
PYTHON ENVIRONMENTS & CONTAINER
M. Werner

1

DEFINITION ENVIRONMENT
• Python environment

◦ Python binaries and compiled libraries
◦ Python packages

• System environment
◦ operating system (Windows, Linux, …)
◦ drivers for devices (GPUs …) or software (databases, compiler, …)
◦ hardware (laptop, HPC cluster, …)

2

Relevant for:

• Installing Python packages
• Developing Python packages (or certain applications)

3

INSTALLING PYTHON PACKAGES

A Python package has environment requirements to work properly.

• requires certain Python binary version (e.g. Python 3.11 vs. 3.12)

• depends on other Python packages (e.g. numpy<=1.26.4)

• recommends a certain Python package
(e.g. onnxruntime-gpu for improved performance)

• requires certain system libraries and drivers (e.g. gcc 14.2, …)

Note: package authors do not always define package requirements properly

4

INSTALLING PYTHON PACKAGES

POSSIBLE OUTCOMES

• Package successfully installed without touching other packages
• Installation failed, package not installed
• Package installed along with its dependencies

◦ polluting Python environment
◦ other Python packages do not work anymore
◦ because complete dependency matrix has not been checked

(may taking ages though)
◦ rollback tedious

5

DEVELOPING PYTHON PACKAGES / APPS

• Testing different Python environments to maximise compatibility
◦ requirements like numpy==1.26.4 vs. numpy<=1.26.4 vs. numpy

• Testing different system environments
• Pinning down errors with certain 3rd party package versions

6

DEVELOPING PYTHON PACKAGES / APPS

• Testing different Python environments to maximise compatibility
◦ requirements like numpy==1.26.4 vs. numpy<=1.26.4 vs. numpy

• Testing different system environments
• Pinning down errors with certain 3rd party package versions

… requires:

• flexible management of comparable + reproducible environments
• easily testing other platforms
• opt-in for automation processes

(e.g. for automated tests and builds)
• ideally control the complete environment to compare a change of a single

component (performance regression testing, ...)

github continuous integration

6.1

https://docs.github.com/en/actions/use-cases-and-examples/building-and-testing
https://docs.github.com/en/actions/use-cases-and-examples/building-and-testing

TALK OUTLINE
• Which Python environment tools exist?

◦ system-wide and virtual environments
◦ container

• How to prevent or fix a messed up Python environment?
• Working with containers

7

WARNING: OFFENDING MATERIALS AHEAD

Source
8

https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/
https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/

WARNING: OFFENDING MATERIALS AHEAD

Source
9

https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/
https://www.reddit.com/r/ProgrammerHumor/comments/1fiisam/iredidamemeisawwithwhatactuallyhurtsme/

PYTHON ENVIRONMENT TOOLS
• Pip: default package installer, uses Python Package Index (PyPI), essential for

managing dependencies
• Conda: A package & environment management system, handles non-Python

dependencies, creates isolated environments
• Pipenv: Combines pip and virtualenv, simplifies dependency management, scans

for security vulnerabilities in dependencies
• Poetry: dependency management and packaging focus, uses a

pyproject.toml , automatically creates virtual environments for projects
• Virtualenv: older tool for creating Python environments (inferior to pipenv)
• Venv: built-in module in Python 3.3+, creates lightweight virtual environments,

less features than Virtualenv
• Pyenv: manages multiple Python versions, but not environments directly (no

Windows supported)
• pyvenv: deprecated
• Mamba: fast alternative to Conda, may speed up environment resolution /

package installation, compatible with Conda packages
• Micromamba: like Mamba without overhead of full Conda installation
• Docker: [not specific to Python] creates containerized environments,

encapsulates applications along with their system dependencies 10

PYTHON ENVIRONMENT TOOLS
• Pip: default package installer, uses Python Package Index (PyPI), essential for

managing dependencies
• Conda: A package & environment management system, handles non-Python

dependencies, creates isolated environments
• Pipenv: Combines pip and virtualenv, simplifies dependency management, scans

for security vulnerabilities in dependencies
• Poetry: dependency management and packaging focus, uses a

pyproject.toml , automatically creates virtual environments for projects
• Virtualenv: older tool for creating Python environments (inferior to pipenv)
• Venv: built-in module in Python 3.3+, creates lightweight virtual environments,

less features than Virtualenv
• Pyenv: manages multiple Python versions, but not environments directly (no

