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1 Introduction

What are particle methods?

Numerical caluclation methods can be devided into:

• Explicit und implicit methods in terms of time discretization

• Continuum mechanical (meshbased) and discontinuum mechanical (meshfree)
methods in terms of spatial discretization

All methods can be executed independent of spatial discretization as implicit or explicit
calculations. Typical representatives of meshbased methods are FEM (Finite Element
Method), REM (Rand Element Method) or VEM (Volume Element Method). Typical rep-
resentatives of meshfree methods are DEM (Discrete Element Method), SPH (Smooth
Particle Hydrodynamics) or MD (Molecular Dynamics).

While in classical continuum mechanics coherence of the body (continuum) is main-
tained (neighbor relations maintain resp. will be predefined), discontinuum mechanics
allows the inspection of interactions of several single bodies (continua). Therfor these
methods require an automated contact detection algorithm as well as corresponding
contact laws, that get active during interaction (physical or as field force over far dis-
tances).

Fig. 1: Model examples for finite (left) and discrete elements (right), (source: Chair for rock
mechanics, TU Bergakademie Freiberg)

Where are particle methods used?

• Simulation of granular media and hard rocks (DEM)

• Fluid simulations (SPH, LBM)

• Simulation of molecules and nanoparticles (MD)

• Calculations for astrophysics (SPH)
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2 Discrete Elements

Discrete Element Method (DEM) is a particle method based on Newton’s laws of motion.
Particles can move with six degrees of freedom (three for translational and three for ro-
tational movement). Particles are rigid and hence not deformable. In principle particles
can have every arbitrarily geometrical shape, in which sphere shape is most efficient
from numerical point of view. When particles come in contact forces (depending on the
choosen contact law) start acting on them. Furthermore external forces (e.g. gravity)
can act on the particles. During a calculation contacts can be formed or break. Thus an
efficient automated contact detection is one of the core components of a DEM-Software.
Modelling with discret elements take place in six phases:

1. Generation of particles + definition of boundary and initial conditions
2. Determination of contacts (between particles and between particles and bound-

ary)
3. Calculation of forces F and moments M of all particles
4. Calculation of accelerations ü and ω̇, velocities u̇ and ω, and displacements u and

rotations of all particles
5. Calculation of new positions x of all particles
6. Repeat step 2. to 5. with time step ∆t until stop criterion is achieved

Pioneer work to development of discrete resp. distinct elements was mainly provided
by Peter A. Cundall, who improved and extended this method in numerous publications.
Since 1995 DEM-Software PFC (Particle Flow Code) from company Itasca is available.
With this code two-dimensional (PFC2D) as well as three-dimensional (PFC3D) models
can be calculated. Following description mainly depends on manuals from this software.

2.1 Contact detection

Computing time for contact detection increases quadratically with the amount of par-
ticles in the model. Therefore it is neccessary to use an optimized contact detection
algorithm for DEM. Thereby all non-possible contacts will be sorted out in the first step.
In the second step a more detailed procedure (computationally more intensive) ana-
lyzes, if remaining possible contacts are real contacts. When a real contact is found,
contact law is applied to calculate the contact forces (see section 2.2).
Pre-sort processes can be devided in cellbased methods and methods with Verlet lists.
In cellbased methods the model is splitted into smaller axis-aligned cells. The bigger the
cells, the more possible contacts are pre-sorted. That leads to higher computing time.
The smaller the cells, the more cells must be scanned, whereby also more computing
time is needed. In the most DEM-Codes an optimal cell size is estimated by a heuristic
method when the model is initialized. Applying method with Verlet lists a monitoring
radius, including all possible contact neighbors, is assigned to every particle.

2.2 Contact laws

When two particles come in contact, acting forces were calculated by a contact law.
Contact laws are built by different basic elements, that can be visualized with a circuit

Page 3 of 22



Only for private and internal use!

Particle Methods
Updated: August 15, 2014

~r

Fig. 2: Cellbased method (left) and method with Verlet lists (right)

diagram. The basic elements are the spring , the viscous dashpot and the
frictional slider (also called frictional resistance or shear slider). In a pure elastic
law contact force is described by two springs (see fig. 3) with stiffnesses kn for normal
direction and ks for shear direction.

particle 1

particle 2

kn

particle 1

particle 2

ks

Fig. 3: Elastic contact law

The normal contact force Fn in the linear-elastic contact law is the product of constant
normal stiffness kn and overlap un.

