
 

 

 

 

 

 

 

2021, VOL 61 

 

 

 

 

 

2021, VOL 61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEPONG TSINDE, RAOUL 

 

Designing and Piloting a household filter for the peri-urban 

population of Douala (Cameroon) 
 

91 pages, 09 figures, 05 tables, 253 references  



2 

 

 
 

 

 

"The scientific man does not aim at an immediate result. He does not expect his advanced 

ideas will be readily taken up. His work is like that of the planter ... for the future. His duty is 

to lay the foundation for those who are to come and to point the way. " 

 

 

  

Nikola Tesla  

“The Problem of Increasing Human Energy” 

 (The Century Magazine, June, 1900) 

 

 

 

 

  



3 

 

Preface 

The present work was presented as a PhD Dissertation in Geoscience at the University of 

Göttingen (Germany). The Dissertation was accepted on December 04, 2020. The thesis 

designed and pilot tested a household filter in the coastal city of Douala (Cameroon). The 

general context of this work is achieving universal access to safe drinking water by 2030. 

There are an uncountable number of people who supported me during this Ph.D. study. 

First and the foremost I would like to express my sincere gratitude to my supervisor PD. Dr. 

Chicgoua Noubactep. Thank you very much for valuable advice, fruitful discussions, and 

constant guidance all along this research work. Also, I fully acknowledge him the great 

freedom, the unconditional support during my several stays abroad, and the opportunity he gave 

me to seek and define my own research interests and apply them in this thesis. I owe him very 

much and my greatest thanks go to him because of his substantial contribution to my personal 

and professional development during these years being a good teacher, inspirer, and friend. 

Loads and loads of thanks to my co-supervisor Prof. Dr. Hans Ruppert, for providing me with 

the best time I have ever had at the University of Göttingen. Your opinion, view, comments, 

and thoughts have been truly considered and appreciated along this time as Ph.D. student. I 

really appreciate the high standards you have set for me, which I would never have reached 

without your help. 

I am particularly grateful to Prof. Dr. Achille Nassi of the University of Douala, who gave me 

the chance to spend these fabulous times of my research in Cameroon, in the beautiful city of 

Douala.  

In this research work several people were involved during the development of some of the 

chapters/papers in which is comprised. I would like to express my gratitude to all of them. 

Many thanks to my wife Tsadjeu Tsamo Mirabelle L. for her deep love and having braved all 

the difficulties to supervise our two sons Tsadjeu Tsinde Raoul and Manko Tsinde Nils Meyer 

during my long stay in Cameroon. 

Last but not least, I should say thanks from the bottom of my heart to my beloved mother Manko 

Catherine, to my Father Tsinde Maurice, and my brothers and sisters for their never-ending 

love, help, good food and unwavering support in so many ways through all this time.  

Thank you so much. 

 

  



4 

 

Abstract:  

In rural and peri-urban regions of the developing world, many tube wells used as drinking water 

sources are microbially and chemically polluted. Consequently, hundreds of millions of people 

lack access to “safe” drinking water worldwide. People drinking tube well water may suffer 

from preventable water-borne diseases including diarrhea, skin lesions, and cancer. To address 

this problem, the United Nations have launched the Sustainable Development Goals (UN 

SDGs) which are regarded as a global urgent call for action by all countries, in a global 

partnership. The UN SDGs for safe drinking water (Goal 6) aims to achieve universal water 

supply by 2030. This goal can only be achieved if affordable and efficient water treatment 

technologies are made available for households and small communities for simultaneous 

removal of chemicals and pathogens. Ideally, such systems should be constructed using locally 

available materials and labor. Filtration on metallic iron (Fe0) based beds has been identified as 

such an appropriate technology and steel wool (SW) a universally available material. Moreover, 

Fe0-based filters have been designed and disseminated in some parts of the world but have not 

yet reached global applicability. 

A critical review on the abundant literature on using Fe0-based filters for safe drinking water 

provision revealed that existing devices were not designed on the knowledge basis of the 

science of aqueous iron corrosion (corrosion science). Iron corrosion induces generation of solid 

iron corrosion products (FeCPs) which are well-documented contaminant scavengers. FeCPs 

consisting of Fe-oxide hydroxides are formed in the vicinity of the Fe0 surface and act as a 

diffusion barrier for dissolved species. Iron corrosion is additionally a volumetric expansive 

process because the volume of each oxide or hydroxide is at least twice larger than that of iron 

metal (Fe0). These two main characteristics imply that (i) the efficiency of each Fe0-based filter 

depends on the kinetics of production of FeCPs (reactivity loss), and (ii) Fe0-based filters will 

experience porosity loss with increasing service life (permeability loss). In other words, 

reactivity loss and permeability loss are inherent characteristics of Fe0-based filters which 

should be addressed in the design stage. Moreover, designed systems should be tested for 

months or years, given the incertitude on the kinetics of iron corrosion.  

The objective of the present work was to design a science-based household filter and to test it 

for one year in the coastal city of Douala (Cameroon). The work started with a systematic 

review of available designs and a presentation of two main potentially durable designs. The one 

with a Fe0/sand filter sandwiched between two biological sand filters (BSFs) was tested with 

polluted well water from Logpom (Douala, Cameroon) using 300 g of a commercial SW (grade 

000; d = 50 m) as Fe0 source. Previous works using Fe0 SW in water filters revealed that grade 
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00 (d = 25 m) was depleted after some 6 months. The used well water was slightly turbid, 

polluted with pathogens (total coliforms = 1950 UFC mL−1), and contaminated with nitrate 

([NO3
−] = 24.0 mg L−1). The following parameters were monitored twice per month for one 

year in the influent and effluent water of the filter unit: (i) nitrate concentration, (ii) coliform 

level, (iii) pH value, and (iv) turbidity. The iron concentration and the hydraulic conductivity 

(permeability) were also determined. Prior to pilot testing, the impact of chloride ions (Cl-) on 

the efficiency of Fe0 filters was characterized in laboratory column experiments, using the 

methylene blue discoloration method. 

Results of laboratory column experiments revealed that the chloride concentrations expected in 

well waters in Douala would not negatively impact the efficiency of Fe0 filters. The tested 

design could produce safe drinking water for at least one year. Coliforms (> 99% decrease), 

nitrate (> 99%) and turbidity (> 96%) were nearly quantitatively removed over the whole testing 

period and well below the recommended limits of the World Health Organization (WHO). The 

effluent pH increased continuously from 6.6 to 8.4. The effluent iron concentration was 

constantly lower than 0.2 mg L−1. These values are within the WHO drinking water quality 

standards. The initial flow velocity of 20 L h-1 decreased to ~8.33 L h–1 after one year, 

corresponding to a permeability loss of nearly 41.5 %. At the end, the filter was still producing 

200 L of drinking water  

These results confirmed the suitability of commercial Fe0 SW as efficient material to construct 

durable water filters for households. It appears that the success of the design relied on the low 

ratio of Fe0 SW (10 vol %) dispersed in the matrix of sand (90 vol %). The tested design can be 

immediately be applied practically, provide that appropriate construction materials are found. 

Future research should include (i) testing lower Fe0 SW ratios (same grade), (ii) testing other 

grades of Fe0 SW in parallel experiments (1 year or more); (iii) testing the same systems for the 

removal of arsenic and uranium which are the most widespread natural pollutants. Fe0 SW based 

water filters can be considered as one of the best tools for the achievement of Goal 6 of the 

United Nations sustainable development goals (SDGs), despite the threat of COVID-19. 

Keywords: Fe0-based filter; household filter; permeability loss, steel wool, zero-valent iron. 
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1.0 Introduction 

1.1 Access to safe drinking water in the developing world 

Potable water is the most essential commodity on the earth for survival of human beings (Gleick 

2000, Ali 2014). The availability of fresh water is decreasing continuously due to world 

population growth, increased use in agriculture, increased industrialization, and increased 

urbanization. Environmental, geological, and global changes are also continuously 

contaminating natural water resources (Gleick 2000, Shannon et al. 2008). As a consequence, 

the quality of an ever-increasing number of natural waters sources are no more safe for drinking 

purposes (Hussam and Munir 2007, Shannon et al. 2008, Etmannski et al. 2014, Ndé-Tchoupé 

et al. 2015). Therefore, the world community (including scientists and academicians) are 

working on affordable, applicable and efficient technologies for water treatment (Howe et al. 

