eeeee

DEFINITION ENVIRONMENT

e Python environment
o Python binaries and compiled libraries
o Python packages
e System environment
o operating system (Windows, Linux, ...)
o drivers for devices (GPUs ...) or software (databases, compiler, ...)
o hardware (laptop, HPC cluster, ...)

Relevant for:

e Installing Python packages
e Developing Python packages (or certain applications)

INSTALLING PYTHON PACKAGES

A Python package has environment requirements to work properly.

e requires certain Python binary version (e.g. Python 3.11 vs. 3.12)
e depends on other Python packages (e.g. numpy<=1.26.4)
e recommends a certain Python package

(e.g. onnxruntime-gpu for improved performance)

e requires certain system libraries and drivers (e.g. gcc 14.2, ...)

Note: package authors do not always define package requirements properly

INSTALLING PYTHON PACKAGES

POSSIBLE OUTCOMES

e U4 Package successfully installed without touching other packages
o X Installation failed, package not installed

o X Package installed along with its dependencies
o polluting Python environment
o other Python packages do not work anymore
o because complete dependency matrix has not been checked
(may taking ages though)
o rollback tedious

DEVELOPING PYTHON PACKAGES / APPS

e Testing different Python environments to maximise compatibility
o requirements like numpy==1.26.4 vs. numpy<=1.26.4 vs. numpy

e Testing different system environments
e Pinning down errors with certain 3rd party package versions

DEVELOPING PYTHON PACKAGES / APPS

e Testing different Python environments to maximise compatibility

o requirements like numpy==1.26.4 vs. numpy<=1.26.4 vs. numpy

e Testing different system environments
e Pinning down errors with certain 3rd party package versions

... requires:

 flexible management of comparable + reproducible environments

e easily testing other platforms

e opt-in for automation processes
(e.g. github continuous integration for automated tests and builds)

e ideally control the complete environment to compare a change of a single
component (performance regression testing, ...)

6.1

https://docs.github.com/en/actions/use-cases-and-examples/building-and-testing
https://docs.github.com/en/actions/use-cases-and-examples/building-and-testing

TALK OUTLINE

e Which Python environment tools exist?

o system-wide and virtual environments
o container

e How to prevent or fix a messed up Python environment?
e Working with containers

WARNING: OFFENDING MATERIALS AHEAD

I-’

Beglnner - — e :
!i : ; \Easyjto learn
rfrien

° j 0
p'p VS Conda & poetry Closures and variable syplng

venv VIrtuaIenv pyenv Mutable'defallt arguments
mypy;and, ypechec s IV Circularimports I

, GIL I|m|tat|ons in multithreading
MetaCIa ssesimagi 'P Monkey patching mayhem

Fgasync/awalt

|
¢t works on my.Ir machme
W -
Memory, Ieaks in long-runners
L e e
“Why is prod so slow'7"
\ Race ‘condition roulette
1 i §
@ependency versnon ‘hell
Log ﬂood vssnlent t failures
Confg chaos across envs
Security patch scramble

imgfiip.com |

Source

https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/
https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/

WARNING: OFFENDING MATERIALS AHEAD

I-’

Beginner

lr

: sy to, learn '
nner fnendly

pip VS conda VS poetry
veny, Virtualenv, pyenv
mypy and; itype chec S
Metaclassesmagn 3
qkasynckmmau

oo

)
Closures and variable scoping
Mutable'default arguments

\ Clrculawnpons-
GIL I|m|tat|ons in multithreading

Monkey. patchlng mayhem

o 0

I

|
¢t works on my.Ir machme
W -
Memory, Ieaks in long-runners
N v Wy
"Why is prod 150 Sl¢ 'Slow 2z
t Race condmon roulette
i B
erendency versnon ‘hell
Log flood Wnt failures
Config chaos across envs
Security pa patch \'scramble

imgfiip.com |

Source

https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/
https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/

