</td>
<td>Regression method: OLS pooled (reported here), spatial ML. Dependent: innovation counts. Independent: industry as well as univ. R&D expenditures. Sector level: high-tech sector (two-digit ISIC). Spatial level: US states, Metropolitan Statistical Areas (MSA).</td>
</tr>
<tr>
<td>Fischer and Varga (2003) / Austria</td>
<td>0.10** - 0.40**</td>
<td>0.13** - 0.21**</td>
<td>Regression method: OLS, Spatial error ML. Dependent: number of patents. Independent: industry as well as university R&D budget. Sector level: high-tech sector (two-digit ISIC). Spatial level: political districts (LAU-1).</td>
</tr>
<tr>
<td>Ronde and Hussler (2005) / France</td>
<td>0.46** - 0.10**</td>
<td>-0.77** - not significant</td>
<td>Regression method: Logit, OLS, Negative-binomial. Dependent: number of researchers in the private and in the public sector per 10.000 inhabitants. Sector level: 14 manufacturing industries. Spatial level: NUTS-3.</td>
</tr>
<tr>
<td>Autant-Bernard (2001) / France</td>
<td>0.34** - 0.48**</td>
<td>Not significant - 0.20*</td>
<td>Regression method: OLS, 3SLS. Dependent: number of patents (3 years average). Independent: private R&D expenditures, public R&D publications. Sector level: all. Spatial level: NUTS-2.</td>
</tr>
<tr>
<td>Piergiovanni, Santarelli and Vivarelli (1997) / Italy</td>
<td>0.15** (all firms) 0.01** (small firms only)</td>
<td>0.03 (all firms) 0.02** (small firms only)</td>
<td>Regression method: OLS pooled. Dependent: number of corporate patents per capita. Independent: private and univ. R&D expenditures per capita. Sector level: all. Spatial level: NUTS-3.</td>
</tr>
<tr>
<td>Barrio-Castro and Garcia-Quevedo (2005) / Spain</td>
<td>0.08 - 0.37* (fixed effects) 0.29 - 0.47** (random effects)</td>
<td>0.35 - 0.77** (fixed effects) 0.47 - 0.76** (random effects)</td>
<td>Regression method: Negative-binomial (panel). Dependent: number of private patents. Independent: private as well as univ. R&D expenditures. Sector level: all. Spatial level: NUTS-2.</td>
</tr>
</tbody>
</table>

* significant at the 5% level; ** significant at the 1% level.
There are a number of reasons for assuming that the importance of universities for education and research is underestimated by the type of analysis that has been conducted here. A main cause of such an underestimation could be that many of the effects of universities and technical colleges are long-term in nature. For example, innovative activity of spin-off firms from academic institutions is, in our analysis, completely assigned to the private sector; thus, disregarding the fact that the respective academic incubator may have made a considerable contribution. Moreover, the presence of universities and the access to academically trained labor may attract innovative private firms into a region that would otherwise not have been established there. Therefore, one may assume that our estimates signify a kind of lower boundary for the impact of academic institutions. A more comprehensive assessment of the diverse direct and indirect effects certainly requires a considerably broader approach than the one being conducted here.

6. Summary and Conclusion

Our analysis of the effect of universities and private sector R&D on regional innovative output shows that regional knowledge has a dominant impact. The highest share of innovative output as measured by the number of patents is explained by private sector R&D employment in the same region. Knowledge of private sector R&D employees in adjacent regions is much less important, and its effect becomes weaker with increasing distance. Our analysis clearly indicates that the mere size of the universities in terms of the number of employees, number of students, and university graduates as well as the volume of the regular budget has no statistically significant impact on innovative output. Such an effect is, however, found for the external funds attracted by the universities, which can be regarded as a measure of the intensity and quality of the research. This clearly indicates that it is not the pure existence or the size of universities but rather the intensity and quality of the research conducted there which are relevant. Therefore, a policy that wants to promote regional innovation processes by building up universities should place substantial emphasis on the intensity and quality of the research conducted there.
However, compared to private sector R&D, the contribution of the universities is rather small. It is also smaller than that which is found in most of the studies for the US and for other European countries.

