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1 Introduction 

This chapter discusses disasters with direct link to geomechanics. Most essential phe-
nomena, their causes and implications are presented. Disasters can be categorised as 
follows: 

▪ based on origin: 

o man-made disasters 

o natural disasters 

▪ based on type of movement 

o falls 

o topples 

o slides 

o flows 

▪ based on material involved: 

o soil 

o rock 

o debris 

o snow 

Natural disasters comprise mainly: 

▪ Earthquakes 

▪ Floods 

▪ Mass movements (avalances, rockfall, debris flow etc.) 

▪ Sinkholes caused by natural processes 

Man-made disasters comprise mainly: 

▪ Induced seismicity (mining induced, geothermal induced etc.) 

▪ Sinkholes caused by man-made activities (old mining etc.)  

▪ Explosions, e.g. nuclear explosions 

In respect to disasters geo-engineers have to consider the following tasks: 

▪ Prediction of disasters (e.g. probability of failure, prediction in space and/or time) 

▪ Prediction of potential impacts (consequences) 

▪ Risk analysis (product of probability of failure and cost of failure) 

▪ Design of countermeasures (e.g. protective barriers, reinforcements etc.) 

▪ Monitoring of disaster prone sites (e.g. geodetic measurements, seismic monitor-
ing etc.) 

▪ Backanalysis of disasters (investigation of causes) 
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Risk analysis has to consider acceptable risks. Often risk is reffered to fatalities per time. 

Public risk is often assumed to be in the order of 41 10 year−  (Fenton & Griffiths, 2008). 

This can be compared with human caused or natural disasters, e.g.:  

▪ accident death rate:       41 10 year−  

▪ accident deaths from electric current:     65 10 year−  

▪ fire eccident death rate:       54 10 year−   

▪ accidential deaths from lightning, tornados, hurricans:  61 10 year−  

As Fig. 1 documents, earthquakes and associated tsunamis, floods and landslides are 
the most dangerous and costlies events worldwide. 
 

 

Fig. 1: Costliest natural events between 1980 and 2015 (Munich Re, 2016) 
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2 Seismicity 

Natural seismicity is mainly caused by: 

▪ Plate tectonics 

▪ Vulcano activities 

The following types of induced seismicity can be distinguished: 

▪ Mining-induced seismicity (e.g. undeground mining, storage in cavern) 

▪ Injection-induced seismicity (e.g. deep geothermal projects, injection of fluids into 
porous of fractures rocks, fracking) 

▪ Explosion or blasting induced vibrations (e.g. nuclear explosions, mine and tunnel 
blasting) 

▪ Water reservoir induced seismicity (e.g. change in water level)  

Problems with induced seismicity are observed world-wide, especially in relation to: 

▪ Mining (especially salt and potash mining, coal mining, but also ore mining at great 
depths) and  

▪ Deep geothermal energy projects. 

Strongest natural earthquakes have reached a magnitude of 9 or even slightly above. 
They are mainly located along the plate boundaries as shown in Fig. 2. The strongest 
mining induced events reached magnitudes of about 5 in mining, 3 for deep geothermal 
projects, 3.5 for water reserviors and 4 in petroleum engineering (see also Fig. 3 and 4). 
 

 

Fig. 2: Seismicity of the earth (data from 1900 to 2013, USGS) 
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Fig. 3. Overview about natural and induced seismicity in Germany and neighbouring countries (Grün-

thal, 2014) 

 

Fig. 4. Overview of observed maximum magnitudes in Europe (Grünthal, 2014) 

Damage produced by seismicity can be quite diverse: 

▪ Damage of buildings and infrastructural elements by shaking, especially by surface 
waves 

▪ Damage by seismic triggered mass movements (landlides, rockfall etc.) 

▪ Seismic induced tsunamis and floodings 

▪ Environmental pollution (nuclear power plant damage, waste water dam breakage 
etc.) 
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In engineering seismology most often vibration velocity is used as a measure to quantify 

vibrations or tremors (see also Fig. 5). Different regulations set limits for maximal vibration 

velocities (Fig. 6 and Tab. 1). These values usualy define categories due to construction 

stability or utilization purpose. The critical values are also frequency dependent as wave 

energy is frequency depending. 