Fn = knun (1)

The updated shear contact force F new
s arises from the sum of the shear contact force of

the previous time step F old
s and the update value ∆Fs.

F new
s = F old

s + ∆Fs with ∆Fs = −ks ·∆us (2)

At non-linear Hertz-Mindlin contact law stiffnesses kn and ks are calculated according
to input parameter shear modulus G, Poisson ratio ν, the radii of particles R1 and R2

and the amount of overlap un.

kn =

(
G
√

2Rd

(1− ν)

)
√
un with Rd =

2R1R2

R1 +R2

(3)

ks =

(
2 (3G2(1− ν)Rd)

1
3

2− ν

)
· (Fn)

1
3 (4)

Every mechanical system “looses” energy (e.g. in terms of thermal energy with friction
or plastic deformation). For taking account of this loss of energy during particle contact
in the model, a damping element is connected in parallel to the spring in the contact
law. In the case of shearing energy disappears because of frictional sliding. Hence a
frictional slider is connected in series in the contact law (see fig.4).
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particle 1

particle 2

kn cn

particle 1

particle 2

ks

cs

µ

Fig. 4: Contact law with viscous damping and frictional slider

Damping acts proportional to velocity at normal contact force Fn, hence the amount of
viscous damping cnu̇n must be added to Fn.

Fn = knun − cnu̇n (5)

Also the update of shear contact force ∆Fs must be added by the amount of viscous
damping for shear direction cs∆u̇s.

∆Fs = −ks ·∆us − cs ·∆u̇s (6)

Here cn and cs are the normal and shear damping coefficients. cn (resp. cs) is the
product of damping ratio βn (resp. βs) and critical damping constant ccritn (resp. ccrits ). cn
is given by

cn = βnc
krit
n = 2βn

√
mkn, (7)

where m is the effective mass of the system. The calculation for cs happens analog.
The sliding behavior during shear movement is described by friction coefficient µ. µ is
defined as ratio of maximum shear contact force Fmax

s to normal contact force and limits
shear contact force in case of sliding to

Fmax
s = µ |Fn| . (8)

2.3 Physics of DEM-Particles

In the following the description of physics of two DEM particles in contact is given. The
used notations are shown in fig. 5.

Vectors ~x1 and ~x2 are position vectors from particle centres and ~n and ~t denote the
normal resp. tangential unity vectors. The following relations arise (see fig. 5).

da = |~x2 − ~x1| ~n =
~x2 − ~x1

da
un = R1 +R2 − da (9)

The position vector of contact point ~xc results as followes.

~xc = ~x1 + (R1 − 1/2 · un) · ~n (10)

With stiffnesses kn and ks the normal and shear component of contact force Fc are
determined. The normal component is calculated directly during creation of the contact.
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R
1

R
2

~x1 ~x2~xc

da

un~n

~t

Fig. 5: Contact of two particles in a DEM model

The shear component at this time is zero. It is increased (resp. decreased) by ∆Fs at
each time step.

∆Fs = −ks ·∆us and Fn = knun (11)

The amount of shear displacement at each time step ∆us is described at the end of this
section in eq. (21). The contact force between two particles is then determined by

~Fc = Fn · ~n+ Fs · ~t. (12)

Total force ~F (=̂ Fi), that acts on one particle, is composed of the sum of all contact
forces from neighbor particles and gravity force ~Fg = m · ~g.

~F =
∑
c

~Fc + ~Fg (13)

Total force in i-direction (i ∈ {1, 2, 3}) Fi, that acts on one particle, is determined by
Newton’s second law (fundamental law of dynamics). Fi is calculated by multiplication
of the particle mass m and the sum of its accelerations (üi and gi).

Fi = m · (üi + gi) (14)

Equation (15) arises from rearranging eq. (14).

üi =
Fi
m
− gi (15)

After double integration with respect to time t velocity u̇i and displacement ui are deter-
mined.

u̇i =

∫
üidt and ui =

∫
u̇idt (16)

For description of rotational movement vector ~rc is introduced. ~rc connects the parti-
cle centre with the contact point. Therefore torsional moment ~M arises from following
relation.

~M =
∑
c

(
~rc × ~Fc

)
with ~rc = ~xc − ~x and ~x = ~x1 (for particle 1) (17)
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Torsional moment in i-direction Mi is determined by multiplication of moment of inertia
J and angular acceleration ω̇i.