Windows supported)
• pyvenv: deprecated
• Mamba: fast alternative to Conda, may speed up environment resolution /

package installation, compatible with Conda packages
• Micromamba: like Mamba without overhead of full Conda installation
• Docker: [not specific to Python] creates containerized environments,

encapsulates applications along with their system dependencies 11

ANACONDA
• comes with 450+ packages pre-installed, stored in:

◦ C:\Users\<your-username>\Anaconda3\pkgs\
◦ anaconda repository itself contains couple of thousands packages

• Windows does not know where Python is (see)
◦ Anaconda activates its environment at launch

• Anaconda (conda) has its own package repository
• Anaconda’s defaults channel: more stable and secure than community-run

channels like conda-forge
◦ may contain older package versions than publicly available

• updating Anaconda from within can become a challenge (just reinstall?)
• pip is only a package manager: much larger collection of Python packages

(PyPI)

FAQ

12

https://docs.anaconda.com/working-with-conda/reference/faq#distribution-faq-windows-path
https://docs.anaconda.com/working-with-conda/reference/faq#distribution-faq-windows-path

(ANA)CONDA

Based on a :

• conda = Python package + command line tool
• Miniconda installer = Python + conda
• Anaconda installer = Python + conda + meta package anaconda
• meta Python package anaconda =
• Anaconda installer = Miniconda installer + conda install anaconda

stackoverflow post

500+ dependencies and packages

13

https://stackoverflow.com/a/58147674
https://docs.anaconda.com/anaconda/allpkglists/
https://stackoverflow.com/a/58147674
https://docs.anaconda.com/anaconda/allpkglists/

CONDA AND PIP

Search packages

• conda search package-name --info shows requirements of a package
• pip index versions package-name is experimental

◦ pip search ... (deactivated), use or pip_search or pypisearch package

• conda list package-name shows installed package version
• pip show package-name shows installed package version

PyPI website

14

https://pypi.org/
https://pypi.org/

CONDA AND PIP

Search packages

• conda search package-name --info shows requirements of a package
• pip index versions package-name is experimental

◦ pip search ... (deactivated), use or pip_search or pypisearch package

• conda list package-name shows installed package version
• pip show package-name shows installed package version

PyPI website

Check environment

• conda check
• pip check
• pip freeze --user (use pipreqs for creating project requirements.txt)

14.1

https://pypi.org/
https://pypi.org/

CONDA AND PIP

Installing Packages:

conda pip effect
conda install package-name pip install package-name might change environment

… --dry-run
… --dry-run

(pip 22.2+) see what would happen

… --no-update-deps … --no-deps
only package is installed,
may not work properly

… --freeze-installed -- does not change existing packages

Note: During install conda automatically checks for conflicts which can take quite a
while ("Solving environment …"). It reports the changes and asks you to continue the
installation.

docs: | conda install pip install

15

https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/
https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/

CONDA AND PIP

Installing Packages:

conda pip effect
conda install package-name pip install package-name might change environment

… --dry-run
… --dry-run

(pip 22.2+) see what would happen

… --no-update-deps … --no-deps
only package is installed,
may not work properly

… --freeze-installed -- does not change existing packages

Note: During install conda automatically checks for conflicts which can take quite a
while ("Solving environment …"). It reports the changes and asks you to continue the
installation.

docs: | conda install pip install

EXTRA NOTE

pip can directly install a package from :version control systems like git

python -m pip install git+https://github.com/pypa/sampleproject.git@main

15.1

https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/
https://docs.conda.io/projects/conda/en/latest/commands/install.html
https://pip.pypa.io/en/stable/cli/pip_install/
https://pip.pypa.io/en/stable/topics/vcs-support/
https://pip.pypa.io/en/stable/topics/vcs-support/

