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S. Bérešová, M. Béreš, T. Luber Surrogate-Accelerated MCMC for Bayesian Inverse Problems 1/30



Bayesian inverse problem - notation and problem setting

Inverse problem

What is given: forward model G : Rn → Rm, its noisy outputs y ∈ Rm

What is unknown: input parameters u ∈ Rn

In the case of the Bayesian inversion, we work with random variables:

• unknown parameters U : Ω → Rn

• observed data Y : Ω → Rm

• observational noise Z : Ω → Rm

and some noise model, e.g. additive: Y = G (U) + Z

Posterior distribution (i.e. conditional distribution of U given Y = y) is given by its

probability density function (pdf) as

fU|Y (u|y) = fZ (y − G (u)) fU (u)´
Rn fZ (y − G (v)) fU (v) dv

∝ fZ (y − G (u))︸ ︷︷ ︸
data likelihood

fU (u)︸ ︷︷ ︸
prior

(fZ . . . noise pdf, fU . . . prior pdf)
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Example of a geotechnical inverse problem

• available measurements: 4 time series (pore pressure in 4 control points during 1

year), coming from a tunnel sealing experiment (TSX) in Canada

• observed data: pore pressure in these 4 control points and 18 time points

3.5 m

4.375 m

1.5 m

4 m

4 m

1.5 mTSX

HGT1-4

HGT1-5

HGT2-4
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• forward model: linear poroelasticity

• unknown parameters: permeability, storativity, Young’s modulus, Poisson’s ratio

in each subdomain; initial stresses in x- and y - direction
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Example of a geotechnical inverse problem

9 subdomains:

Figure 1: Whole domain (left), cutout (right)
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Sampling in Bayesian inversion

• result of Bayesian inversion = posterior distribution

fU|Y (u|y) ∝ fZ (y − G (u))︸ ︷︷ ︸
data likelihood

fU (u)︸ ︷︷ ︸
prior

• given by the Bayes’ theorem, known up to a multiplicative constant

• information about this distribution can be obtained by sampling

• MCMC methods based on the Metropolis-Hastings algorithm are designed for these

situations

Notation

Since y is fixed, target distribution can be represented (up to a normalizing constant)

by a function f : Rn → R such that

f (u) = fZ (y − G (u)) fU (u) .

S. Bérešová, M. Béreš, T. Luber Surrogate-Accelerated MCMC for Bayesian Inverse Problems 5/30



Metropolis-Hastings (MH) algorithm [Metropolis, 1953; Hastings, 1970]

Given:

• conditional density q : Rn × Rn → R (proposal distribution)

• initial sample u(0) ∈ Rn such that f
(
u(0)

)
> 0

Metropolis-Hastings (MH)

For k = 0, 1, . . .

1. Propose a sample v from q
(
·|u(k)

)
.

2. With probability a (u, v) = min

{
1,

q(u(k)|v)f (v)
q(v|u(k))f (u(k))

}
, accept v , i.e., set u(k+1) = v .

Otherwise, reject v , i.e., set u(k+1) = u(k).
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Delayed acceptance MH algorithm (DAMH) [Christen, Fox; 2005]

Metropolis-Hastings (MH)

For k = 0, 1, ...:

• Propose a sample v from q
(
·|u(k)

)
.

• Accept v with probability

min

{
1,

q
(
u(k)|v

)
fZ (y−G(v))fU (v)

q(v|u(k))fZ (y−G(u(k)))fU(u(k))

}
.

Delayed aceptance MH

For k = 0, 1, ...:

• Propose a sample v from q
(
·, u(k)

)
.

• Pre-accept v with probability

min

{
1,

q
(
u(k)|v

)
fZ (y−G̃(v))fU (v)

q(v|u(k))fZ (y−G̃(u(k)))fU(u(k))

}
;

• if v is pre-accepted, accept it with

probability

min

{
1,

fZ

(
y−G̃

(
u(k)

))
fZ (y−G(v))

fZ (y−G̃(v))fZ (y−G(u(k)))

}
.

