Data	SEMIC. MA. Nr. 3213 / Version: 20.07.2016 🛸 Start Year: WiSe 2016
Data:	
	Examination number:
Module Name:	22306 Semiconductors
(English):	
Responsible:	Gumeniuk. Roman / Prof.
Lecturer(s):	Gumeniuk, Roman / Prof.
Institute(s):	Institute of Experimental Physics
Duration:	1 Semester(s)
Competencies:	The module conveys basic knowledge on the principles of semiconductor materials and devices based on their crystallographic and electronic
	structures. Students will get familiar with the electronic properties of
	semiconductors and should be able to calculate charge carrier
	concentrations and to describe and understand semiconductor devices
	based on energy band schemes.
Contents:	The lecture is divided in four consecutive parts:
	• Structure of solids: crystal structure in general, examples of
	element structures and compound structures.
	• Electrons in matter: energy bands, zone schemes, Brillouin
	zones, band structures, Fermi distribution, density of states,
	population density, effective mass, conductivity.
	 Semiconductors: intrinsic vs. extrinsic semiconductors, band
	schemes, conductivity, possible defects.
	 Semiconductor devices: metal-semiconductor contact, p-n
	junction, diodes, transistors, memory devices, device fabrication.
Literature:	Standard references on solid state physics and semiconductors for
	physicists, e.g.:
	- D. E. Hummel, Electronic Properties of Materials (Covinger)
	R. E. Hummel: Electronic Properties of Materials (Springer)
	• N. W. Ashcroft, N. D. Mermin: Solid State Physics (Brooks Cole)
	S. M. Sze: Physics of Semiconductor Devices (Wiley)
Types of Teaching:	S1 (WS): Semiconductors / Lectures (2 SWS)
Pre-requisites:	Recommendations:
_	Fundamentals of physics, chemistry and solid materials
Frequency:	yearly in the winter semester
-	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	KA [120 min]
Credit Points:	3
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	KA [w: 1]
Workload:	The workload is 90h. It is the result of 30h attendance and 60h self-
	studies.