Mi = J · ω̇i (18)

Moment of inertia is given by J = 2/5 · mR2, because all particles are spheres. By
rearraging and integration with respect to t one gets angular acceleration ωi.

ωi =

∫
5Mi

2mR2
dt (19)

With velocities ~v1 =̂ u̇i1 and ~v2 =̂ u̇i2 and angular accelerations ~ω1 and ~ω2 relative velocity
~vrel is computed.

~vrel = (~v2 + ~ω2 × (~xc − ~x2))− (~v1 + ~ω1 × (~xc − ~x1)) (20)

Shear displacement at each time step ∆us from eq. (11) is calculated by multiplication
of shear velocity vs with time step ∆t. vs is calculated by relative velocity vrel = |~vrel| by
subtracting normal velocity.

∆us = vs∆t with vs = vrel − vn and vn = |~vrel · ~n| (21)

2.4 Time integration

PFC calculates velocities ẋi and ωi at averaged time intervals t ± ∆t/2 and values for
xi, ẍi, ω̇i, Fi and Mi at primary intervals t ± ∆t. Numerical solution of integrations from
eq. (16) and (19) is done with central difference quotient

ü
(t)
i = 1

∆t

(
u̇

(t+∆t/2)
i − u̇(t−∆t/2)

i

)
and

ω̇
(t)
i = 1

∆t

(
ω

(t+∆t/2)
i − ω(t−∆t/2)

i

)
.

(22)

From the equations (22), (15) and (18) the “new” velocities at time t+ ∆t/2

u̇
(t+∆t/2)
i = u̇

(t−∆t/2)
i +

(
F

(t)
i

m
+ gi

)
∆t and

ω
(t+∆t/2)
i = ω

(t−∆t/2)
i +

(
5M

(t)
i

2mR2

)
∆t

(23)

and the “new” particle positions at time t+ ∆t are determined.

x
(t+∆t)
i = x

(t)
i + u̇

(t+∆t/2)
i ∆t (24)

Again beginning at eq. (9) forces and displacements for next time step are computed
with these new positions. For complete numerical description of motion and contact
behavior see to PFC manual (Itasca 2008).
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2.5 More complex approaches

The particle approaches based on rigid spheres can be extended in many respects:

Clumps can be formed out of two or more particles. With it more complex particle
shapes can be created.

Fig. 6: Examples for clumps created by overlapping spheres (source: Chair for rock mechanics,
TU Bergakademie Freiberg)

Bonds are linkages with that particles can be cohesively connected. In doing so sev-
eral particles can be bonded to a grain (or cluster), that can break along cohesive bonds
at according action. Hence it is possible to simulate solids like ceramics, concrete or
hard rocks and also solid bridges between granular media.

Fig. 7: Solid body consisting of spherical particles and different-sized particles, that are built up
of several spheres (Cluster) (source: Chair for rock mechanics, TU Bergakademie Freiberg)

Model boundaries are defined by planes and/or by particles itself. Planes can be
rectangles, but they can also have more complex geometries (consisting of triangular
partial planes). Particles can be used as boundary by fixing them (limitation of degrees
of freedom) or by defining periodic boundaries. In the case of periodic boundaries
particles, that touch the boundary box, are getting master particles. Every of these
master particles generates one slave particle on the opposite side of the boundary.
Thus the model is leaning on itself at the boundary.
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Fig. 8: DEM model with different boundaries, planes (left) and periodic boundary (right)

2.6 Examples

DEM permits to observe a solid body with respect of its deformation, stress and resis-
tance behavior including crack propagation (see fig. 9).

Fig. 9: Intrusion of a wedge into a solid body consisting of Voronoi-particles, with crack
propagation (source: Chair for rock mechanics, TU Bergakademie Freiberg)

By using bonds cementations between sand grains, like they are present in sandstone,
can be simulated. Following example shows a sample (left) and its broken bonds, that
result from a shear fracture (visualized by grey cylinders).
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Fig. 10: Sandstone sample, setting (left) and cohesive bonds after shear fracture (right),
(source: Chair for rock mechanics, TU Bergakademie Freiberg)

Further examples can be found in following list.