2012, Etmannski et al. 2014, Hering et al. 2016, Naseri et al. 2017, Nanseu-Njiki et al. 2019, 

Ogata et al. 2020, Huang et al. 2021a, Huang et al. 2021b, Mueller 2021, Mueller et al. 2021, 

Nya et al. 2021). The most important technologies for the water treatment are adsorption, 

coagulation, crystallization, distillation, oxidation, filtration, reverse osmosis, sedimentation 

and screening (Howe et al. 2012, Ali 2014). From these technologies, adsorption on fixed beds 

has been proven an easy to handle and affordable technology for low-income communities, 

including remote and scattered villages in the developing world (Hussam and Munir 2007, 

Noubactep et al. 2009, Noubactep et al. 2012, Ali 2014, Banerji and Chaudhari 2017, Bretzler 

et al. 2020, Ogata et al. 2020, Huang et al. 2021b, Mueller et al. 2021, Nya et al. 2021). 

Adsorption is also considered as one of the best wastewater treatment technologies due to its 

wide range of applications and ease of operation. During the past three decades, the scientific 

community has rediscovered metallic iron (Fe0 also called zero-valent iron) as a powerful 

reactive material for water treatment on decentralized manner (Henderson and Demond 2007, 

Guan et al. 2015, Antia 2020, Cao et al. 2020, Hu et al. 2020, Yang et al. 2020, Huang et al. 

2021b, Nya et al. 2021).  

 

1.2 The suitability of Fe0 filters 

Metallic iron (Fe0) is a non-toxic and inexpensive reactive material that is readily available 

(Noubactep 2010, 2013a, 2013b, 2013c, 2014, Gatcha-Bandjun et al. 2017, Antia 2020). 

Research over the last three decades has demonstrated the effectiveness of Fe0/sand filter for 

the treatment of water contaminated physically (color, turbidity) (Tomizawa et al. 2016, Naidu 

and Birke 2015, Xiao et al. 2020a, Xiao et al. 2020b), chemically (dyes, anionic and cationic 

metal and metalloid ions, nitrogen compounds, radionuclides) (Heimann et al. 2018, Guan et 
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al. 2015, Noubactep 2015) and microbiologically (bacteria, viruses) (You et al. 2015, Ghauch 

2015, Kim et al. 2021). The operating mode of Fe0 bed filters is based on the interactions 

between Fe0 in-situ generated corrosion products (example: FeII, H2, iron oxides and 

hydroxides) and water pollutants (Noubactep 2013a, 2013b, 2013c, 2014, Ndé-Tchoupé et al. 

2015, Noubactep 2015, 2018, Xiao et al. 2020a, Xiao et al. 2020b). This knowledge was already 

familiar to the first designers of Fe0 filters about 150 years ago (Bischof 1873, 1877, 1878, 

Anderson 1883, 1884, 1885, Ogston 1885, Devonshire 1890, Mwakabona et al. 2017, Antia 

2020, Noubactep 2020) but was little noticed since the 1990s (Guan et al. 2015, Naidu and 

Birke 2015). The application of the Fe0 technology for safe drinking water provision nearly 150 

years ago contradicts the perception that this technology is recent or innovative (Devonshire 

1890, Mwakabona et al. 2017, Antia 2020, Noubactep 2022). Despite its old age, there are not 

yet clear scientific design principles, which engineers can use to construct sustainable Fe0 filters 

on a site- and pollution-specific basis (Domga et al. 2015, Naseri et al. 2017, Noubactep 2018, 

Yang et al. 2020, Yang et al. 2021). Moreover, apart from sponge iron (Bischof 1873, Hussam 

and Munir 2007) no specific material for safe drinking water provision has been presented 

(Noubactep et al. 2005, Kim et al. 2014, Li et al. 2016, Hu et al. 2019, Li et al. 2019, Lufingo 

et al. 2019, Yang et al. 2020). The resolution of these two open issues would facilitate the 

conversion of existing knowledge of the science of aqueous corrosion of iron into an effectively 

practical solution for decentralized safe drinking water provision (Ndé-Tchoupé et al. 2015, 

Clasen et al. 2009, Noubactep et al. 2009, 2012, Tepong-Tsindé et al. 2015, Gatcha-Bandjun et 

al. 2017, Naseri et al. 2017, Noubactep 2018, Yang et al. 2020, Noubactep 2022). In other 

words, providing people with knowledge and tools to facilitate self-reliance in the supply of 

safe and healthy drinking water is an important goal (Shannon et al. 2008, Hering et al. 2016, 

Naseri et al. 2017, Noubactep 2018, Huang et al. 2021a, Nya et al. 2021). 

 

1.3 Fe0 materials for household filters 

A wide array of Fe0 materials have been tested and used as filters. Relevant materials include 

iron coils, iron composites (e.g. bimetallics), iron filings, iron nails, iron wire, scrap iron, nano-

Fe0, sponge iron, and steel wool (Bischof 1877, Anderson 1886, Landis et al. 2001, Westerhoff 

and James 2003, Btatkeu-K et al. 2013, Lufingo et al. 2019). The reactivity of all these materials 

is characterized by the electrode potential of the redox couple FeII/Fe0 (E0 = -0.44 V). This 

implies that reactivity differences amount various Fe0 specimens are kinetic in nature. In fact, 

large differences in oxidation trends of Fe0 materials have been documented, even for materials 

from the same class (Landis et al. 2001, Btatkeu-K et al. 2013, Stefanoni et al. 2018, Li et al. 
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2019, Lufingo et al. 2019, Yang et al. 2020, Yang et al. 2021). It has therefore been posited that 

difficulties in comparing available results to each other is mostly due to differences in intrinsic 

reactivity (Noubactep et al. 2005, Btatkeu-K et al. 2013, Li et al. 2019, Lufingo et al. 2019). As 

an affordable and widely available material, steel wool (Fe0 SW) has been largely tested for 

safe drinking water provision (Lauderdale and Emmons 1951, Bradley et al. 2011, Lufingo et 

al. 2019, Hildebrant 2018, George and Ahammed 2019) and wastewater treatment (James et al. 

1992, Erickson et al. 2007, Erickson et al. 2017, Li et al. 2017). 

There are seven grades of Fe0 SW with filament widths varying from 10 to 90 m (Lufingo et 

al. 2019, Hildebrant et al. 2020). From these, only grade 000 (d = 25 m) was tested in long-

term experiments for water treatment and was depleted after 8 months. The present study tests 

grade 0 (d = 50 m) to find out whether it will last for one year. One year is regarded as a 

reasonable duration to change filtration units and avoid the use of exhausted filters. 

 

1.4 Current state in designing Fe0 filtration systems 

Fe0 is an excellent material for water treatment in filtration systems (Gheju 2011, Ghauch 2015, 

Gheju 2018, Noubactep 2018). However, porosity decline due to the formation of expansive 

iron corrosion products and subsequent filter clogging is one of the major limitations to utilize 

such a system (Anderson 1886, Westerhoff and James 2003, Bartzas and Komnitsas 2010, Guan 

et al. 2015, Noubactep 2015, Yang et al. 2021). In order to prevent premature filter clogging 

(e.g. clogging occurs before Fe0 is exhausted), hybrid reactive zones (e.g. Fe0/FeS2, Fe0/MnO2, 

Fe0/sand) have been recommended (Noubactep 2010, Noubactep and Care 2010, Noubactep 

2011, Miyajima 2012, Noubactep 2012, Caré et al. 2013, Miyajima and Noubactep 2013, Ndé-

Tchoupé et al. 2018). Because of its low cost and high availability, sand is a commonly used 

additive for this purpose (Bi et al. 2009). Fe0 SW/sand filters for households are a promising 

class of cost-effective Fe0 amended sand filters which can be disseminated in remote 

communities (Bradley et al. 2011, George and Ahammed 2019, Hildebrant et al. 2020). 