CONDA AND PIP

Uninstall / Rollback

• conda uninstall package-name --dry-run
◦

◦ problematic, if a global package is removed where virtual environments relied on it

• pip uninstall package-name (no dry-run option)
◦ only removes package (use pipdeptree package to investigate)

• conda install --revision NUMBER
◦ restores environment, see

• no pip equivalent for revisions, but can be done with:
◦ pip freeze > requirements.txt
◦ and pip install -r requirements.txt as rollback

• conda list --revisions , conda clean -i , conda info , conda
config --show
◦ might help with issues, also see

• pip pendants: pip cache info , pip cache purge , python -m site

also removes packages that depend on it

guide

conda cheatsheet

16

https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

CONDA AND PIP

Uninstall / Rollback

• conda uninstall package-name --dry-run
◦

◦ problematic, if a global package is removed where virtual environments relied on it

• pip uninstall package-name (no dry-run option)
◦ only removes package (use pipdeptree package to investigate)

• conda install --revision NUMBER
◦ restores environment, see

• no pip equivalent for revisions, but can be done with:
◦ pip freeze > requirements.txt
◦ and pip install -r requirements.txt as rollback

• conda list --revisions , conda clean -i , conda info , conda
config --show
◦ might help with issues, also see

• pip pendants: pip cache info , pip cache purge , python -m site

also removes packages that depend on it

guide

conda cheatsheet

Manually re-installing certain packages if you know the working versions:

• conda install numpy==1.26.4 or pip install -U numpy==1.26.4
16.1

https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
https://docs.conda.io/projects/conda/en/latest/commands/remove.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#restoring-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

EXTRA NOTES

MIXING ENVIRONMENT TOOLS

Do not switch between pip and conda back and forth. When such conflicts occur,
just delete the environment and :

OTHER PYTHON VERSION REQUIRED

You can use (non-Windows) or (Windows), but it may
.

DEPENDENCY HELL

Sometimes the requirements for a project are too tight or too loose, experiment with
this first. But if there is still no conflict-free combination of Python packages, maybe
an alternative package exist. Ask or (AI chat).

DEPLOYMENT

If a project has complex dependencies, helps to reduce time-consuming
compilation by generating and packaging all project’s dependencies (such
'wheelhouse' is not platform-portable).

recreate

using pip only after all other requirements have been installed via conda is the safest practice.
Additionally, pip should be run with the “--upgrade-strategy only-if-needed” [default]

pyenv pyenv-win interfer with a
global installation

Awesome Python perplexity.ai

pip wheel

17

https://www.anaconda.com/blog/using-pip-in-a-conda-environment
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://python.libhunt.com/
https://www.perplexity.ai/
https://pip.pypa.io/en/stable/topics/repeatable-installs/#using-a-wheelhouse-aka-installation-bundles
https://www.anaconda.com/blog/using-pip-in-a-conda-environment
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://stackoverflow.com/questions/57640272/how-can-i-install-anaconda-aside-an-existing-pyenv-installation-on-osx
https://python.libhunt.com/
https://www.perplexity.ai/
https://pip.pypa.io/en/stable/topics/repeatable-installs/#using-a-wheelhouse-aka-installation-bundles

VIRTUAL ENVIRONMENTS

Source
18

https://www.reddit.com/r/ProgrammerHumor/comments/yqcdas/gis_and_ml_is_a_whole_new_world_of_hurt/
https://www.reddit.com/r/ProgrammerHumor/comments/yqcdas/gis_and_ml_is_a_whole_new_world_of_hurt/

VIRTUAL ENVIRONMENTS
a.k.a. keep your specific packages in a subfolder:

some python project
├── ...
├── .venv # some name for your virtual env.
│ ├── bin # Python binaries e.g. python3.11
│ ├── lib # Python packages e.g. matplotlib
│ └── pyvenv.cfg # paths to Python binaries, etc.
├── ...

