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Overview 

Nowadays, waste electrical and electronic equipment (WEEE) is recycled using the route of 

secondary copper refining (Hagelüken 2006, Latacz 2020). This route involves several pyro- 

and hydrometallurgical steps where WEEE is sold as a low-grade Cu scrap. During the 

pyrometallurgical processing, most valuable elements with high affinity by oxygen such as REE 

(rare earth elements), Mo, or Ta, ended up diluted in the fayalitic slags used by the copper 

industry and thus lost for recycling  (Ueberschaar 2017, Reuter 2019, Habashi 1998). A metal 

wheel (Figure 1), created over the years, shows the interdependencies between several 

elements and the probability of whether an element remains dissolved in the metal phase as 

an accompanying element or is segregated to the (oxidised) slag phase. 

 

Figure 1: Metal wheel for pyrometallurgical processes indicating the interaction (i.e. solubility, affinity) of metals. 
The colour code also shows the inevitable material discharge (loss) from the circle (Reuter 2019). 

The SPP 2315 addresses the slag phase of metallurgical recycling processes as an important 

source of critical technology elements. In subproject B8, artificial magnetic minerals' formation 

and growth mechanism are explored to concentrate and selectively capture Ta (Hagelüken 

2006) from WEEE. This phenomenon is strongly affected by the process conditions such as 

liquidus temperature, cooling rates, oxygen partial pressure in the melt, as well as the oxidation 

state of different ions in the slag called fayalite—an iron orthosilicate with the olivine crystal 

structure (Fe2SiO4)—capturing Ta during this process. Fayalite is usually associated with 

magnetite since it is constrained under oxidizing conditions by the breakdown into quartz plus 

magnetite at the quartz-fayalite-magnetite (QFM) phase boundary (Mackwell 1992). Magnetite 

content in fayalitic slag will depend on the diffusion of oxygen and solid mixtures precipitation, 
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which is why fayalitic slags are partially magnetics at low temperatures (Mackwell 1992, 

Kozlenko 2019, Du 2020).  

Figure 2 depicts a graphical representation of the intended methods. During crystallization and 

formation of the Fe-inversed spinel structure, Ta should be sequestered into the amorphous 

phases, ultimately forming a solid Ta-containing solution. This process results in a solid 

formation of an artificial mineral, segregated from the liquid by gravity and the solid-liquid 

stresses. The segregated magnetite will agglomerate to form clusters that will undergo a 

settling process. The process takes place in a static crystallizer, which allows controlling the 

inorganic crystal's growth direction and improves the precipitated magnetite's segregation from 

the fayalitic slag.  

Through controlling crystallization and engineering mineral formation, we are seeking to 

selectively concentrate Ta into a magnetic mineral matrix that could later be recovered by 

magnetic separation, transforming this fraction into raw material for extracting Ta. 

 
Figure 2: Schematic representation of Ta concentration in magnetite phase. 
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