Despite almost seven decades of technical expertise on using Fe0 SW in household water filters 

(Lauderdale and Emmons 1951, George and Ahammed 2019), available information is still 

weak for any rational design. The very first reason is that used materials were not characterized 

for their intrinsic reactivity (Noubactep et al, 2004, Noubactep et al, 2005, Li et al. 2019, 

Lufingo et al. 2019, Hu et al. 2021a). Some studies have not even specified the grade of used 

SW and the elemental composition is not specified as a rule (Nde-Tchoupe et al. 2015, 

Hildebrant et al. 2020). However, as demonstrated by Lufingo et al. (2019), differences in the 

initial kinetics of Fe0 SW dissolution in 1,10-Phenanthroline can be as large as factor 20. The 
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second reason for the lack of design information is that available works have not always 

specified the used Fe0:sand ratios and the thickness of the reactive zone (Hildebrant et al. 2020). 

To these two reasons, the use of column of different sizes, differences in experimental duration 

and in feeding water quality are further aggravating factors (Yang et al. 2020, Huang et al. 

2021b). In particular, while the long-term kinetics of Fe0 SW corrosion is certainly nonlinear 

(Nesic 2007, Lazzari 2008) and is yet to characterize in the context of water treatment, 

experimental duration exceeding four months are rare.  

The following example illustrates the incompleteness of information regarding the design Fe0 

SW/sand filters. Bradley et al. (2011) mixed 260 g of a Fe0 SW (extra fine – Grade 000) with 

1.563 g sieved sand (effective size 0.4 mm) to form a 20 cm-thick filter for virus removal over 

300 days (10 months). The used Fe0 SW (d1 = 25 µm) was completely depleted after 170 days 

(8 months) but the system was still permeable. On the contrary, George and Ahammed (2019) 

tested a filter containing iron nails (d2 = 2.0 mm) mixed with sand for just four months and did 

not consider the work of Bradley et al. (2011) in their discussion. Using larger particles (d2/d1 

= 80) and testing them for a shorter experimental duration (t1/t2 = 2.5) is counter-productive, 

particularly in a context where long-term experiments are needed (Naseri et al. 2017, Hu et al. 

2020, Yang et al. 2020, Huang et al. 2021b, Nya et al. 2021). There is a need to further 

investigate the relationship between SW proportion in a Fe0 filter, its long-term permeability, 

and its efficiency for water treatment. 

 

1.5 Access to safe drinking water in the peri-urban areas of Cameroon 

Cameroon has failed to meet the MDGs. Ako at al. (2010) noted that Cameroon is not yet on 

track to meet the targets of the MDGs for water and sanitation, but it has made notable progress 

since 1990. And Since 2015 the research work is orienting to the SDGs. 

Figure 1 shows the comparative evolution of the percentage of household with access to a safe 

drinking water in the economic city of Douala and in Cameroon from 1990 to 2015. 

It was established that in general, access to safe drinking water in Cameron decreased with a 

coverage rate of about 58% in 1990 and a rate of about 48% in 2015. In Douala, the biggest and 

most populated city of Cameroon, there was a drop in its access rate from 45% in 1990 to about 

22% in 2015. 
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Figure 1: Evolution of percentage of households with access to safe drinking water in Douala and in Cameroon 

during the MDG era. (Source: Ako et al. 2010, modified). 

 

From 1990 to 2000, country-wide there was a significant drop in access to potable water. This 

was attributed to the economic crisis of 1986 –1993 in Cameroon which caused a significant 

reduction in public investments, therefore in the domain of water resources. For the Cameroon 

government to reach the 75 percent access rate it fixed by 2015, it had to increase access rate 

by 1.5 points per year (MINPLADAT, 2006). Instead from Figure 1, it is observed that the 

national access rate fell from about 58% in 1990 to 56% in 2000 and then to about 49% in 2015. 

Based on this, Ako et al (2010) concluded that Cameroon will fail to reach the safe drinking 

water MDG target. 

Due to poor planning and uncontrolled urbanization, peri-urban areas in Cameroon emerge 

spontaneously (Nya 2020, Nya and Mougoué 2020). Most of the inhabitants of the peri-urban 

areas are urban poor who cannot afford the cost of living in the city or rural people who move 

to the city in search of greener pastures as well as a few middle-class people. The absence of 

roads, water, electricity, housing, schools, and other services makes living in the peri-urban 

areas challenging (Fonjong and Fokum, 2017, Hope and Ballon 2019, Hope et al. 2020).  

CAMWATER, the national water utility oversees production and distribution of potable water 

in urban areas of Cameroon while the Ministry of Water and Energy and NGOs supply the rural 

population (Ako et al., 2009, Nya 2020). CAMWATER is present in only 35% of Cameroonian 

cities and towns (Tanawa et al., 2002, Nya 2020). According to WHO (2008b), 82% of the 

Cameroon’s urban population and 42% of the rural population are covered in terms of water 

supply with 23% of households having direct access to drinking water. Rapid urbanization in 
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cities and towns has often rendered existing infrastructure inadequate, with frequent service 

interruptions and many peri-urban dwellers lacking access to safe drinking water. All this 

clearly indicates that the access to save drinking water in Cameroon for peri-urban population 

is difficult. This can be caused by the rural exodus, that can justify the proliferation of wells 

and rivers in peri-urban areas of the city of Douala. 

 

1.6 The problem  

Peri-urban area can be designed as a territory (or rather a set of territories) for which the 

inhabitants develop a feeling of identification or belonging, while maintaining links with the 

city, which provides them with jobs, goods and services. One of the main difficulties of these 

peri-urban areas is access to save drinking water. But these difficulties which hamper access to 

drinking water in homes are mainly linked to technical, social, legal, or governance resources 

(Hope and Ballon 2019, Nya 2020, Hope et al. 2020). So, the main problem is how to bring 

water to people in the peri-urban areas without need of electricity, without high maintenance 

and at a lower cost. 

To solve this problem, a household Fe0 SW water filter for the supply of people living in poor 

settlements in the developing world is designed and pilot tested. Natural well water from 

Logpom (Douala) was used for the experiments. The well water is polluted with coliforms, 

suspension, and contains up to 24 mg L-1 nitrate. 

 

1.7 Research objectives 

The goal of this thesis is to shape a practical application of Fe0 SW/sand filter combination for 

household water purification. An important feature of the design is to treat contaminated water 

without any use of chemicals or electricity, but to provide a cheap, simple, and easily 

manageable device that brings clean drinking water into the reach of single dwellings in peri-

urban and rural areas. 

 

1.9 Outline of the thesis 

In the chapter 1 (Introduction) of this thesis the theoretical background and application of 

existing Fe0-based filters are summarized. Chapter 2 describes the designing of Fe filters for 

small communities: An overview corresponds to the literature review and has already been 

published. Chapter 3 investigates the impacts of chloride ions on the efficiency of Fe0 filters. 

This Chapter corresponds to the literature review and has also been published. The insights 

gained from the previous Chapters made it possible to carry out the designing and pilot-testing 
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a household Fe0 SW filter in Douala (Cameroon). This is the subject of Chapter 4. The results 

of the experiment are presented and discussed. The Chapter has been published. 

Chapter 5 deals with general discussion and limitations. Chapter 6 provides a general 

conclusion of this work and gives some suggestions for further research. The appendix includes 

a list of journal articles that were authored or co-authored by me and directly related to the 

presented work. References are provided at the end of all chapters. 
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2 Designing Fe0 filters for small communities: An overview 

2.0  Preamble 

During the past five years, some important innovations were made available which can be 

summarized in two key points: (i) the ancient technology of using metallic iron (Fe0) for safe 

drinking water was rediscovered (Mwakabona et al. 2017, Antia 2020), and (ii) new articles 

validating the 2015 designs (Tepong-Tsindé et al. 2015) were published (Etmannski 2014, 

Etmannski and Darton 2014, Casentini et al. 2016, Smith et al. 2017, Ahmed et al. 2018, Abbas 

et al. 2018, Bretzler et al. 2020). The net result is that new Fe0 filter designs co-exist with old 

ones, while a critical literature review consolidating available information is yet to be written 

(Yang et al. 2021). Therefore, this chapter is not only giving an overview of the appended 

Tepong-Tsindé et al. (2015), but rather a general overview of the 170 years of using metallic 

iron for safe drinking water provision. The presentation will start with the chemistry of the 

Fe0/H2O system. 