• better surrogate model −→ lower number of unnecessary G evaluations

• during the DAMH algorithm, new snapshots
(
u(k),G

(
u(k)

))
are obtained

• they can be used to update the surrogate model G̃

−→ DAMH algorithm with surrogate model updates (DAMH-SMU)
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Brief overview of MCMC acceleration approaches

Endless possibilities, for example:

• Adaptive Metropolis (Haario 2001) - adaptation of the proposal distribution →
converges to Gaussian approximation of the target distribution

• Delayed rejection MH (Peskun 1973), DRAM (Haario 2006) - when a proposal is

rejected, instead of retaining the same position, propose a new candidate

• Hamiltonian MC (1987), NUTS - proposal based on a Hamiltonian dynamics

evolution, requires differentiation

• Delayed acceptance MH (Christen, Fox 2005)
• adaptive error model construction (Cui et al 2011) - error between fine and coarse

model approximated by Gaussian distribution

• multilevel variants (e.g. Dodwell et al 2015, Lykkegaard et al 2020) - require

a hierarchy of approximations of the target distribution

• subchain on approximated distribution (instead of single proposal)

• DREAM (Vrugt et al 2008) - proposal based on differential evolution learning

strategy, especially for multimodal target distributions

• many ways of using surrogate models of G , resulting in exact/approximate sampling

and mix of all above.
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Resulting algorithm (DAMH-SMU + AM + subchains)

Collect an initial set S of snapshots of G , i.e., pairs
(
u(i),G

(
u(i)

))
.

For k = 0, 1, . . .

1. Construct surrogate model G̃ (k) : Rn → Rm based on snapshots in S .

2. Generate proposal v using a subchain: Set w (0) = u(k). For
m = 0, 1, . . . ,mmax − 1

2.1 Propose a sample z from q(k)
(
·|w (m)

)
.

2.2 With probability ã
(
w (m), z

)
= min

{
1,

q(k)
(
w (m)|z

)
fZ

(
y−G̃ (k)(z)

)
fU (z)

q(k)(z|w (m))fZ (y−G̃ (k)(w (m)))fU(w (m))

}
,

accept z, i.e., set w (m+1) = z. Otherwise, set w (m+1) = w (m).

3. Set v = w (mmax).

4. With probability aQ̃,µ

(
u(k), v

)
= min

{
1,

fZ (y−G̃ (k)(u(k)))fZ (y−G(v))

fZ (y−G̃ (k)(v))fZ (y−G(u(k)))

}
, accept v , i.e.,

set u(k+1) = v . Otherwise, reject v , i.e., set u(k+1) = u(k).

5. Add (v ,G (v)) to the set of snapshots.

6. Construct updated proposal pdf q(k+1).
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Theoretical properties of MCMC methods (1)

MCMC method = method for the construction of an ergodic Markov chain invariant

with respect to (wrt) a target probability measure µ

Metropolis-Hastings algorithm

produces a Markov chain with transition kernel

K (u, dv) = a (u, v)Q (u, dv)︸ ︷︷ ︸
accepting proposed sample

+

(ˆ
U
(1− a (u,w))Q (u, dw)

)
δu (dv)︸ ︷︷ ︸

rejecting proposed sample

,

Q : U × B (U) → R . . . proposal kernel (e.g. Gaussian random walk),

a : U × U → [0, 1] . . . acceptance probability, depends on µ and Q

• invariant wrt µ

• ergodic under mild conditions (aperiodicity and µ-irreducibility)

In computational practice U = Rn (n ∈ N), Q, µ have Lebesgue densities (i.e. pdf),

e.g., Q (u, dv) = q (v |u)λ (dv) : Rn × B (Rn) → R
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Theoretical properties of MCMC methods (2)

DAMH is in fact the standard MH algorithm with proposal kernel chosen as another

MH kernel

Q̃ (u, dv) = ã (u, v)Q (u, dv) +

(ˆ
U
(1− ã (u,w))Q (u, dw)

)
δu (dv) ,

invariant wrt an auxiliary measure µ̃ ≈ µ represented by a function

f̃ (u) = fZ
(
y − G̃ (u)

)
fU (u)

Consider a MH algorithm producing an ergodic Markov chain invariant wrt f . Assume

that supp f̃ ⊃ supp f . Then the DA version of the algorithm also produces an ergodic

Markov chain invariant wrt f .