PYTHON ENVIRONMENT TOOLS

e Pip: default package installer, uses Python Package Index (PyPI), essential for
managing dependencies

e Conda: A package & environment management system, handles non-Python
dependencies, creates isolated environments

e Pipenv: Combines pip and virtualenv, simplifies dependency management, scans
for security vulnerabilities in dependencies

e Poetry: dependency management and packaging focus, uses a
pyproject.toml, automatically creates virtual environments for projects

e Virtualenv: older tool for creating Python environments (inferior to pipenv)

e Venv: built-in module in Python 3.3+, creates lightweight virtual environments,
less features than Virtualenv

e Pyenv: manages multiple Python versions, but not environments directly (no
Windows supported)

e pyvenv: deprecated

e Mamba: fast alternative to Conda, may speed up environment resolution /
package installation, compatible with Conda packages

e Micromamba: like Mamba without overhead of full Conda installation

» Docker: [not specific to Python] creates containerized environments,
encapsulates applications along with their system dependencies

PYTHON ENVIRONMENT TOOLS

e Pip: default package installer, uses Python Package Index (PyPI), essential for
managing dependencies

e Conda: A package & environment management system, handles non-Python
dependencies, creates isolated environments

e Pipenv: Combines pip and virtualenv, simplifies dependency management, scans
for security vulnerabilities in dependencies

e Poetry: dependency management and packaging focus, uses a
pyproject.toml, automatically creates virtual environments for projects

 Virtualenv: older tool for creating Python environments (inferior to pipenv)

e Venv: built-in module in Python 3.3+, creates lightweight virtual environments,
less features than Virtualenv

e Pyenv: manages multiple Python versions, but not environments directly (no
Windows supported)

e pyvenv: deprecated

e Mamba: fast alternative to Conda, may speed up environment resolution /
package installation, compatible with Conda packages

e Micromamba: like Mamba without overhead of full Conda installation

» Docker: [not specific to Python] creates containerized environments,
encapsulates applications along with their system dependencies

ANACONDA

e comes with 450+ packages pre-installed, stored in:

o C:\Users\<your-username>\Anaconda3\pkgs\ R Aracone3 . X
o anaconda repository itself contains couple of thousands packages ~i)
e Windows does not know where Python is (see FAQ) N

_ Jupyter Notebook

o Anaconda activates its environment at launch
e Anaconda (conda) has its own package repository
e Anaconda'’s defaults channel: more stable and secure than community-run

channels like conda-forge
o may contain older package versions than publicly available

e updating Anaconda from within can become a challenge (just reinstall?)
e pip isonly a package manager: much larger collection of Python packages
(PyPI)

12

https://docs.anaconda.com/working-with-conda/reference/faq#distribution-faq-windows-path
https://docs.anaconda.com/working-with-conda/reference/faq#distribution-faq-windows-path

(ANA)CONDA

Based on a stackoverflow post:

e conda = Python package + command line tool

e Miniconda installer = Python + conda

e Anaconda installer = Python + conda + meta package anaconda

e meta Python package anaconda = 500+ dependencies and packages
e Anaconda installer = Miniconda installer + conda install anaconda

13

https://stackoverflow.com/a/58147674
https://docs.anaconda.com/anaconda/allpkglists/
https://stackoverflow.com/a/58147674
https://docs.anaconda.com/anaconda/allpkglists/

CONDA AND PIP

Search packages

e conda search package-name --info shows requirements of a package

 pip index versions package-name is experimental
o pip—search——— (deactivated), use PyPI website or pip_search or pypisearch package
e conda list package-name shows installed package version

 pip show package-name shows installed package version

14

https://pypi.org/
https://pypi.org/

CONDA AND PIP

Search packages

conda search package-name --info shows requirements of a package

pip index versions package-name is experimental
o pip—search——— (deactivated), use PyPI website or pip_search or pypisearch package
conda list package-name shows installed package version

pip show package-name shows installed package version

Check environment

e conda check
e pip check
e pip freeze --user (use pipreqs for creating project requirements.txt)

14.1

https://pypi.org/
https://pypi.org/

CONDA AND PIP

Installing Packages:

conda pip effect

conda install package-name pip install package-name might change environment

. --dry-run
. --dry-run (pip 22.2+) see what would happen
. --no-update-deps .. --no-deps only package is installed,
may not work properly
. --freeze-installed -- does not change existing packages