2.1 The Fe0/H2O system 

When a reactive piece of Fe0 is immersed in water, its oxidative dissolution is spontaneous. 

This occurs because the electrode potential of the redox couple H2O/H2 or H+/H2 (E
0 = 0.00 V) 

is higher than that of FeII/Fe0 (E0 = –0.44 V) (Whitney 1903, Landolt 2007, Groysman 2010). 

The corresponding electrochemical reaction is given by Equation 2.1: 

 

Fe0 + 2 H2O  Fe2+ + 2 OH– + H2    (2.1) 

Fe0 + 2 H+  Fe2+ + H2     (2.1a) 

Fe0 + 2 H2O  Fe(OH)2 + H2    (2.1b) 

 

Equation 2.1a specifies that oxidizing protons (H+) from water dissociation are the real 

oxidizing agents. Equation 2.1b recalls that one mole Fe2+ is combined with 2 moles of OH– to 

form one mole of Fe(OH)2 which polymerizes and precipitates in the vicinity of the Fe0 surface 

(Nesic 2007, Lazzari 2008, Groysman 2010, Noubactep 2010a, Cao et al. 2020, Noubactep 

2022).  

As reaction after Equation 2.1b proceeds, Fe(OH)2 may disproportionate to magnetite and H2 

according to the Schikorr reaction (Equation 2.2) (Beverskog and Puigdomenech 1996, Qin et 

al. 2018). 
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3 Fe(OH)2   Fe3O4 + 2 H2O + H2   (2.2) 
 

Combining Equation 2.1b and Equation 2.2 yields to Equation 2.3: 

 

3 Fe0 + 4 H2O  Fe3O4 + 4 H2   (2.3) 

 

Equation 2.3 reveals that the oxidation of 3 moles of Fe0 releases 4 moles of H2. In other words, 

the overall stoichiometry of H2 production from Fe0 varies from 1:1 (Equation 2.1) to 4:3 

(Equation 2.3) (Reardon 1995, Reardon 2005, Velimirovic et al. 2013, Qin et al. 2018). The 

reaction shown in Equation 2.1 is the stoichiometrically dominant reaction under anoxic 

conditions (O2 free). However, even under oxic conditions, Equation 2.1 is the sole path for 

iron corrosion because the in-situ generated oxide film acts as a diffusion barrier for dissolved 

species (including O2) (Whitney 1903, Stratmann and Müller 1994) and a conduction barrier 

for electrons from the metal body (Hu et al. 2019a, Noubactep 2022). In the recent remediation 

literature, it has been largely considered that reducible contaminants compete with water for 

Fe0 oxidation (Liu et al. 2013, Qui et al. 2018, He et al. 2020, Hu et al. 2021b). The electron 

efficiency concept will not be discussed herein. Interested readers are referred to the excellent 

recent review article by He et al. (2020). For the presentation in this dissertation, it suffices to 

consider that each oxidized mole of Fe0 potentially yields one mole of Fe(OH)2 or other iron 

hydroxides (e.g. Fe(OH)3) and oxides (e.g. Fe2O3, Fe3O4) that are all larger in volume than the 

parent iron (Fe0): Voxide > Viron. 

The expansive nature of metal corrosion was described in the 1920s (Pilling and Bedworth 

1923, Caré et al. 2008) and first considered in the Fe0 remediation literature only a decade ago 

(Noubactep 2011, Caré et al. 2013, Domga et al. 2015). The key issue of the volumetric 

expansion of iron corrosion is that the process which is put into use (iron corrosion) is the first 

cause of permeability loss of Fe0-based filters. Accordingly, pure Fe0 filters (100 % Fe0) can be 

efficient but never sustainable. This pure physical consideration rationalizes the need of using 

hybrid systems (e.g. Fe0/sand) to design sustainable systems (Noubactep et al. 2011, Nanseu-

Njiki et al. 2019, Yang et al. 2020, Yang et al. 2021). During the past decade, Noubactep and 

colleagues have developed a facile method to characterize the reactivity of the Fe0/H2O system: 

The methylene blue method or MB method (Chapter 3). Using the MB method Miyajima (2012) 

and Btatkeu-K (2015) have demonstrated that sustainable filters should contain less than 50 % 

(vol/vol) Fe0. These experiments have validated theoretical predictions by Togue-Kamga 

(2013) and rationalized observations by several authors, that some systems with less Fe0 

performed better than pure Fe0 systems as summarized in Tepong-Tsindé et al. (2015). 
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For Fe0 SW used in water treatment, there are investigations with 100 % Fe0 (Lauderdale and 

Emmons 1951, Hildebrant 2018) and some few with up to 5 % (Wakatsuki et al. 1993, Erickson 

et al. 2007, 2017, Latrach et al. 2018). Only Bradley et al. (2011) have worked with 10 % Fe0 

SW. Accordingly, the range 5 to 50 % Fe0 SW is largely unexplored. This work was also 

designed to contribute to fill this knowledge gap.  

 

2.2 Contaminant removal in Fe0/H2O systems 

The evidence that iron corrosion is volumetric expansive implies that in filtration beds, 

available pores are filled with in-situ generated solid corrosion products (FeCPs) (Yang et al. 

2020, Yang et al. 2021). This also implies that contaminant removal by size-exclusion is 

improved with increasing service life, at least as long as the filter is still permeable. This 

predictable result has been observed in several systems (Westerhoff and James 2003, Hussam 

2009, Tepong-Tsindé et al. 2015, Guan et al. 2015). Noubactep (2010, 2011) has demonstrated 

that the described volumetric expansion is factually a cycle of expansions and compressions 

going through the colloid phase and implying contaminant enmeshment (co-precipitation). In 

other words, a species entering a Fe0/H2O system can be (i) adsorbed onto aged FeCPs, (ii) co-

precipitated by nascent FeCPs or (iii) be removed by pure size-exclusion. 

Contaminant removal by adsorption and co-precipitation corresponds to the operating mode of 

coagulation/flocculation and was known by Gustav Bischof already (Bischof 1873, Anderson 

1883). In the Bischof Process, Fe0 (sponge iron) was used to remove pathogens and color from 

river waters (Antia 2020). In the design of Lauderdale and Emmons (1951), Fe0 in the form of 

steel wool was also used to generate scavengers of radionuclides. After 1990 and the advent of 

Fe0 permeable reactive barriers, Fe0 was used for the first time to selectively remove 

contaminant by (i) a reductive mechanism (e.g. Cr, Cu), (ii) an adsorptive mechanism (e.g. As), 

(iii) by co-precipitation (e.g. As) or a synergy of several mechanisms. However, the abundance 

of water (the solvent) and the spontaneous nature of Equation 2.1 implies that Fe0 oxidation by 

a contaminant is not likely to occur. Thus, Fe0 should be regarded as a generator of contaminant 

scavengers, regardless from the redox properties of the contaminants (Gheju 2011, Ghauch 

2015, Gheju 2018). It follows that, a key question to answer while designing Fe0/H2O systems 

is: What is the long-term kinetics of generation of contaminant scavengers? In other words, 

which parameters should be considered for the design of efficient and sustainable Fe0 filters? 
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2.3 Testing Fe0-based filters for safe water provision 

Already during the 19th Century, it was acknowledged that designing a water filter is a complex 

issue that is possibly surrounded with “much ignorance and misapprehension” (Notter 1878). 

The reactive nature of Fe0 and its nonlinear corrosion kinetics are further aggravating factors 

(Moraci et al. 2016, Noubactep 2016, Qin et al. 2018). The success of any filter depends on at 

least four groups of variables: (i) the quality of raw water (e.g. pH, salinity, extent of 

contamination), (ii) the quality and volume of water to produce by unit time (e.g. daily), (iii) 

the speciation of the contaminants of concern (e.g. AsIII or AsV), (iv) the characteristics of used 

Fe0 and admixing aggregates. Relevant characteristics of Fe0 include its size, form, surface state, 

intrinsic reactivity and storing conditions or pre-treatment. 