Accounting for industrial concentration in a region, we find that diversity is conducive for innovative activities. Therefore, Jacobs-externalities obviously play some sort of role. We also find clear evidence for a positive impact of specialization in manufacturing industries as compared to the service sector as well as significant scale effects of regional population.
References

Beise, Marian and Stahl, Harald 1999: Public research and industrial innovations in Germany, Research Policy, 28: 397-422.
Blind, Knut and Grupp, Hariolf 1999: Interdependencies between the science and technology infrastructure and innovation activities in German regions: empirical findings and policy consequences, Research Policy, 28: 451–468.

List of Working Papers of the Faculty of Economics and Business Administration, Technische Universität Bergakademie Freiberg.

2000

00/1 Michael Nippa, Kerstin Petzold, Ökonomische Erklärungs- und Gestaltungsbeiträge des Realoptionen-Ansatzes, Januar.

00/2 Dieter Jacob, Aktuelle baubetriebliche Themen – Sommer 1999, Januar.

00/6 Obeng Mireku, Culture and the South African Constitution: An Overview, Februar.

00/7 Gerhard Ring, Stephan Oliver Pfaff, CombiCar: Rechtliche Voraussetzungen und rechtliche Ausgestaltung eines entsprechenden Angebots für private und gewerbliche Nutzer, Februar.

00/9 Dieter Welz, Non-Disclosure and Wrongful Birth, Avenues of Liability in Medical Malpractice Law, März.

00/10 Jan Körnert, Karl Lohmann, Zinnsstrukturbasierte Margenkalkulation, Anwendungen in der Marktzinsmethode und bei der Analyse von Investitionsprojekten, März.

00/12 Diana Grosse, Eine Diskussion der Mitbestimmungs gesetze unter den Aspekten der Effizienz und der Gerechtigkeit, März.

00/15 Egon Franck, Torsten Pudack, Die Ökonomie der Zertifizierung von Managemententscheidungen durch Unternehmensberatungen, April.

00/16 Carola Jungwirth, Inkompatible, aber dennoch verzahnte Märkte: Lichtblicke im angespannten Verhältnis von Organisationswissenschaft und Praxis, Mai.

00/19 Cornelia Wolf, Probleme unterschiedlicher Organisationskulturen in organisationalen Subsystemen als mögliche Ursache des Konflikts zwischen Ingenieuren und Marketingexperten, Juli.

Michael Nippa, Kerstin Petzold, Gestaltungsansätze zur Optimierung der Mitarbeiter-Bindung in der IT-Industrie - eine differenzierende betriebswirtschaftliche Betrachtung -, September.

Egon Franck, Antje Musil, Qualitätsmanagement für ärztliche Dienstleistungen – Vom Fremd- zum Selbstmonitoring, September.

Dieter Slaby, Kalkulation von Verrechnungspreisen und Betriebsmittelmieten für mobile Technik als Grundlage innerbetrieblicher Leistungs- und Kostenrechnung im Bergbau und in der Bauindustrie, Oktober.

Michael Nippa, Jan Hachenberger, Ein informationsökonomisch fundierter Überblick über den Einfluss des Internets auf den Schutz Intellektuellen Eigentums, Oktober.

Andreas Knabe, Karl Lothmann, Ursula Walther, Kryptographie – ein Beispiel für die Anwendung mathematischer Grundlagenforschung in den Wirtschaftswissenschaften, November.

Gunther Wobser, Internetbasierte Kooperation bei der Produktentwicklung, Dezember.

Margit Enke, Anja Geigenmüller, Aktuelle Tendenzen in der Werbung, Dezember.

2001

Bruno Schönfelder, Two Lectures on the Legacy of Hayek and the Economics of Transition, Januar.

Margit Enke, Anja Geigenmüller, Entwicklungstendenzen deutscher Unternehmensberatungen, März.

01/10 Michael Nippa, Kerstin Petzold, Functions and roles of management consulting firms – an integrative theoretical framework, April.

01/11 Horst Brezinski, Zum Zusammenhang zwischen Transformation und Einkommensverteilung, Mai.

01/14 Bruno Schönfelder, The Underworld Revisited: Looting in Transition Countries, Juli.