Note: During install conda automatically checks for conflicts which can take quite a
while ("Solving environment ..."). It reports the changes and asks you to continue the
installation.

docs: conda install | pip install

15

https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/
https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/

CONDA AND PIP

Installing Packages:

conda pip effect
conda install package-name pip install package-name might change environment
. --dry-run
w --dry-rTun (pip 22.2+) see what would happen
. --no-update-deps .. --no-deps only package is installed,
may not work properly
. --freeze-installed -- does not change existing packages

Note: During install conda automatically checks for conflicts which can take quite a
while ("Solving environment ..."). It reports the changes and asks you to continue the
installation.

docs: conda install | pip install

EXTRA NOTE

pip can directly install a package from version control systems like git:

15.1

https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/
https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/
https://pip.pypa.io/en/stable/topics/vcs-support/
https://pip.pypa.io/en/stable/topics/vcs-support/

CONDA AND PIP
Uninstall / Rollback

e conda uninstall package-name --dry-run

o also removes packages that depend on it
o problematic, if a global package is removed where virtual environments relied on it

pip uninstall package-name (no dry-run option)
o only removes package (use pipdeptree package to investigate)

conda install --revision NUMBER

o restores environment, see guide

no pip equivalent for revisions, but can be done with:
o pip freeze > requirements.txt

o and pip install -r requirements.txt as rollback

conda list --revisions, conda clean -i, conda info, conda

config --show
o might help with issues, also see conda cheatsheet

pip pendants: pip cache info, pip cache purge, python -m site

16

https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

CONDA AND PIP
Uninstall / Rollback

e conda uninstall package-name --dry-run

o also removes packages that depend on it
o problematic, if a global package is removed where virtual environments relied on it

pip uninstall package-name (no dry-run option)
o only removes package (use pipdeptree package to investigate)

conda install --revision NUMBER

o restores environment, see guide

no pip equivalent for revisions, but can be done with:
o pip freeze > requirements.txt

o and pip install -r requirements.txt as rollback

conda list --revisions, conda clean -i, conda info, conda

config --show
o might help with issues, also see conda cheatsheet

pip pendants: pip cache info, pip cache purge, python -m site

Manually re-installing certain packages if you know the working versions:

e conda install numpy==1.26.4 or pip install -U numpy==1.26.4

16.1

https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

EXTRA NOTES
MIXING ENVIRONMENT TOOLS

Do not switch between pip and conda back and forth. When such conflicts occur,
just delete the environment and recreate:

using pip only after all other requirements have been installed via conda is the safest practice.
Additionally, pip should be run with the “--upgrade-strategy only-if-needed” [default]

OTHER PYTHON VERSION REQUIRED

You can use pyenv (non-Windows) or pyenv-win (Windows), but it may interfer with a
global installation.

DEPENDENCY HELL

Sometimes the requirements for a project are too tight or too loose, experiment with
this first. But if there is still no conflict-free combination of Python packages, maybe
an alternative package exist. Ask Awesome Python or perplexity.ai (Al chat).

DEPLOYMENT

If a project has complex dependencies, pip wheel helps to reduce time-consuming
compilation by generating and packaging all project’s dependencies (such
'wheelhouse' is not platform-portable).

17

https://www.anaconda.com/blog/using-pip-in-a-conda-environment
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://python.libhunt.com/
https://www.perplexity.ai/
https://pip.pypa.io/en/stable/topics/repeatable-installs/#using-a-wheelhouse-aka-installation-bundles
https://www.anaconda.com/blog/using-pip-in-a-conda-environment
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://python.libhunt.com/
https://www.perplexity.ai/
https://pip.pypa.io/en/stable/topics/repeatable-installs/#using-a-wheelhouse-aka-installation-bundles

VIRTUAL ENVIRONMENTS

¢

| 4
BECAUSE YOU HAVE TO USECONDA.

e L f“.’
| =~ T8 T

iv by

;_~‘~

——=RBUTTALREADY HAVE ——

imgflip:com

Source

18

https://www.reddit.com/r/ProgrammerHumor/comments/yqcdas/gis_and_ml_is_a_whole_new_world_of_hurt/
https://www.reddit.com/r/ProgrammerHumor/comments/yqcdas/gis_and_ml_is_a_whole_new_world_of_hurt/

VIRTUAL ENVIRONMENTS

a.k.a. keep your specific packages in a subfolder:

some python project

.venv # some name for your virtual env.
— bin # Python binaries e.g. python3.11
— 1ib # Python packages e.g. matplotlib
— pyvenv.cfg # paths to Python binaries, etc.