Rationally designing a water filter implies combining the named variables to determine the Fe0 

amount (mass), its proportion in the mixture (e.g. 10% vol/vol), the thickness of the reactive 

zone, and the service life of the filter in satisfactorily treating a given polluted water. Given that 

each water source, each Fe0 and each Fe0/aggregate combination are unique, there is an infinite 

number of possible filters capable at efficiently treating any polluted water. All is needed is a 

systematic testing program and the readiness for long term experiments (Naseri et al. 2017, 

Nanseu-Njiki et al. 2019, Yang et al. 2020). 

 

2.3.1 State-of-the-art knowledge 

The current state-of-the-art knowledge on designing Fe0/H2O systems is excellently 

summarized in a recent publication by Antia (2020). As far as drinking water is concerned, 

there is an expanded use of small-scale Fe0 reactors for households and small communities 

(Hussam 2009, Banerji and Chaudhari 2017, Bretzler et al. 2020). Treated water sources are 

mostly wells and tube wells, mostly in regions without municipal water treatment 

infrastructures. The current production capacity for small communities is 150,000 to 250,000 

m3 d-1 (Antia 2020). Fe0/H2O systems have also been discussed for their suitability to produce 

potable water for emergency relief (Noubactep et al. 2009, Antia 2020). The potential global 

commercial market for Fe0-based technologies is huge, but its current coverage is rather very 

small. If the technology can be downscaled to meet the needs of individual households, then its 

future global commercial market may exceed any actual predictions. 

To meet the needs of households on a global level, the first issue is to find a suitable Fe0 material 

(Btatkeu-K 2015, Ndé-Tchoupé 2019). Steel wool and iron nails are currently the most used 

(Nanseu-Njiki et al. 2019). However, their intrinsic reactivity has not been characterized (Hu et 

al. 2019b, Hu et al. 2019c, Lufingo et al. 2019, Hildebrant et al. 2020). Our research group has 
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tested several classes of Fe0 materials (Btatkeu-K 2015, Ndé-Tchoupé 2019) before opting for 

steel wool. The rationale for this choice is the tiny size of the filaments (< 100 m) and the 

probability of their depletion under field applications. The hypothesis is supported by results 

from Bradley et al. (2011) reporting on the depletion of Fe0 SW grad 000 (d = 25 m) after 6 

months in their experiments. Fe0 SW grade 0 (d = 50 m) was tested herein. 

The most efficient Fe0 materials for water treatment in filters over the decades are porous ones 

(Bischof 1873, Hussam 2009). Contrary to compact materials (e.g. iron filings, iron nails, scrap 

iron) they are likely to be extensively corroded under natural conditions. This is because the 

“extraction” of iron from deeper layers of compact materials is uncertain in the long term 

(‘reactivity loss’). Once a Fe0 material is selected for the construction of a filter, an appropriate 

arrangement of the materials should be sought (Tepong-Tsindé et al. 2015).  

 

2.3.2 Research gap 

The literature on Fe0 household filters until 2014 (start of this work) was full of different designs 

of which only the SONO filters were sustainable (Neumann et al. 2013, Wenk et al. 2014). 

Devices for small communities were rare and long-term experience was similarly missing 

(Gottinger et al. 2013, Chaudhari et al. 2014, Kowalski and Søgaard 2014). Caré et al. (2013) 

justified the success of SONO filters by the porous nature of the used Fe0-based composite. 

However, the system was patented and thus not universally accessible. The calculations of Caré 

et al. (2013) demonstrated that admixing Fe0 and non-expansive aggregates would result in 

efficient and sustainable systems. 

The science-based hypothesis of Caré et al. (2013) was in frontal contradiction with the then 

prevailing view that Fe0/sand mixture are best used as O2 scavenger pre-treatment layers to 

enable anoxic systems where contaminants are reduced by electrons from Fe0, non-disturbed 

by dissolved O2 (Mackenzie et al. 1999, Westerhoff and James 2003, Henderson and Demond 

2007). Fortunately, some researchers had used Fe0/sand column to treat water (Khan et al. 2000, 

Lackovic et al. 2000). In particular, Khan et al. (2000) used Fe0 to in-situ increase aqueous iron 

concentration and induce As co-precipitation. In other words, a Fe0/sand mixture cannot be 

regarded as a pre-treatment zone. The open question was how long such a mixture can 

efficiently treat water? One partial answer was that, under oxic conditions, filter clogging is 

more likely because larger corrosion products are generated (Domga et al. 2015). In other 

words, creating conditions of low O2 concentrations is a tool to sustain the service life of Fe0 

filters. 
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The conventional water treatment system suggests that a low-cost way to consume dissolved 

O2 from water is to let it flow through a slow sand filter (SSF) (Campos 2002, Haig et al. 2011), 

of which a miniature version is available and termed as biological sand filter (BSF) (Lea 2008). 

Accordingly, a BSF preceding a Fe0/sand filter would result in a more sustainable system. Given 

that Fe0 alone, sand alone and Fe0/sand systems were already compared for water treatment 

efficiency and the superiority of Fe0/sand systems demonstrated (Miyajima 2012, Phukan 2016) 

that the discussion was limited to the design of Fe0/sand systems. The main operational variable 

is the Fe0:sand ratio. Based on previous works in Cameroon, commercial steel wool (SW) was 

used as Fe0 source. The rationale of using Fe0 SW was that given their tiny diameters (m) 

compared to granular materials (mm) there is a chance that they are exhausted in a test. 

Moreover, Bradley et al. (2011) had already experienced the depletion of extra-fine SW (d = 25 

m). 

 

2.3.3 Research objective and research design 

The objective of the paper was to make recommendations based on the current state of the 

science concerning (i) aqueous iron corrosion and (ii) contaminant removal by iron 

oxides/hydroxides in the environment. Tested SONO-like with grade 0 SW (d = 50 mm) using 

well water for one year in Douala is the specific objective of this work. 

One objective of the research has been to design a long-lasting drinking water filter for coastal 

regions with fluctuating salt intrusion into the aquifer. 

 

2.3.4 Methodology 

The technical steps to realize a water purification unit are: (i) developing, as a prelude to the 

pragmatic laboratory tests, a concept for the dimensioning of such filters; (ii) characterize and 

rationalize the suitability of the Fe0-material for the construction and the guideline of the Fe0-

Filter; (iii) solve the well-known clogging (loss of permeability) problem of Fe0 bed filters; (iv) 

test the applicability and effectiveness of Fe0 filters for domestic use. 

In this thesis, the production of quality drinking water by removing dissolved iron, nitrate, 

turbidity, and pathogens from influent water could successfully be accomplished. 

 

2.3.5 Performed investigations 

In the framework of this dissertation, experimental research has been carried out in two 

domains: (i) characterizing the effects of chloride on the efficiency of Fe0/H2O systems (Chapter 
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3), and (ii) testing a steel wool-based household filter for safe drinking water provision in 

Douala, Cameroon (Chapter 4). 

 

2.3.5 Experiment location 

The field experiments were conducted in the peri-urban area of the city of Douala in 

Cameroon’s Littoral Region. Douala is located between 4°04´ Nord latitude and 9°45´ Est 

longitude, 13 m above sea level, it is directly at the estuary of Wouri River which discharges 

into the Atlantic (Direct in the Gulf of Guinea). The Wouri River is at least brackish. The city 

and its surrounding area had an estimated population of 3 638 237 in 2019. Douala is divided 

into five districts. The region has a humid equatorial climate which is characterized by a long 

rainy season from April to October and a short dry season from November to March (Suchel 

1988). The peak rainfall occurs from July to September. The average annual rainfall is around 

4.000 mm. The annual temperature is between 23°C and 33°C (average 27°C), January and 

February being the hottest months of the year. The ferralitic soils of the area vary from yellow 

through brown to black, freely drained and are sandy, while being sandier at the top and more 

sandy clayey in the subsoil (Asaah et al. 2006). The groundwater table is generally located less 

than 10 m below the surface (Mafany et al. 2006), the aquifer being continuously recharged by 

rainfalls. Wastewater from drainage channels also infiltrates into this aquifer. Several streams 

run in the area and may recharge the aquifer depending on season and water level. The 

fluctuations of the average groundwater levels range from 0.3 to 2.1 meter between the dry and 

wet seasons. 