DAMH with surrogate model updates (DAMH-SMU)

• G̃ changes during the sampling process

• with changes of G̃ , the proposal distribution also changes → adaptive method

• ergodicity can be established e.g. by satisfying diminishing adaptation property and

containment property
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Ergodicity of adaptive MCMC methods

{Kγ : γ ∈ W} ... all possible transition kernels, all of them invariant wrt µ

U(k) ... random variable representing the k-th sample

Γ(k) ... random variable representing the index of the k-th transiton kernel

P(k)
u,γ ... probability measure such that P(k)

u,γ (A) = Pr
(
U(k) ∈ A|U(0) = u ∧ Γ(0) = γ

)
for all A ∈ B (U)

A(k) = supu∈U

(
dTV

(
K

Γ(k+1) (u, ·) ,KΓ(k)
(u, ·)

))
... amount of adaptation done between iterations k, k +1

An adaptive MCMC algorithm satisfies the diminishing adaptation property if for all ε > 0,

u ∈ U , and γ ∈ W,

lim
k→∞

Pr
(
A(k) > ε|U(0) = u ∧ Γ(0) = γ

)
= 0

Can be usually ensured by the design of the rules for the performed adaptations. With

increasing k, the adaptively chosen parameters can be modified by decreasing amounts, or the

adaptation step itself can be applied with decreasing probability.

An adaptive MCMC algorithm satisfies the containment condition if for all u ∈ U , γ ∈ W,

ε > 0, and δ > 0, there is N ∈ N such that

Pr
(
inf

{
k ≥ 1 : dTV

(
K k
Γ(k)

(
u(k), ·

)
, µ

)
≤ ε

}
≤ N|U(0) = u ∧ Γ(0) = γ

)
≥ 1− δ

for all k ∈ N.
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Efficiency assessment (1)

Standard Metropolis-Hastings:

CpUS = τ

DAMH-based methods:

CpUS = τ · ”cost per one sample” = τ
Nfull + csurrNsurr

chain length

• CpUS ... cost per one almost uncorrelated sample

• τ ... autocorrelation time estimation (!)

• csurr ... cost of surrogate model evaluation (relative to the cost of the full model)

• Nfull ... number of full model evaluations

• Nsurr ... number of surrogate model evaluations

Effective sample size:

ESS =
chain length

CpUS
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Efficiency assessment (2)
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• further improvements:

• surrogate model updates during the sampling process - less rejections

• subchains - lower autocorrelation
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Surrogate models

= non-intrusive surrogate models that can be constructed from collected snapshots(
u(k),G

(
u(k)

))
and adaptively refined

Implemented within the inhouse Python library SurrDAMH

(github.com/dom0015/surrDAMH):

• polynomial chaos approximation - complete polynomials, adaptive increase of

maximum degree based on available data (using scikit-learn)

• radial basis functions interpolation (RBF) - combined with polynomials up to

chosen degree (using SciPy)

• approximation using nearest points identified using kd-tree (using SciPy)

• neural networks - multilayer perceptron regressor (using PyTorch)
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Neural network surrogate model

• multilayer perceptron regressor (MLP)

• tanh activation

• ADAM (Adaptive Moment Estimation) learning algorithm,

combination with L-BFGS also tested

• MSE (mean square error) loss function

Use of neural networks during the sampling process

• data for the surrogate (MLP) generated incrementally during the sampling process

• MLP is trained continuously, training data are added when available

• whenever new data arrives, MLP is trained on them (using ADAM) until some

threshold loss is achieved before appending them to the whole training set

• training can be skipped when target loss is achieved and no new data is added

(until some new data arrives)
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Surrogate model updates (experiment with similar problem)