 
Based on numerical simulations Peak Ground Velocity (PGV) can be predicted for in-
duced or natural earthquakes based on site-specific data. Examplary, Fig. 7 and 8 show 
results for predicted PGV for mine flooding induced seismic events. If enough seismolog-
ical data are available, the so-called Gutenberg-Richter-Relation (Fig. 9) can be estab-
lished to predict the maximum expectable magnitude: in this specific case about -0.5 for 
locations inside the schist and about 2.3 for the granitic formation. 

 

Fig. 5: Vibration levels, left: recommended, middle: traffic related, right: thresholds for pile driving (Bom-

mer et al. 2006) 

 

Tab. 1: Limit values for vibration velocities (DIN 4150-3). 100 Hz – values are used for for higher frequen-

cies. 

building type 

Peak Particle Velocities (Vibration Velocities) (mm/s) 

basement frequencies 
uppermost top 

slab, horizontal 

1 Hz to 10 Hz 10 Hz to 50 Hz 50 Hz to 100 Hz all frequencies 

industrial used buildings 20 20 to 40 40 to 50 40 

residential buildings 5 5 to 15 15 to 20 15 

Highly sensitive buildings 
(e.g. historical monu-

ments) 
3 3 to 8 8 to 10 8 
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Fig: 6: Frequency dependent limit values for vibration velocities, comparing German Standard DIN4150-

3 (DIN4150) and USBM recommendations RI8507 (Siskind et al. 1980). 

 

 

Fig. 7: Site-specific prediction of PGV as function of hypocenter distance and local magnitude (Schütz & 

Konietzky 2016) 
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Fig. 8: Site-specific prediction of PGV distribution at the surface for an induced event with magnitude 2 

at a depth of 2 km (Schütz & Konietzky 2016) 

 

 

Fig. 9: Gutenberg-Richter-Relation for induced seismic events in granite and schist formation (Schütz & 

Konietzky 2016) 
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3 Sinkholes 

Sinkholes can be formed by natural underground processes like solution of highly soluba-
ble rocks (e.g. carbonatic rocks like limestone, anhydrite or gypsum) or suffosion (water 
driven removal of small particles producing local mass deficits). In both cases large un-
derground cavities are created over a long period of time. These cavities are growing until 
they reach a critical size followed by sudden collaps. Besides natural processes sinkholes 
can also be created by human activities, like mining, tunneling, operation of caverns or 
leakage of undground water pipes. Examplary, Figs 10 to 14 show some spectacular 
sinkholes. Figs 15 to 17 give some impression of one of the biggest natural sinkholes 
world-wide situated in China, Dabaschan region, called ‘Xiaozhai pit’ (limestone): 600 m 
deep and diameter of 500 m comprising 1.2 billion m3. This sinkhole is connected to a 
20 km long underground river system. 
 

   

Fig. 10: Sinkhole (created by near surface tunneling, Japan, 2016) 

 

   

Fig. 11. Sinkhole (created by flooding and pipe leakage, Guatemala, 2010) 
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Fig. 12. Sinkhole (created by solution of a salt dome, Germany, 2010) 

 

  

Fig. 13: Sinkhole (created by undeground copper mining, Kazakhstan, 2009) 

 

   

Fig. 14: Sinkhole (created by natural solution process, Germany, 2010) 
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..  

Fig. 15: ‘Xiaozhai pit’ sinkhole, China. 



Disasters with relation to rock mechanics 

Only for private and internal use!  Updated: 02 November 2020  

Page 12 of 25 
 

 

Fig. 16: ‘Xiaozhai pit’ sinkhole, China 
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Fig. 17: ‘Xiaozhai pit’ sinkhole, China 

4 Mass movements 

Mass movements are mainly driven by gravity or ground movements. Several events like 
earthquakes, floods or heavy rainfall can trigger such mass movements. The term mass 
movement covers bulk movements of soil and rock debris and can also include snow 
avalances. These processes can be quite fast (up to 100 km/h or faster), but also very 
slow (creep phenomena).  
 