Given its coastal location, it seems theoretically possible, that upon excessive groundwater 

extraction, seawater intrusion may occur in the more coastal areas of Douala (Mafany et al. 

2006). To account for slightly saltwater affected groundwaters, the influence of chloride (Cl-) 

on the cleaning efficiency of the Fe0/H2O system is also characterized in this thesis (chapter 3). 
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Figure 2: Location of water sources (well) in the study site (Douala Logpom). 

 

  



27 

 

3 Characterizing the impacts of chloride ions on the efficiency of Fe0 

filters 

3.0  Preamble 

This chapter evaluates the potential effects of salt intrusion (presence of NaCl) on the efficiency 

of Fe0 filters. The evidence that chloride ions affect the extent of iron corrosion is given by the 

comparison of the chemical potential (Gibbs energy – G◦
T) of iron corrosion by H2O (Equation 

3.1) and HCl (Equation 3.2). Changes in Gibbs energy of substances are used to judge whether 

a chemical process can occur spontaneously under specific conditions of temperature and 

pressure (Groysman 2010).  

Like for any other chemical process, corrosion occurs only if G◦
T < 0. 

 

Fe0 + 2 H2O  Fe(OH)2 + H2    (3.1) 

Fe0 + 2 HCl  FeCl2 + H2     (3.2) 

 

The corresponding Gibbs energy changes at T = 25 C are -15.7 and -84.9 kJ mol-1 respectively 

(Groysman 2010), showing that the presence of Cl- significantly accelerates iron corrosion. 

Another comparative lecture of Equations 3.1 and 3.2 is that FeCl2 is more stable than Fe(OH)2. 

In other words, in the presence of NaCl, iron precipitation is delayed. 

The current state-of-the-art knowledge on contaminant removal in Fe0/H2O systems is that it is 

the precipitation and further transformation of Fe(OH)2 which implies contaminant removal, 

mainly by adsorption and co-precipitation (Miyajima 2012, Miyajima and Noubactep 2012, 

Miyajima and Noubactep 2013, Miyajima and Noubactep 2015, Btatkeu-K et al. 2016, Gatcha-

Bandjun et al. 2017). By complexing Fe2+, chloride ions avoid or delay the formation of 

contaminant scavengers. In this chapter, the impact of chloride ions on the efficiency of 

Fe0/H2O systems will be characterized using the methylene blue method (MB method) 

(Miyajima and Noubactep 2012, Btatkeu-K et al. 2016, Xiao et al. 2020b). 

 

3.1 The dynamic of the Fe0/H2O system and the MB method 

When a reactive piece of Fe0 is immersed in water, its spontaneous oxidative dissolution occurs 

after Equation 3.3. Generated Fe2+ ions may form complexes with available ligands, including 

HO- from water dissociation (Equation 3.4) and chloride from NaCl addition (Equation 3.5). 

Deriving from the solvent (water). HO- is stoichiometrically very abundant, meaning that 
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whatever the chloride concentration, there shall be Fe(OH)2 precipitation if enough Fe0 is 

available.  

 

Fe0 + 2 H+  Fe2+ + H2    (3.3) 

Fe2+ + 2 OH-  Fe(OH)2     (3.4) 

Fe2+ + 2 Cl-  FeCl2      (3.5) 

 

The profound investigation of the Fe0/H2O system is complicated by the difficulty to perform 

Fe mass balance. Equation 3.3 implies that there are three ways to quantify the extent iron 

corrosion: (i) quantifying Fe0 depletion (e.g. mass loss), (ii) quantifying H2 evolution and (iii) 

quantifying soluble Fe2+ (Groysman 2010). At pH > 4.5 where iron precipitation is quantitative, 

this task is a very challenging because of the very low solubility of iron (Reardon 1995, Lewis 

2010) and the interactions of H2 with both, solid iron corrosion products and metallic iron 

(Reardon 1995, Reardon 2014). According to Lee et al. (2004), “no carbon balances between 

reactants and products have ever been successfully done for many chlorinated hydrocarbons, 

which indicates that reduction pathways of metal-mediated reactions are not fully understood 

yet”. The situation is not better for other species, including inorganic ones. One thinking 

mistake in this endeavor has been that the fraction of reactants enmeshed in the matrix of FeCPs 

has been considered reductively transformed (Noubactep 2007, Noubactep 2008). The digestion 

of FeCPs is known to be challenging (Heron et al. 1994, Noubactep et al. 2006) but has not 

been considered in the discussion of mass balance within the Fe0 research community 

(Noubactep 2007, Noubactep 2008). 

 

3.1.1  The conventional approach to investigate the Fe0/H2O system  

The use of Fe0 in permeable reactive barriers (PRBs) has emerged in the 1990s (Gillham 2008, 

Guan et al. 2015, Chen et al. 2019, Li et al. 2021). Fe0 PRBs are currently established as an 

effective and sustainable approach for the remediation of polluted groundwater. Several 

technical documents for the design and use of Fe0 PRBs have been developed (ITRC 1999, 

Schirmer 2003, ITRC 2005, ITRC 2011, CRC CARE 2016). These documents are regarded as 

useful guidance for assessing the suitability of Fe0 materials, designing Fe0-based systems, as 

well as operating, monitoring, and decommissioning the same. Laboratory testing as described 

in CRC CARE (2016) will be presented herein. CRC CARE (2016) is one of the most recently 

developed documents and can be considered as the state-of-the-art knowledge. 



29 

 

Laboratory testing typically includes batch and column experiments. Where possible, testing 

should be performed by laboratories with proven expertise on individual aspects (CRC CARE 

2016). Column experiments are designed from results of batch studies and should typically use 

site groundwater. Polluted water is pumped through the column at a velocity similar to field 

conditions. Concentrations of contaminants of concern, major ions, the pH value, and changes 

of the hydraulic conductivity are usually monitored to assess the efficiency of the design, 

including mineral precipitation (McGuire et al. 2003). The time-dependent changes of these 

parameters are plotted as a function of distance along the column. This experiment is replicated 

for each contaminant to determine the rate constant and calculate the half-life. Estimated half-

lives for common contaminants using Fe0 are tabulated (CRC CARE 2016). Even though such 

values are just indicative and should be confirmed using site-specific information, the 

usefulness of half-live values is questionable because the intrinsic reactivity of used Fe0 

materials also matters (McGeough et al. 2007, Li et al. 2019, Lufingo et al. 2019). On the other 

side, given the huge number of species that are potential pollutants at many sites, it would be 

difficult to determine their half-lives even under standardized conditions (Kim et al. 2014, Li et 

al. 2016, Li et al. 2019). The methylene blue method was introduced to consider the limitations 

of the half-life approach (Xiao et al. 2020b).  

 

3.1.2 The MB method 

Methylene blue (MB) adsorption on several minerals has been largely tested and used in 

environmental research (Mitchell et al. 1955, Barker and Linge 1981, Avom et al. 1997, Attia 

et al. 2008, Kurth 2008, Frost et al. 2010, Abdel Muslim et al. 2014, Btatkeu-K et al. 2016). Its 

applications include the measurement of specific surface areas (Barker and Linge 1981) and the 

characterization of the material’s porosity (Attia et al. 2008). In investigating Fe0/H2O systems, 

MB is mostly considered as a model contaminant (Kurth 2008, Frost et al. 2010, Abdel Muslim 

et al. 2014). However, considering the evidence, that MB is a cationic dye (Mitchell et al. 1955) 

and that the Fe0 surface is permanently shielded with a positively charged oxide scale, more 

attention should be paid to the real mechanism of MB discoloration in the presence of metallic 

iron. The historical work of Mitchell et al. (1955) has supported this reasoning. 