Application References

nuclear test te Kamp et al. 1998

micromechanics of clay te Kamp and Konietzky 2002

interlocking geogrids Konietzky et al. 2004b

microfracturing of metal Konietzky et al. 2004a

cutting/drilling process Lunow and Konietzky 2009

bank protection/bank slope Herbst et al. 2010

crushing process Al-Khasawneh and Konietzky 2010

cracking/micromechanics of concrete Groh et al. 2011

sand/granular materials Stahl and Konietzky 2011

soil liquefaction/HM coupling Jakob et al. 2012

Table 1: List of DEM applications with references
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3 Smoothed Particles

The method of Smoothed Particle Hydrodynamics (SPH) was introduced by Monaghan
1988 for calculations of astrophysical phenomena. SPH was further developed and
it is now also possible to simulate fluids with it. The continuum to be examined is
approximated by discrete particles. Every SPH particle has a core, that is described
by a kernel function W (x, h) (also called smoothing kernel or interpolating kernel). Here
h is the effective area of a particle and x is the distance to the centre. The kernel
function in one-dimensional case can e.g. be a Gaussian distribution (see fig. 11).

x

W
W (x, h) = 1

h
√
π
e−

x2

h2

Fig. 11: Gauss kernel

The particles are attributed to physical quantities density ρ, position ~x and velocity ~v.
These must be recalculated in every time step.

3.1 Interpolation

The integral interpolant of any function A(~x) is defined as

A(~x) =

∫
A(~x′)W (~x− ~x′, h)d~x′, (25)

whereby it is integrated over the whole space and kernel function W has following prop-
erties (Monaghan 1992).∫

W (~x− ~x′, h)d~x′ = 1 and lim
h→0

W (~x− ~x′, h) = δ(~x− ~x′) (26)

The integral interpolant of field variable A of one SPH particle at position ~x can be
approximated by a summation interpolation of its neighbor particles (b).

A(~x) =
∑
b

Ab
mb

ρb
W (~x− ~xb, h) (27)

mb, ρb, Ab and ~xb are mass, density, value of the field variable and position vector of
neighbor particles. The gradient of A is determined by

∇A(~x) =
∑
b

Ab
mb

ρb
∇W (~x− ~xb, h). (28)

Therefore, in SPH method no mesh is needed for calculation of partial derivatives
(meshless method).
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3.2 Physics of SPH-Particles

Required derivatives ∇ · ~v and ∇p for mass conservation (continuity equation)

∂ρ

∂t
+ ρ∇ · ~v = 0 (29)

and momentum conservation
∂~v

∂t
+

1

ρ
∇p = 0 (30)

results with ~vba = ~vb − ~va and Wab = W (~xa − ~xb) from summation interpolation (see
eq.(28)). It applies for all particles a

(∇ · ~v)a =
∑
b

mb

ρb
~vba∇Wab (31)

and
(∇~p)a =

∑
b

mb

ρb
~pb∇Wab, (32)

in which density is given by

ρ(~x) =
∑
b

mb∇W (~x− ~xb, h). (33)

Consequently, discrete form of continuity equation is given by

∂ρa
∂t

= ρa
∑
b

mb

ρb
~vab∇Wab (34)

and discrete form of momentum conservation by

∂~va
∂t

= − 1

ρa

∑
b

mb

ρb
~pb∇Wab. (35)

The particle velocity ~v arises from derivative

~va =
∂~xa
∂t

. (36)
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3.3 Examples

SPH comes often into operation in computer animations with water, because with SPH
very realistic results can be obtained.

Fig. 12: Water simulation with SPH (source: Bell et al. 2005)

Another example shows the so-called “Millenium Simulation”, that simulates the forma-
tion of big scale mass distributions in space (galaxies and galaxy clusters). For this
calculation more than 10 billion particles were used (see http://www.mpa-garching.
mpg.de/galform/millennium/).

Fig. 13: “Millenium Simulation” with > 1010 particles (source: Springel et al. 2005)
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4 Lattice Boltzmann

The Lattice Boltzmann Method (LBM) is based on the theory of Ludwig Boltzmann
(1844-1906). Boltzmann treats a gas as medium, that consists of interacting particles
(molecules or atoms), that can be described with classical mechanics and a statisti-
cal treatment. This basic idea was adopted into LBM, where gases are simulated by
streaming and collisions of particles (Sukop and Thorne 2006). The approach was later
extended on simulation of fluids in general (gases and liquids).

~e1

~e2

~e3

~e4

~e5~e6

~e7 ~e8

node

lattice cell

lattice unit

Fig. 14: Lattice array for a D2Q9 model

For LBM a lattice consisting of nodes is needed. In figure 14 the lattice array for a D2Q9
model (2 dimensions, 9 nodes) is illustrated. The vectors ~ei denotes particle velocities
in direction i. In the simplest approach particles have a uniform mass (mu - mass unit)
and the lattice has uniform lattice spacing (lu - lattice unit).