19

CONDA

• open (Anaconda) prompt (see also)conda environment files
cd your-project-folder
optionally specify Python version or packages
conda create --name .venv python=3.9 scipy=0.17.3 babel
activate environment
conda activate .venv
...
conda deactivate # if needed

20

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file

CONDA

• open (Anaconda) prompt (see also)conda environment files
cd your-project-folder
optionally specify Python version or packages
conda create --name .venv python=3.9 scipy=0.17.3 babel
activate environment
conda activate .venv
...
conda deactivate # if needed

VENV

• see also how venvs works
python -m venv .venv # .venv: folder name, as you like
source .venv/bin/activate # Windows: .venv\Scripts\activate.bat
...
deactivate # if needed

20.1

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.python.org/3/library/venv.html#how-venvs-work
https://docs.python.org/3/library/venv.html#how-venvs-work

VIRTUAL ENVIRONMENTS WORKFLOW
Manually managing Python environments (IDE still might be able to work with it):

• only once: create virtual environment folder in your project folder
• activate virtual environment
• run your Python programs in there

(jupyter lab , pip install package-name , …)
• optional: write a script to automate environment activation and programs
• optional: Things gone wrong? Remove the environment folder and rebuild it

21

VIRTUAL ENVIRONMENTS WORKFLOW
Manually managing Python environments (IDE still might be able to work with it):

• only once: create virtual environment folder in your project folder
• activate virtual environment
• run your Python programs in there

(jupyter lab , pip install package-name , …)
• optional: write a script to automate environment activation and programs
• optional: Things gone wrong? Remove the environment folder and rebuild it

IDE & VIRTUAL ENVIRONMENTS

•

◦ pip, venv, conda[miniconda], and more via extensions (,...)

•

◦ pip, venv, conda, pipenv, poetry, ...

• ...

Visual Studio Code
poetry

pycharm

21.1

https://code.visualstudio.com/docs/python/environments
https://marketplace.visualstudio.com/items?itemName=zeshuaro.vscode-python-poetry
https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html
https://code.visualstudio.com/docs/python/environments
https://marketplace.visualstudio.com/items?itemName=zeshuaro.vscode-python-poetry
https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html

CONCLUSION
Most likely you want Python environments, if at least one of your Python projects has
diverging environment requirements, which interfer with your system-wide installed
Python environment.

You might want to create a Python environment manually,

• if you cannot use an IDE (e.g. on an HPC system),
• if you need other environment tools like or pyenv,
• if many projects share the same environment,
• ...

poetry

22

https://python-poetry.org/docs/managing-environments/
https://python-poetry.org/docs/managing-environments/

CONTAINER

Source

23

https://www.reddit.com/r/ProgrammerHumor/comments/c1987w/delivering_a_monolith_as_a_container/
https://www.reddit.com/r/ProgrammerHumor/comments/c1987w/delivering_a_monolith_as_a_container/

CONTAINERIZED PYTHON ENVIRONMENTS
CONTAINER IN GENERAL

• isolate applications and their dependencies (including OS, libs and tools)
• run consistently across different platforms

◦ more portable than virtual environments

• container: runtime instance of an image
• image: union of filesystem layers
• separates system and user data (bind-mounts, volumes)
• but: more setup costs

◦ requires a container build recipe
◦ some disk space required
◦ "housekeeping" is another topic *cough*

24

CONTAINER IN GENERAL: SCOPE

• virtual environments:
◦ simple project requirements
◦ local-only Python projects
◦ rapid prototyping
◦ IDE support
◦ debugging

• containerization:
◦ multiple environment or deployment¹ requirements
◦ platform portability
◦ reproducibility (performance, testing, debugging)
◦ automate testing and deployment
◦ Software-as-a-Service (see)
◦ system re-install/reset becomes trivial
◦ …

¹) deployment: release project for customers, for HPC, …, which includes:

• software release, installation, testing, performance monitoring, …

building guidelines

25

https://12factor.net/
https://12factor.net/

DOCKER

• Efficient resource utilization (compared to VMs)
• Large ecosystem and community support
• Docker Hub offers a vast repository of pre-built images
• HPC?