Although it is still hardly possible to predict mass movements in time - location, run-out 
and risk can be estimated. Depending on type of mass movement and required quality 
different calculation methods are available: 

▪ Continuum based mechanical and hydro-mechanical coupled approaches 
(FEM, FDM) 

▪ Discontinuum based mechanical and hydro-mechnical coupled approaches 
(SPH, DEM, DDA, Particle Methods) 

▪ Continuum fluid mechanical approaches 
(CFD) 

▪ Key block analysis 

▪ Probabilistic rockfall simulation tools based on rolling, falling and jumping balls 
(rockfall trajectory analysis) 

▪ Run-out prediction tools based on different physical approaches 
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Fig. 18 (part 1): Classification of mass movements (Poisel & Preh, 2004) 
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Fig. 18 (part 1): Classification of mass movements (Poisel & Preh, 2004) 
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Fig. 19: Classification of mass movements (BGS, 2016) 
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Fig. 20: Major types of landslides (USGS 2004) 
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Fig. 20: Landslide classification scheme (Hungr et al. 2014) 

 

 

Fig. 22: Landslide velocity scales (Hungr et al. 2014) 
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Fig. 23. Landslide forming material (Hungr et al. 2014) 

Figs 18 to 23 show classification schemes for mass flow phenomena. Figs 24 and 25 
show a rockfall in a sandstone massive (Wartturm) in the Elbe valley south of Dresden 
(Germany). Fig. 26 shows a corresponding simple numerical model, which illustrates the 
failure pattern: tensile crack originated from a fracture with weathering traces (brown area 
in Fig. 25). Calibration of the model using lab tests has allowed to predict this rockfall. 
Fig. 27 shows a foto of a sandstone massive nearby and the corresponding 3-dimensional 
model. As explained in detail by Herbst & Konietzky (2012) the factor-of-safety can be 
determined by considering different techniques (e.g. c-ϕ-σt-reduction) and considering 
different processes (e.g frost-thaw changes or specific weathering). Also, potential rock 
fall locations can be predicted. 
 
Quite common are so-called ‘rockfall simulation programs’. They consider the rockfall 
process by calculating the sliding and jumping of particles under consideration of the 
slope profile, vegetation, fences etc. A stochastic analysis allows run-out prediction and 
dimensioning of rockfall fences or other barriers. Fig. 28 shows the application of such a 
tool in a 2-dimensional version.  
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Fig. 24: Rockfall in a sandstone massive (Germany): (a) before rockfall, (b) after rockfall, (c) detailed view 

of rockfall 
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Fig. 25: Weathering (red-brown colored rock surface) indicates the existence of a fracture; white colored 

part shows fresh fracture created by rockfall (see Fig. 20) 

 

   

Fig. 26: Simple numerical model to backanalyze rockfall (see Figs 20 and 21) 



Disasters with relation to rock mechanics 

Only for private and internal use!  Updated: 02 November 2020  

Page 22 of 25 
 

 

Fig. 27: Sandstone massive (Germany) and corresponding 3D model indicating potential rockfall areas 

(Herbst & Konietzky, 2012) 

 
 
 
 
 
 

 

Fig. 28: Simple stochastic rockfall analysis based on 100 falling, sliding, jumping balls (paths and ball 

jumping height statistic for a certain position along slope) 
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5 Explosions 

Large explosions, especially nuclear explosions, can cause tremendous damage of the 
earth crust. Exemplary, Tab. 1 gives some data about the Chagan nuclear explosion, 
exploded at a depth of nearly 200 m below the surface in a sandstone formation produc-
ing a crater of 500 m diameter moving several million cubiqmeter of rock mass. Besides 
the produced vibrations (recognizable by sesimometers all over the world) radioactive 
pollution of the water, soil and rock mass takes place and leads to very long-term pollu-
tion. Deep underground explosions, like the one excecuted at 600 m below the surface, 
leads to severe fracturing up to 1,000 m distance from the source. Fig. 29 shows a foto 
of a water filled crater produced by an undeground nuclear explosion and Fig. 30 shows 
numerical simulation results for near-surface and deep underground nuclear explosions. 

Tab 1: Data for Chagan nuclear explosion (Semipalatinsk test area) 
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Fig. 29: Water filled crater (500 m in diameter) in the Semipalatinsk test area  

 

 

Fig. 30: Numerical models of nuclear explosions in Semipalatinsk test area: left: near-surface explosion, 

right: underground explosion (te Kamp et al. 1998) 
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