19

CONDA

e open (Anaconda) prompt (see also conda environment files)

cd your-project-folder

optionally specify Python version or packages

conda create --name .venv python=3.9 scipy=0.17.3 babel
activate environment

conda activate .venv

...

conda deactivate # if needed

20

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file

CONDA

e open (Anaconda) prompt (see also conda environment files)

cd your-project-folder

optionally specify Python version or packages

conda create --name .venv python=3.9 scipy=0.17.3 babel
activate environment

conda activate .venv

...

conda deactivate # if needed

VENV

e see also how venvs works

python -m venv .venv # .venv: folder name, as you like

source .venv/bin/activate # Windows: .venv\Scripts\activate.bat
...

deactivate # if needed

20.1

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.python.org/3/library/venv.html#how-venvs-work
https://docs.python.org/3/library/venv.html#how-venvs-work

VIRTUAL ENVIRONMENTS WORKFLOW

Manually managing Python environments (IDE still might be able to work with it):

e only once: create virtual environment folder in your project folder
e activate virtual environment
e run your Python programs in there
(jupyter lab, pip install package-name, ...)
e optional: write a script to automate environment activation and programs
e optional: Things gone wrong? Remove the environment folder and rebuild it

21

VIRTUAL ENVIRONMENTS WORKFLOW

Manually managing Python environments (IDE still might be able to work with it):

e only once: create virtual environment folder in your project folder
e activate virtual environment
e run your Python programs in there
(jupyter lab, pip install package-name, ...)
e optional: write a script to automate environment activation and programs
e optional: Things gone wrong? Remove the environment folder and rebuild it

IDE & VIRTUAL ENVIRONMENTS

e Visual Studio Code
o pip, veny, conda[miniconda], and more via extensions (poetry,...)
e pycharm

o pip, veny, conda, pipeny, poetry, ...

211

https://code.visualstudio.com/docs/python/environments
https://marketplace.visualstudio.com/items?itemName=zeshuaro.vscode-python-poetry
https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html
https://code.visualstudio.com/docs/python/environments
https://marketplace.visualstudio.com/items?itemName=zeshuaro.vscode-python-poetry
https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html

CONCLUSION

Most likely you want Python environments, if at least one of your Python projects has
diverging environment requirements, which interfer with your system-wide installed
Python environment.

You might want to create a Python environment manually,

e if you cannot use an IDE (e.g. on an HPC system),
e if you need other environment tools like poetry or pyeny,
e if many projects share the same environment,

22

https://python-poetry.org/docs/managing-environments/
https://python-poetry.org/docs/managing-environments/

CONTAINER

thy
lh”.
Bn .

Source

23

https://www.reddit.com/r/ProgrammerHumor/comments/c1987w/delivering_a_monolith_as_a_container/
https://www.reddit.com/r/ProgrammerHumor/comments/c1987w/delivering_a_monolith_as_a_container/

CONTAINERIZED PYTHON ENVIRONMENTS
CONTAINER IN GENERAL

* isolate applications and their dependencies (including OS, libs and tools)
e run consistently across different platforms

o more portable than virtual environments

e container: runtime instance of an image
e image: union of filesystem layers
e separates system and user data (bind-mounts, volumes)

e but: more setup costs
o requires a container build recipe
o some disk space required
o "housekeeping" is another topic *cough*

CONTAINER IN GENERAL: SCOPE

e virtual environments:

simple project requirements

o

o

local-only Python projects

o

rapid prototyping

o

IDE support

o

debugging
e containerization:

o multiple environment or deployment’ requirements

(e]

platform portability

o

reproducibility (performance, testing, debugging)

(e]

automate testing and deployment

o

Software-as-a-Service (see building guidelines)

o

system re-install/reset becomes trivial

') deployment: release project for customers, for HPC, ..., which includes:

e software release, installation, testing, performance monitoring, ...