4.1 Boltzmann equation

A system consisting of N particles (molecules) can be described by a density function
F (~x,~e, t). When positions ~x and velocities ~e of all particles (molecules) are known at
time t, so it is (at least hypothetical) possible to predict the mechanical behavior of the
system. Assuming that an external force f is acting on the particles, then they have
positions ~x+ ~edt and velocities ~e+ fdt at time t+ dt. When no collisions occured, then
it applies

F (~x,~e, t)d~xd~e = F (~x+ ~edt, ~e+ fdt, t+ dt)d~xd~e. (37)

If there are collisions within the time step, eq. (37) is added by a collision term Ω,
which describes changing rate between end and start condition of the system (Mo-
hamad 2007).

F (~x,~e, t)d~xd~e = F (~x+ ~edt, ~e+ fdt, t+ dt)d~xd~e+ Ω(F )d~xd~edt (38)

The time derivative of eq. (38) gives

dF

dt
= Ω(F ), (39)
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i.e. total changing rate of density function is equal to collision rate. When F is a function
of ~x, ~e and t, then it applies

dF =
∂F

∂~x
d~x+

∂F

∂~e
d~e+

∂F

∂t
dt (40)

Dividing eq. (40) with dt, one gets

dF

dt
=
∂F

∂~x

d~x

dt
+
∂F

∂~e

d~e

dt
+
∂F

∂t
. (41)

With velocity ~e = d~x/dt, acceleration ~a = d~e/dt, second law of Newton ~a = f/m (mass
m) and eq. (39) it offers Boltzmanns law of motion (Mohamad 2007).

∂F

∂t
+
∂F

∂~x
~e+

f

m

∂F

∂~e
= Ω (42)

4.2 Time relaxation according to Bhatnagar, Gross and Krook

The exact calculation of collision term Ω in eq. (42) is very complicated because of
its complexity. Therefore Ω is approximized by a simple operator, that does not bring
significant errors to the solution. Bhatnagar, Gross and Krook (BGK) presented in 1954
a simplified model for the collision operator (Mohamad 2007). Thereby local equilibrium
distribution function F eq and a relaxation factor τ were introduced.

Ω =
1

τ
(F eq − F ) (43)

With this approximation (see eq.(38)) and discretization (index i) one gets the linearized
BGK relaxation form of LB equation (Cook and Noble 2004).

Fi(~x+ ~eidt, t+ dt) = Fi(~x, t)︸ ︷︷ ︸
streaming

− dt
τ

(Fi(~x, t)− F eq
i (~x, t))︸ ︷︷ ︸

collision

(44)

Equation (44) consists of a streaming and a collision part. At every node there are
eight density distributions Fi and a residual distribution F0. Equilibrium conditions are,
according to Sukop and Thorne 2006, given by

F eq
i (~x) = aiρ(~x)

(
1 + 3

~ei · ~vf
c2

+
9

2

(~ei · ~vf )2

c4
− 3

2

~v2
f

c2

)
. (45)

Weightings ai are 4/9 for the residual particles with i = 0, 1/9 for i ∈ {1,2,3,4} and 1/36
for i ∈ {5,6,7,8}. c is basic speed on nodes and macroscopic density ρ is defined as
sum over all directional densities (ρ =

∑
i Fi). Macroscopic velocity ~vf is the average of

microscopic velocities ~ei weighted with densities Fi.

~vf =
1

ρ

8∑
i=0

Fi~ei (46)
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4.3 Examples

A LBM application of Schenkengel and Vrettos 2011 simulates an induced soil liquefac-
tion. The 2D model consists of 300×60 nodes and represents a slope with a slope angle
of 18◦. An explosion within the slope leads to stability failure, whereby the material liq-
uefies. Following figure shows velocities of the material at times t = 0, 01s, t = 0, 29s
and t = 1, 17s during liquefaction event.

Fig. 15: 2D-LBM model of an explosion within a slope, velocities in the lattice illustrated by
vectors and filled colored contours (source: Schenkengel and Vrettos 2011)

With the model of Schenkengel and Vrettos 2011 at first time rheological transition from
rigid to liquid was solved and implemented in a model with a LBM approach.
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Another example shows a phase separation of two fluids with different density.