In the neutral pH range, the surface of sand is negatively charged (Kosmulski 2016). This makes 

sand an excellent adsorbent for positively charged MB. When sand is coated with positively 

charged iron oxides, its affinity to MB automatically decreases. Mitchell et al. (1955) have 

excellently demonstrated this evidence using sixty-five (65) natural sand specimens. In fact, 

after freeing sand specimens from the inter-granular material (including iron oxides), their 
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adsorption for MB considerably increased. In other words, if the same sand is coated with iron 

oxides (FeCPs) to several, then differential extents of MB discoloration will be achieved. The 

MB method is grounded on this premise (Miyajima 2012, Btatkeu-K et al. 2016). If the same 

Fe0 mass is admixed to various masses of sand for the same duration, sand will be deferentially 

coated with FeCPs. For a given experimental design (pH value, shaking intensity, temperature, 

volume of solution), the relative mass of Fe0 and sand to be used are to be determined in 

primarily experiments. 

The MB method consists in following the time-dependent extent of MB discoloration in various 

Fe0:sand mixtures (including pure sand). Observed changes correspond to the extent of sand 

coating by in-situ generated FeCPs. Thus, without any iron mass balance nor any identification 

or quantification of the generated FeCPs, their impact is characterized. For this reason, MB is 

an operational tracer of the reactivity in Fe0/H2O system (Xiao et al. 2020b). 

 

3.1.3 Past achievements of the MB method 

Noubactep and his collaborators have introduced the MB method around 2012 (Miyajima 2012, 

Miyajima and Noubactep 2012). Its first merit was to consolidate past results that co-

precipitation is a stand-alone path in the process of contaminant removal in Fe0/H2O systems 

(Noubactep et al. 2005, 2006). In fact, because of electrostatic non-favorable conditions, MB 

adsorption by FeCPs is negligible. Thus, MB discoloration is due to its enmeshment in 

precipitating nascent FeCPs. Btatkeu-K et al. (2013, 2014a, 2014b) and explains that FeCPs for 

MB discoloration represent the excess after sand coating. Sand coating also competes with MB 

discoloration as both Fe2+ and Fe3+ are positively charged (like MB). However, MB adsorption 

onto sand is suppressed only after coating with FeCPs (Btatkeu-K et al. 2016). As a result, the 

MB method implicitly demonstrates the ion selective nature of the Fe0/H2O system (Sato 2001). 

Phukan (2015) has confirmed this selectivity in parallel experiments using MB and Orange II 

(Phukan et al. 2015, 2016). 

The most important achievement of the MB method is that is has ended the discussion as 

whether admixing Fe0 to sand (and other aggregates) is beneficial to Fe0 filtration systems or 

not. Fe0/sand mixtures were considered useful as O2 scavengers designed to enable that pure 

Fe0 systems operate under anoxic conditions (Westerhoff and James 2003). Admixing sand to 

Fe0 was considered as “Fe0 dilution” with the potential to negatively impact the efficiency of 

the systems. The MB method has clearly demonstrated that, due to the volumetric expansive 

nature of iron corrosion, admixing non-expensive aggregates with Fe0 is even a prerequisite for 
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sustainability (Btatkeu-K et al., 2014a, 2014b, 2016), validating the concept of Domga et al. 

(2015). 

 

3.2 The impact of chloride on the Fe0/H2O system 

One objective of the research has been to design a long-lasting drinking water filter for coastal 

regions with fluctuating salt intrusion into the aquifer. 

The effect of the chloride ions (Cl-) on the efficiency of Fe0/sand systems was characterized in 

column studies for 4 months on basis of methylene blue (MB) discoloration. Tested systems 

were: pure sand (0 % Fe0) as reference and a Fe0/sand mixture (50 vol.% Fe0 and 50 vol.% 

sand). Tested Cl- concentrations were 0.0, 2.1, 21.1 and 42.2 mM. The used MB concentration 

was 16 M (5 mg L-1) and used Fe0 mass was 100 g. Discoloration experiments lasted for 89 

days and were followed by a 26 days desorption experiment. Each system was characterized by 

the time-dependent changes of the pH value, the iron breakthrough, the MB breakthrough, and 

the hydraulic conductivity (permeability). During the discoloration experiments, a total of 17.4 

L (184 pore volumes) of the MB solution flowed through each column (279 M dye or 87.2 

mg). No significance changes in pH value and permeability were observed. Discoloration and 

desorption results confirmed that sand is an excellent MB adsorbent (only 11 % discoloration 

in the reference system). In the absence of Cl-, 15 mg MB was discolored. Up to 18 mg of MB 

was discolored in the presence of Cl-. A similar trend was observed for the iron release which 

was 7.3 mg at 0.0 mM Cl- and 16.2 mg at 42.2 mM Cl-. This confirms that chloride ions enhance 

the kinetics of Fe0 corrosion and thus the production of contaminant collectors (for MB co-

precipitation). Results confirmed the suitability of MB as a powerful operative indicator for the 

characterization of processes in the Fe0/H2O system. 
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Figure 3: Photograph of a column design depicting the typical sequence of coloration described by Westerhoff 

and James (2003). The picture shows that the entrance zone of the Fe0/sand zone is colored brown while the upper 

section is black. The sand layer after the Fe0/sand zone more or less maintains its “white” / brownish color by FeIII 

iron oxide from the Fe0/sand zone. Sand in the reference system (first column) and the sand layers preceding the 

Fe0/sand zone are blue colored by methylene blue. (Picture from Miyajima 2012) 

 

Five glass columns were used for the design. Four columns filled with sand and granular iron 

(sandwiched with sand in the column) and one reference column (sand alone). It is seen that the 

reference system (sand alone) and the sand layer preceding the reactive layer are uniformly 

blue-colored. A brownish coloration of the tubing material is also observed in all Fe0-based 

systems (Figure 3). 

These experiments have clearly demonstrated that seawater intrusion would enhance the 

concentration of dissolved iron in the effluent of any Fe0-based filter that is initially designed 

for low saline or fresh water. For this reason, in case of a saltwater intrusion, new Fe0 filters 

should be designed which incorporate for example a subsequent unit containing biochar for iron 

removal (Gwenzi et al. 2017). However, elevated concentration of dissolved iron is not the sole 

potential problem, because effluent iron concentration increases due to the higher solubility of 
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FeCl2 and FeCl3 relative to Fe(OH)2 and Fe(OH)3 (Gatcha-Bandjun et al. 2017). The hydroxides 

are the real contaminant scavengers, meaning that thicker Fe0-based beds would be necessary 

to achieve the expected efficiency. Fe0 systems have been reported to induce water desalination 

(Antia 2015a, 2015b, 2016, 2917), but this aspect is not presented herein. It is certain that water 

desalination is complex and expensive. It is better to avoid it, for example by increasing 

artificial groundwater recharge to balance extracted groundwater (Marwa et al. 2018, Qi et al. 

2019, Pembe-Ali et al. 2020). 
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4 Designing and pilot-testing a household Fe0 SW filter in Douala 

(Canmeroon) 

4.0 Introduction 

Lack of safe drinking water is one of the most characteristics and most serious health issues in 

the developing world (Ali 2014). All the 46 nations of Sub-Sahara Africa for example, currently 

have not achieved universal access to safe drinking water and most of them are not on track to 

meet the UN SDGs in 2030 (Hering et al. 2016, Nanseu-Njiki et al. 2019). This sad situation 

calls for the development of applicable and affordable tools to treat available water sources on 

a decentralized manner (Shannon et al. 2008). In the city of Douala, well water is by far the 

main source of drinking water (Ako et al. 2010), but its quality is largely unknown (Mafany et 

al. 2006). During the past two decades, intensive efforts have been made to establish metallic 

iron (Fe0) based filtration systems as a universal tool for potable water production (Ngai et al. 

2006, Hussam and Munir 2007, Banerji and Chaudhari 2017, Nanseu-Njiki et al. 2019, Yang 

et al. 2020). 

Although Fe0-based filters are the most extensively investigated approach in the last two 

decades, scientifically sound, economically viable, and sustainable strategies for their design 

remain elusive (Etmannski 2014, Banerji and Chaudhari 2017, Bretzler 2018, Bretzler et al. 