25

https://12factor.net/
https://12factor.net/

DOCKER

e Efficient resource utilization (compared to VMSs)

e Large ecosystem and community support

e Docker Hub offers a vast repository of pre-built images
e HPC?

o Can introduce performance overhead in HPC workloads
o May require additional configuration for high-performance networking
o Limited support for specialized HPC hardware like InfiniBand

26

DOCKER

e Efficient resource utilization (compared to VMSs)

e Large ecosystem and community support

e Docker Hub offers a vast repository of pre-built images
e HPC?

o Can introduce performance overhead in HPC workloads
o May require additional configuration for high-performance networking
o Limited support for specialized HPC hardware like InfiniBand

SINGULARITY/APPTAINER

e Designed specifically for HPC and scientific computing
e Can convert Docker images to Singularity format

Native support for MPI and GPU acceleration

Better security model for multi-user HPC systems

Minimal performance overhead compared to bare-metal

apptainer and singularityCE mostly compatible (apptainer forked and maintained
by Linux Foundation)

26.1

CONTAINERIZED PYTHON ENVIRONMENTS
SIMPLE DOCKER CONTAINER RECIPE

./Dockerfile

Official Python image from the Docker Hub

- 1s a Debian 0S with minimal packages

FROM python:3.11.9-slim

Set the working directory in the container
WORKDIR /app

Copy the requirements file into the container
COPY requirements.txt .

Install the required Python packages

RUN pip install --no-cache-dir -r requirements.txt
Copy the rest of the application code into the container
COPY .

Specify the command to run the application

CMD ["python", "my-app.py"]

27

CONTAINERIZED PYTHON ENVIRONMENTS
SIMPLE DOCKER CONTAINER RECIPE

./Dockerfile

Official Python image from the Docker Hub

- 1s a Debian 0S with minimal packages

FROM python:3.11.9-slim

Set the working directory in the container
WORKDIR /app

Copy the requirements file into the container
COPY requirements.txt .

Install the required Python packages

RUN pip install --no-cache-dir -r requirements.txt
Copy the rest of the application code into the container
COPY .

Specify the command to run the application

CMD ["python", "my-app.py"]

e build and run:

build docker image

docker build -t my-python-app .

run it

docker run --name my-running-app my-python-app

271

MORE CONTAINER FEATURES

bind internal paths to user folders for dynamic content or results

o e.g. binding aninternal /output to ./my-results

you can run interactively commands like bash (if image has it)

uses caches and build layers, versioning and image tagging

container can communicate within own segmentable networks

docker images can be converted to singularity (e.g. for HPC systems)

28

PREPARED CONTAINER IMAGE

Our prepared docker image uncertainty-1lab currently contains:

e R4.3.3, Python 3.11.9

e torch 2.4.0+cpu, tensorflow 2.17.0, Jupyter, Keras, scikit, pymc, ...
e LaTeX, octave, gnuplot, gcg, ...

e jupyter can run: Python, R and octave

e can be converted to singularity for convenient HPC deployment

29

DOCKER COMPOSE

e docker compose simplifies (multiple) container orchestration

e simple commands like docker-compose up and docker-compose down
handle complex setups

e docker-compose.yaml readable configuration file

o define environments, paths, ports, networks, ...
o YAML is a human-friendly data language (more than JSON or XML)

30

DOCKER COMPOSE UNCERTAINTY-LAB

 configuration file (./docker-compose.yaml)

services:
lab: # name of service (configuration)

name of container (runs an dynamic instance of an image)
container_name: uncertainty-lab
name of image (blueprint for container)
- already prepared an image for you
image: user2@084/uncertainty-lab:latest
builds an image from local 'Dockerfile' instead

build: . # uncomment
ports:
- "'8888:8888" # routes public port :to: internal port
volumes:
- /path-to-my-projects:/home/jovyan/work
environment:

- JUPYTER_ENABLE_LAB=yes
jupyter token/password can be disabled (unsafe)
command: start-notebook.py --NotebookApp.token='"' --NotebookApp.password=""

PREPARED CONTAINER IMAGE

e run container

docker compose -f docker-compose.yml up
1f local ./Dockerfile should be used to build
docker compose -f docker-compose.yml up --build
e now the jupyter server is running inside the container

o access it via the link given in the console output
o or: http://0.0.0.0:8888/lab if token / password are disabled

32

http://0.0.0.0:8888/lab
http://0.0.0.0:8888/lab

PREPARED CONTAINER IMAGE

e run container

ﬁdocker compose -f docker-compose.yml up
if local ./Dockerfile should be used to build
- # docker compose -f docker-compose.yml up --build

e now the jupyter server is running inside the container

o access it via the link given in the console output
o or: http://0.0.0.0:8888/lab if token / password are disabled

INSTALLATION

e Windows

o Rancher Desktop: Download (free, open-source, more versatile)
o might require WSL2 (Windows Subsystem for Linux)

o or: Docker Desktop: Download (proprietary for enterprises)
o or: WSL2 and Docker daemon (without Docker Desktop)
o or: Podman
e Linux
o install docker and docker-compose from the repo

32.1

http://0.0.0.0:8888/lab
http://0.0.0.0:8888/lab
https://github.com/rancher-sandbox/rancher-desktop/releases/tag/v1.15.1
https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/desktop/install/windows-install/
https://podman.io/docs/installation
https://github.com/rancher-sandbox/rancher-desktop/releases/tag/v1.15.1
https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/desktop/install/windows-install/
https://podman.io/docs/installation

MORE ON DOCKER

Slides Docker Workshop by Felix Eckhofer:

https://extern.tribut.de/dw.html#/container

33

https://extern.tribut.de/dw.html#/container
https://extern.tribut.de/dw.html#/container

SINGULARITY WORKFLOW

Get or build your images (on the cluster):

e pull image from singularity hub:

singularity pull --name hello-world.sif shub://vsoch/hello-world
singularity run hello-world.sif

or

./hello-world.sif

34

SINGULARITY WORKFLOW

Get or build your images (on the cluster):

e pull image from singularity hub:

singularity pull --name hello-world.sif shub://vsoch/hello-world
singularity run hello-world.sif

or

./hello-world.sif

e build singularity image from docker hub

singularity pull --name lolcow.sif docker://godlovedc/lolcow
singularity run lolcow.sif

or

./1lolcow.sif

34.1

ALTERNATIVE: BUILD IMAGE LOCALLY

e building own images may require root privileges and will fail on remote systems
e (Linux) install singularity CE (Linux-only, yay -S singqularity-ce,...)
o but you also can run singularity via a docker image:

converts a docker image to a singularity file

docker run --volume $PWD:/go --privileged -t --rIm \
quay.io/singularity/singularity:v4.1.0 build \
uncertainty-lab.sif docker://user2@84/uncertainty-1lab

e move image to cluster: scp uncertainty-lab.sif
<USER>@mlogin@l1.hrz.tu-freiberg.de

35

https://docs.sylabs.io/guides/3.0/user-guide/installation.html
https://docs.sylabs.io/guides/3.0/user-guide/installation.html

LIVE DEMO

e singularity inspect
e singularity shell uncertainty-1lab
o python --version

o jupyter lab
o (forwarding from TUBAF cluster to client is blocked, but maybe jupyter hub will come?)

e singularity run --bind ./testfolder:/home/jovyan/work
uncertainty-1lab

e singularity exec --bind ./testfolder:/home/jovyan/work
uncertainty-lab.sif python --version

Links:

e TUBAF HPC Job Submission
e singularity-on-the-cluster

36

https://tu-freiberg.de/en/urz/service-portfolio/high-performance-computing-hpc/user-documentation/job-submission
https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/
https://tu-freiberg.de/en/urz/service-portfolio/high-performance-computing-hpc/user-documentation/job-submission
https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/

THANK You! && ANY QUESTIONS?