Fig. 16: Phase separation of two fluids (source:
http://www.bgce.de/curriculum/projects/patilgmeiner/)
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5 Molecular Dynamics

With Molecular Dynamics (MD) interactions between atomic particles (atoms, molecules,
nanoparticles, etc.) can be simulated. The laws of classical mechanics find no more va-
lidity. For description of particle mechanics, laws of quantum mechanics must be used.
Anyhow DEM and MD are very similar.
The first application of MD is dated to the year 1957 with a paper by Alder and Wain-
wright. Hence MD is the oldest applied particle method. Compared to DEM, where New-
ton’s equations serves as basic principle of description of particle motion, MD is based
on Schrödinger equation. It is a very complex equation and can be solved analytically
only in rarest cases. Even numerical approaches limit applications of the Schrödinger
equation to very simple systems and few particles. So approximation procedures are
used to simplify solving of the equation (Griebel et al. 2004).

5.1 Schrödinger equation

In quantum-mechanical systems conclusions about the state of the system can be de-
rived by a state function Ψ (also called wave function). A system consisting of N cores
andK electrons with variables Ri resp. ri is characterized by its state function as follows
(Griebel et al. 2004).

Ψ = Ψ(R1, ..., RN , r1, ..., rK , t) (47)
Variable t indicates time dependency of the state function. Ψ is due to solution of the
Schrödinger equation (with R = R1, ..., RN and r = r1, ..., rK).

i~
∂Ψ(R, r, t)

∂t
= HΨ(R, r, t) (48)

Here, i is imaginary unit, H is the Hamilton operator and ~ = h/2π with h, the Planck’s
constant. The Hamilton operator describes temporal evolution of possible energy values
in the system based on its potentials.

5.2 Potentials

Interactions between two particles, that depend only on particle distance, are described
by pair-potentials. Such potentials are e.g. the gravity potential, the Coulomb potential
(electrical point charge), the van-der-Waals potential (weak attraction at inert gases)
and the Lennard-Jones potential (uncharged, unbound atoms).
The Lennard-Jones potential

U(rij) = αε

[(
σ

rij

)n
−
(
σ

rij

)m]
,m < n (49)

with α = 1
n−m( nn

mm )
1

n−m is parameterized by σ and ε. Here ε defines the magnitude of re-
pulsion resp. attraction forces. Thus, materials of different stiffnesses can be simulated.
σ specifies zero-crossing of the potential. Figure 17 shows a Lennard-Jones potential
for n = 12 and m = 6.

If a particle moves within a potential, the corresponding potential energy is due to

Epot(R) =
N∑
i=1

N∑
j=1,j>i

Uij(rij), (50)
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Fig. 17: Lennard-Jones potential with ε = 1 and σ = 1

where rij = ||Rj −Ri|| is the distance between particles. The potential function for the
Lennard-Jones potential with n = 12 and m = 6 is

Epot(R) = 4 · ε
N∑
i=1

N∑
j=1,j>i

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (51)

The corresponding force ~Fi, which acts on particle i, results by creation of a gradient
with respect to Ri.

~Fi = −∇Ri
Epot(R) (52)

For the Lennard-Jones potential this force is given by the equation

~Fi = 24 · ε
N∑

j=1,j 6=i

1

r2
ij

·
(
σ

rij

)6

·

(
1− 2 ·

(
σ

rij

)6
)
~rij, (53)

where ~rij is the directional vector between particles i and j (Griebel et al. 2004).

5.3 Physics of MD-Particles

Physics of MD-Particles is in general the same as for DEM-Particles (see section 2.3).
With Newton’s second law accelerations, velocities and displacements are determined
by time integration. In doing so one gets new positions of the particles. Unlike in DEM
simulations MD-Particles have a cutting radius, which results from potential range. As
simplification no forces act on a particle, as long no further particles stay in its potential
range.
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5.4 Examples

In figure 18 a collision of two bodies is displayed. Particle velocities are coded with
colors (red - high velocity, blue - low velocity).

Fig. 18: Collision of two bodies, temporal evolution of particle distribution (source:
http://wissrech.ins.uni-bonn.de)

Lipid molecules typically form double layer membranes in the presence of water, be-
cause one end is hydrophilic and the other end is hydrophobic (e.g. oil film). These
membranes spontaneously form bubbles or vesicles. Following figure shows a simula-
tion of a fusion of such a vesicle with a lipid membrane.

Fig. 19: Fusion of one vesicle with a membrane of 2018 Diblock-Copolymers, vesicle diameter
40 nm (source: http://www.mpg.de)
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