Surrogate model updates during the sampling process lead to reducing the number of

rejected samples:
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MLP L1 MLP MSE RBF Poly

MPL: multilayer perceptron

RBF: thin plate spline

ϕ (r) = r2 log (r)

Poly: complete polynomials
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Back to the geotechnical problem

• observed data: pore pressure in 4 control points and 18 time points

→ Y : Ω → R72, y ∈ R72

• unknown parameters:
• permeability, storativity, Young’s modulus, Poisson’s ratio in each of 9 subdomains

(4 · 9 parameters)

• initial stresses σx , σy (+2 parameters)

→ U : Ω → R38

• forward model: linear poroelasticity, G : R38 → R72 (using FEniCSx - DOLFINx)
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Other parameters of the Bayesian inverse problem

• fU ... prior pdf: independent components

log10(mean) log10(mode)

permeability LogN (−40, 3) -15.42 -21.28

storativity LogN (−25, 3) -8.90 -14.77

Young’s modulus LogN (26, 2) 12.16 9.55

Poisson’s ratio U (0, 0.5)

initial stresses LogN (16, 2) 7.82 5.21

(internally, N (0, 1) is used, transformation is done before sending to the solver G)

• fZ ... noise pdf: additive Gaussian noise with covariance

cov (x1, x2) = σ2 exp

(
∥x1 − x2∥

λ

)
, λ = 50, σ = 20

(for each time series)

−→ Using MCMC methods, we obtain samples in 38-dimensional state space. How to

analyse them and visualize?
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Best fit
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Posterior mean
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Posterior standard deviation (compared to internal prior N (0, 1))
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Bayesian inversion results - posterior reflected into measurements
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S. Bérešová, M. Béreš, T. Luber Surrogate-Accelerated MCMC for Bayesian Inverse Problems 24/30



Other model problems inspired by geotechnical applications

• unknown parameters: material parameters in the domain of interest (constant

subdomains, Gaussian random field, etc.)

• observed data: e.g. measurements of pore pressure, boundary flow, ...

Aim: probabilistic description of unknown parameters
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Other model problems - estimation of fracture apertures

• unknown parameters: aperture of two fractures

• forward model: Darcy flow in a square domain (0, 10)× (0, 10)

• observed data: flow through chosen boundary parts

Result: posterior distribution of fracture apertures (each vertical slice represents the

histogram of the aperture in the corresponding fracture point)
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Implementation - inhouse library SurrDAMH in Python

• for posterior sampling using MH, DAMH, DAMH-SMU algorithms

• available at github.com/dom0015/surrDAMH

Parallelization using MPI:

• several Markov chains generated in parallel

• the chains share one surrogate model, refined

using data from all chains

• they also share a pool of solvers (processes that
evaluate G)

• computationally most demanding part

• to keep the solvers busy, number of solvers

should be lower than number of chains

(if the solver is not a parallel application, it can run

locally on samplers without the use of solvers pool)

COLLECTOR

(collects snapshots
and updates

surrogate model)

SAMPLER 1

(sampling process)

SAMPLER num_samplers

(sampling process)

SOLVERS POOL

(manages a pool
of spawned solvers)

SOLVER 1

(solves the forward
problem, utilizes several

MPI processes)

SOLVER num_solvers

(solves the forward
problem, utilizes several

MPI processes)
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SurrDAMH library - usage

Inputs to the sampling framework:

• configuration (basic settings, e.g. number of solvers, initial samples, ...)

• prior

• likelihood

• solver specification

• surrogate model updater

• list of stages

Example:

• stage 1: MH (short run, construction of an initial surrogate model)

• stage 2: DAMH-SMU, higher proposal SD

• stage 3: DAMH (surrogate model is used but no longer updated)

• post-processing of obtained samples, visualization, autocorrelation analysis
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SurrDAMH usage - an example
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