◦ Can introduce performance overhead in HPC workloads
◦ May require additional configuration for high-performance networking
◦ Limited support for specialized HPC hardware like InfiniBand

26

DOCKER

• Efficient resource utilization (compared to VMs)
• Large ecosystem and community support
• Docker Hub offers a vast repository of pre-built images
• HPC?

◦ Can introduce performance overhead in HPC workloads
◦ May require additional configuration for high-performance networking
◦ Limited support for specialized HPC hardware like InfiniBand

SINGULARITY/APPTAINER

• Designed specifically for HPC and scientific computing
• Can convert Docker images to Singularity format
• Native support for MPI and GPU acceleration
• Better security model for multi-user HPC systems
• Minimal performance overhead compared to bare-metal
• apptainer and singularityCE mostly compatible (apptainer forked and maintained

by Linux Foundation)

26.1

CONTAINERIZED PYTHON ENVIRONMENTS
SIMPLE DOCKER CONTAINER RECIPE

./Dockerfile
Official Python image from the Docker Hub
- is a Debian OS with minimal packages
FROM python:3.11.9-slim
Set the working directory in the container
WORKDIR /app
Copy the requirements file into the container
COPY requirements.txt .
Install the required Python packages
RUN pip install --no-cache-dir -r requirements.txt
Copy the rest of the application code into the container
COPY . .
Specify the command to run the application
CMD ["python", "my-app.py"]

27

CONTAINERIZED PYTHON ENVIRONMENTS
SIMPLE DOCKER CONTAINER RECIPE

./Dockerfile
Official Python image from the Docker Hub
- is a Debian OS with minimal packages
FROM python:3.11.9-slim
Set the working directory in the container
WORKDIR /app
Copy the requirements file into the container
COPY requirements.txt .
Install the required Python packages
RUN pip install --no-cache-dir -r requirements.txt
Copy the rest of the application code into the container
COPY . .
Specify the command to run the application
CMD ["python", "my-app.py"]

• build and run:
build docker image
docker build -t my-python-app .
run it
docker run --name my-running-app my-python-app

27.1

MORE CONTAINER FEATURES

• bind internal paths to user folders for dynamic content or results
◦ e.g. binding an internal /output to ./my-results

• you can run interactively commands like bash (if image has it)
• uses caches and build layers, versioning and image tagging
• container can communicate within own segmentable networks
• docker images can be converted to singularity (e.g. for HPC systems)
• …

28

PREPARED CONTAINER IMAGE
Our prepared docker image uncertainty-lab currently contains:

• R 4.3.3, Python 3.11.9
• torch 2.4.0+cpu, tensorflow 2.17.0, Jupyter, Keras, scikit, pymc, …
• LaTeX, octave, gnuplot, gcc, …
• jupyter can run: Python, R and octave
• can be converted to singularity for convenient HPC deployment

29

DOCKER COMPOSE

• docker compose simplifies (multiple) container orchestration
• simple commands like docker-compose up and docker-compose down

handle complex setups
• docker-compose.yaml readable configuration file

◦ define environments, paths, ports, networks, …
◦ YAML is a human-friendly data language (more than JSON or XML)

30

DOCKER COMPOSE UNCERTAINTY-LAB

• configuration file (./docker-compose.yaml)
services:
lab: # name of service (configuration)

name of container (runs an dynamic instance of an image)
container_name: uncertainty-lab
name of image (blueprint for container)
- already prepared an image for you
image: user2084/uncertainty-lab:latest
builds an image from local 'Dockerfile' instead
build: . # uncomment
ports:
- "8888:8888" # routes public port :to: internal port

volumes:
- /path-to-my-projects:/home/jovyan/work

environment:
- JUPYTER_ENABLE_LAB=yes

jupyter token/password can be disabled (unsafe)
command: start-notebook.py --NotebookApp.token='' --NotebookApp.password=''