01/15 Gert Ziener, Die Erdölwirtschaft Russlands: Gegenwärtiger Zustand und Zukunftsaussichten, September.

01/16 Margit Enke, Michael J. Schäfer, Die Bedeutung der Determinante Zeit in Kaufentscheidungsprozessen, September.

01/17 Horst Brezinski, 10 Years of German Unification – Success or Failure? September.

01/18 Diana Grosse, Stand und Entwicklungschancen des Innovationspotentials in Sachsen in 2000/2001, September.

2002

02/2 Michael Nippa, The Economic Reality of the New Economy – A Fairytale by Illusionists and Opportunists, Januar.

02/3 Michael B. Hinner, Tessa Rülke, Intercultural Communication in Business Ventures Illustrated by Two Case Studies, Januar.

02/6 Horst Brezinski, Peter Seidelmann, Unternehmen und regionale Entwicklung im ostdeutschen Transformationsprozess: Erkenntnisse aus einer Fallstudie, März.

02/7 Diana Grosse, Ansätze zur Lösung von Arbeitskonflikten – das philosophisch und psychologisch fundierte Konzept von Mary Parker Follett, Juni.

02/8 Ursula Walther, Das Äquivalenzprinzip der Finanzmathematik, Juli.

02/9 Bastian Heinecke, Involvement of Small and Medium Sized Enterprises in the Private Realisation of Public Buildings, Juli.

02/10 Fabiana Rossaro, Der Kreditwucher in Italien – Eine ökonomische Analyse der rechtlichen Handhabung, September.

02/11 Michael Fritsch, Oliver Falck, New Firm Formation by Industry over Space and Time: A Multi-Level Analysis, Oktober.
2003

03/1 Bruno Schönfelder, Death or Survival. Post Communist Bankruptcy Law in Action. A Survey, Januar.

03/2 Christine Pieper, Kai Handel, Auf der Suche nach der nationalen Innovationskultur Deutschlands – die Etablierung der Verfahrenstechnik in der BRD/DDR seit 1950, März.

03/4 Michael Fritsch, Zum Zusammenhang zwischen Gründungen und Wirtschaftsentwicklung, in Michael Fritsch und Reinhold Grotz (Hrsg.), Empirische Analysen des Gründungsgeschehens in Deutschland, Heidelberg 2004: Physica 199-211.

2004

03/5 Tessa Rülke, Erfolg auf dem amerikanischen Markt

03/7 Isabel Opitz, Michael B. Hinner (Editor), Good Internal Communication Increases Productivity, Juli.

03/8 Margit Enke, Martin Reimann, Kulturell bedingtes Investorenverhalten – Ausgewählte Probleme des Kommunikations- und Informationsprozesses der Investor Relations, September.

03/9 Dieter Jacob, Christoph Winter, Constanze Stuhr, PPP bei Schulbauten – Leitfäden Wirtschaftlichkeitsvergleich, Oktober.

03/10 Ulrike Pohl, Das Studium Generale an der Technischen Universität Bergakademie Freiberg im Vergleich zu Hochschulen anderer Bundesländer (Niedersachsen, Mecklenburg-Vorpommern) – Ergebnisse einer vergleichenden Studie, November.

2005

04/3 Michael Fritsch, Andreas Stephan, Measuring Performance Heterogeneity within Groups – A Two-Dimensional Approach, Januar.

04/5 Michael Fritsch, Antje Weyh, How Large are the Direct Employment Effects of New Businesses? – An Empirical Investigation, März.

04/7 Dieter Jacob, Constanze Stuhr, Aktuelle baubetriebliche Themen – 2002/2003, Mai.

Michael Fritsch, Pamela Mueller, Antje Weyh, Direct and Indirect Effects of New Business Formation on Regional Employment, Juli.

Jan Körnert, Fabiana Rossaro, Der Eigenkapitalbeitrag in der Marktzinsmethode, in: *Bank-Archiv (ÖBA)*, Springer-Verlag, Berlin u. a., ISSN 1015-1516, Jg. 53 (2005), Heft 4, 269-275.

Michael Fritsch, Andreas Stephan, The Distribution and Heterogeneity of Technical Efficiency within Industries – An Empirical Assessment, August.

Dieter Jacob, Tilo Uhlig, Constanze Stuhr, Bewertung der Immobilien von Akutkrankenhäusern der Regelversorgung unter Beachtung des neuen DRG-orientierten Vergütungssystems für stationäre Leistungen, Januar.

Alexander Eickelpasch, Michael Fritsch, Contests for Cooperation – A New Approach in German Innovation Policy, April.

Fabiana Rossaro, Jan Körnert, Bernd Nolte, Entwicklung und Perspektiven der Genossenschaftsbanken Italiens, in: *Bank-Archiv (ÖBA)*, Springer-Verlag, Berlin u. a., ISSN 1015-1516, Jg. 53 (2005), Heft 7, 466-472.

Andreas Ehrhardt, Michael Nippa, Far better than nothing at all - Towards a contingency-based evaluation of management consulting services, Juli.

Loet Leydesdorff, Michael Fritsch, Measuring the Knowledge Base of Regional Innovation Systems in Germany in terms of a Triple Helix Dynamics, Juli.

Margit Enke, Steffi Poznanski, Kundenintegration bei Finanzdienstleistungen, Juli.

Brit Arnold, Larissa Greschuchna, Hochschulen als Dienstleistungsmarken – Besonderheiten beim Aufbau einer Markenidentität, August.

Michael Fritsch, Viktor Slavtchev, The Role of Regional Knowledge Sources for Innovation – An Empirical Assessment, August.

Pamela Mueller, Exploiting Entrepreneurial Opportunities: The Impact of Entrepreneurship on Economic Growth, August.
05/17 Pamela Mueller, Exploring the Knowledge Filter: How Entrepreneurship and University-Industry Relations Drive Economic Growth, September.

05/18 Marc Rodt, Klaus Schäfer, Absicherung von Strompreisrisiken mit Futures: Theorie und Empirie, September.

05/19 Klaus Schäfer, Johannes Pohn-Weidinger, Exposures and Exposure Hedging in Exchange Rate Risk Management, September.

2006

06/1 Michael Nippa, Jens Grigoleit, Corporate Governance ohne Vertrauen? Ökonomische Konsequenzen der Agency-Theorie, Januar.

06/3 Dorothea Schäfer, Dirk Schilder, Informed Capital in a Hostile Environment – The Case of Relational Investors in Germany, Januar.

06/4 Oleg Badunenko, Michael Fritsch, Andreas Stephan, Allocative Efficiency Measurement Revisited – Do We Really Need Input Prices? Januar.

06/5 Diana Grosse, Robert Ullmann, Enrico Weyh, Die Führung innovativer Teams unter Berücksichtigung rechtlicher und psychologischer Aspekte, März.

06/6 Silvia Rogler, Vergleichbarkeit von Gesamt- und Umsatzkostenverfahren – Auswirkungen auf die Jahresabschlussanalyse, März.

06/7 Michael Fritsch, Dirk Schilder, Does Venture Capital Investment Really Require Spatial Proximity? An Empirical Investigation, März.

06/8 Michael Fritsch, Viktor Slavtchev, Measuring the Efficiency of Regional Innovation Systems – An Empirical Assessment, März.

06/9 Michael Fritsch, Dirk Schilder, Is Venture Capital a Regional Business? The Role of Syndication, Mai.

06/10 Carsten Felden, Heiko Bock, André Gräning, Lana Molotowa, Jan Saat, Rebecca Schäfer, Bernhard Schneider, Jenny Steinborn, Jochen Voecks, Christopher Woerle, Evaluation von Algorithmen zur Textklassifikation, Mai.

06/11 Michael Fritsch, Michael Stützer, Die Geografie der Kreativen Klasse in Deutschland, Juni.

06/12 Dirk Schilder, Public Venture Capital in Germany – Task Force or Forced Task?, Juni.

06/13 Michael Fritsch, Pamela Müller, The Effect of New Business Formation on Regional Development over Time: The Case of Germany, Juli.

06/14 Tobias Henning, Holger Graf, Public Research in Regional Networks of Innovators: A Comparative Study of Four East-German Regions, August.