31

PREPARED CONTAINER IMAGE
• run container

• now the jupyter server is running inside the container
◦ access it via the link given in the console output
◦ or: if token / password are disabled

docker compose -f docker-compose.yml up
if local ./Dockerfile should be used to build
docker compose -f docker-compose.yml up --build

http://0.0.0.0:8888/lab

32

http://0.0.0.0:8888/lab
http://0.0.0.0:8888/lab

PREPARED CONTAINER IMAGE
• run container

• now the jupyter server is running inside the container
◦ access it via the link given in the console output
◦ or: if token / password are disabled

docker compose -f docker-compose.yml up
if local ./Dockerfile should be used to build
docker compose -f docker-compose.yml up --build

http://0.0.0.0:8888/lab

INSTALLATION

• Windows
◦ Rancher Desktop: (free, open-source, more versatile)

◦ might require (Windows Subsystem for Linux)

◦ or: Docker Desktop: (proprietary for enterprises)
◦ or: WSL2 and Docker daemon (without Docker Desktop)
◦ or:

• Linux
◦ install docker and docker-compose from the repo

Download
WSL2

Download

Podman

32.1

http://0.0.0.0:8888/lab
http://0.0.0.0:8888/lab
https://github.com/rancher-sandbox/rancher-desktop/releases/tag/v1.15.1
https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/desktop/install/windows-install/
https://podman.io/docs/installation
https://github.com/rancher-sandbox/rancher-desktop/releases/tag/v1.15.1
https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.docker.com/desktop/install/windows-install/
https://podman.io/docs/installation

MORE ON DOCKER

Slides Docker Workshop by Felix Eckhofer:

https://extern.tribut.de/dw.html#/container

33

https://extern.tribut.de/dw.html#/container
https://extern.tribut.de/dw.html#/container

SINGULARITY WORKFLOW
Get or build your images (on the cluster):

• pull image from singularity hub:
singularity pull --name hello-world.sif shub://vsoch/hello-world
singularity run hello-world.sif
or
./hello-world.sif

34

SINGULARITY WORKFLOW
Get or build your images (on the cluster):

• pull image from singularity hub:
singularity pull --name hello-world.sif shub://vsoch/hello-world
singularity run hello-world.sif
or
./hello-world.sif

• build singularity image from docker hub
singularity pull --name lolcow.sif docker://godlovedc/lolcow
singularity run lolcow.sif
or
./lolcow.sif

34.1

ALTERNATIVE: BUILD IMAGE LOCALLY

• building own images may require root privileges and will fail on remote systems
• (Linux) install singularity CE (, yay -S singularity-ce , ...)

◦ but you also can run singularity via a docker image:

• move image to cluster: scp uncertainty-lab.sif
<USER>@mlogin01.hrz.tu-freiberg.de

Linux-only

converts a docker image to a singularity file
docker run --volume $PWD:/go --privileged -t --rm \
quay.io/singularity/singularity:v4.1.0 build \
uncertainty-lab.sif docker://user2084/uncertainty-lab

35

https://docs.sylabs.io/guides/3.0/user-guide/installation.html
https://docs.sylabs.io/guides/3.0/user-guide/installation.html

LIVE DEMO
• singularity inspect
• singularity shell uncertainty-lab

◦ python --version
◦ jupyter lab
◦ (forwarding from TUBAF cluster to client is blocked, but maybe jupyter hub will come?)

• singularity run --bind ./testfolder:/home/jovyan/work
uncertainty-lab

• singularity exec --bind ./testfolder:/home/jovyan/work
uncertainty-lab.sif python --version

Links:

•

•

TUBAF HPC Job Submission
singularity-on-the-cluster

36

https://tu-freiberg.de/en/urz/service-portfolio/high-performance-computing-hpc/user-documentation/job-submission
https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/
https://tu-freiberg.de/en/urz/service-portfolio/high-performance-computing-hpc/user-documentation/job-submission
https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/

THANK YOU! && ANY QUESTIONS?

37