2020, Ullah et al. 2020, Yang et al. 2020). To date, the design of sustainable Fe0 filters is 

impaired by the evidence that the kinetics of iron corrosion under environmental conditions is 

rather slow and could continue for several years or even decades (Wilkin et al. 2014). While 

the kinetics of Fe0 specimens typically used in water treatment is yet to be characterized, the 

greatest challenge will be to couple “residual corrosion” and contaminant removal. Given that 

each Fe0 specimen and each water source are unique, it is rather difficult to generate transferable 

results. There have been little efforts in this sense as for example the seven or eight classes of 

iron steel wool (Fe0 SW) have been mistakenly presented as Fe0 SW, without even specifying 

the used grade (Lufingo et al. 2019). Additionally, the tested experimental duration has rarely 

accounted for the non-linear kinetics of Fe0 corrosion (Cao et al. 2020, Xiao et al. 2020a, Xiao 

et al. 2020b, Yang et al. 2020). 

Any sustainable Fe0-based solution for decentralized safe drinking water provision should be 

presented with an appropriate business model. Such a model includes the price of the used Fe0 

specimen, the admixing material (e.g. sand), and the filter container. The business model also 

includes the service life of filters and how they will be decommissioned (Etmannski 2014). In 

the absence of reliable and accurate knowledge on the long-term reactivity of used Fe0 serious 
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business models are possible. The present work aims at contributing to fill this knowledge gap 

using Fe0 SW as reactive material. 

The used Fe0 SW (d = 50 m) corresponds to grade 0 which is twice larger in diameter than the 

one used by Bradley et al. (2011) in their experiments lasting for 1o months. Fe0 SW (d = 25 

m) represented 10 % of the reactive mixture and was depleted after eight months. Herein, 

preliminary experiments were performed with 50 % (vol/vol) Fe0 SW and the filters were 

clogged after six months. The main experiments were performed with 10 % (vol/vol) Fe0 SW 

and lasted for one year. No material depletion was observed. The results are presented and 

discussed in this chapter. 

 

4.1 Materials and Methods 

The choice to experiment with this filter (BSF+Fe0-Filter) was based on the following three 

criteria: 

First, the Fe0-SW is an excellent choice as a source of Fe0 for the design of Fe0- filters. The 

second hypothesis is that to properly size a Fe0 bed filter, that will be efficient and durable, 

amounts to defining well the mixture of materials forming the heart of such a system (reactive 

zone - RZ). The last hypothesis is that to reiterate while also demonstrating that the Fe0 bed 

filters are efficient and reliable systems, amounts to putting in advance its capacity, to 

chemically eliminate a pollutant that is difficult to extract in the like fluorine, and from a 

biological point of view, to eliminate pathogens. 

Furthermore, the choice of SW as Fe0 (materials for the construction of the RZ) for this study 

is due to the fact that the EDTA tests suggest that the SW are more reactive than most local 

materials (Ndé-Tchoupé 2019, Hildebrant et al. 2020). 
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Figure 4: Picture of the designed filtration system: Well water was stored in blue 200 L tank. The first and the 

third columns are conventional bio sand filters (BSF). In the middle of column 2 is Fe0 SW mixed with sand 

coarse (Picture B). The columns are connected to each other with a PET tube. 

 

4.2  Filter construction and Design 

The tested design is made up of three identical cylindrical Plexiglass columns with a length: of 

100 cm and an inner diameter of 20.0 cm mounted in series: two conventional BSFs and one 

(A) (B) 
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Fe0 SW unit in between. Upon successful testing, the unit was intended to be transferred for use 

in households, but with a proper housing (e.g. concrete material). The test device was 

constructed inside a room of the Institute of Applied Technology in Douala. The used room was 

not a conventional experimental laboratory but offers representative conditions for a household 

situation. The room temperature range was 26  2 °C.  

Schematic diagram of the designed filtration system is presented in Fig. 4. The columns were 

connected to each other by using a 1.5 m PET (polyethylene terephthalate) tube with an inner 

diameter of 2.4 cm. The columns were packed from the bottom to the top as follows (Table 2): 

15.0 cm gravel (Hgravel,1) followed by 40.0 cm of a reactive layer, and topped by a 15.0 cm 

gravel layer (Hgravel, 2). For column 1 and 3, the reactive layer was a medium sand layer (Hsand, 

1). In column 2, the 40 cm consist of a mixture of 30.0 cm Fe0 SW and coarse sand (Fe0/sand) 

(reactive zone RZ) sandwiched between two 5.0 cm medium sand layers (Hsand, 2). 

The reactive zone layer was prepared by carefully introducing sand grains and chopped Fe0 SW 

in small lofts into the column. The Fe0/sand mixture (10 vol.% SW + 90 vol.% coarse sand) 

was previously mixed in a large beaker. Once in the column, water was added to the mixture 

and it was gently compacted by manual tapping using a 100 mL PET bottle filled with water. 

The 300 g of Fe0 SW and 14,200 g of coarse sand mixed together, had a Fe0 concentration of 

2.07 weight %. The strong discrepancy between volume and weight percent is caused by the 

very low density of SW (low weight and large volume). To build a 20 cm reactive layer under 

their experimental conditions, Bradley et al. (2011) used 260 g of Fe0 SW (extra fine) with 

1,563 g sieved sand (effective size 0.4 mm). 
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Figure 5: Schematic diagram of the designed filtration system: Well water was stored in 200 L tank. The 

first and the third columns are conventional bio sand filters (BSF). In the middle of column 2 is Fe0 SW 

mixed with coarse sand. The columns are connected to each other with a PET tube. 

 

Table 1: Summary of the used experimental set up. Hgravel1 and Hgravel2 are the heights of the underdrain 

and the upper layer respectively; Hsand1 the heights of medium sand; HSand1 is the medium sand layer 

(BSF) and HRZ is the height of the reactive layer (Fe0/sand) sandwiched by Hsand2. 

 

Designation Height (cm) 

  Column 1 Column 2 Column 3 

Gravel (Hgravel 1) 15.0 15.0 15.0 

Sand coarse (HSand2) - 5.0 - 

medium sand (HSand1) 40.0 - 40.0 

RZ(Fe0/ Sand coarse) (HRZ) - 30.0 - 

Sand coarse (HSand2) - 5.0 - 

Gravel (Hgravel 2) 15.0 15.0 15.0 
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The total thickness of solid materials in each column was 70.0 cm, the free water column was 

15 cm thick.  

 

4.3  Solid materials 

4.3.1  Metallic iron (Fe0) 

Fe0 SW was used as a generator of iron hydroxides for contaminant scavenging (Noubactep et 

al. 2009, Jia et al. 2007, James et al. 1992). A fine-grade Fe0 SW (grade 0) of 50 µm fiber 

thickness from “Grand Menage” trademark brand purchased in Douala (Cameroon) was used. 

Its average elemental composition was not determined as it was proven to be not a stand-alone 

determining reactivity parameter for Fe0 in general. Recently, Lufingo et al. (2019) presented 

the first systematic study comparing the intrinsic reactivity of Fe0 SW. The elemental 

composition (%) of the grade 0 (d = 50 μm) material they tested was: Fe: 99.08; Co: 0.05; Cu: 

0.27; Ni: 0.11; and Cr: 0.49.  

The Fe0 SW used in this study was chopped in sections of 1.0 to 5.0 mm length. 

 

4.3.2  Sand 

The used sand was a natural material from the Mungo River (Cameroon). Mungo sand was 

selectively sieved, using a set of sieves to split the sand to gravel. The sieve A made with grain 

size of 2 mm in diameter (metal net) is used to select a more coarse sand. Sieve B made with 

mosquito net with grain size of 0.63 mm in diameter is used to obtain a medium sand. This 

medium sand is retained using a sieve with a size of 0.2 mm in diameter (Fig. 6).  

The portion passing through 2 mm sieve and retained on 0.63 mm was mixed to Fe0-SW to 

build the reactive zone and to sandwich these RZ layer. The medium sand retained with the 

sieve with a size of 0.2 mm is used as filter media in the BSFs (Hsand1). This step is also to 

eliminate all silt and clay contained in sand. 

As received Mungo sand was washed several times using tap water until the wash water became 

clear. Retained fractions were separately warmed in boiling water for about 3.0 h. The sand was 

further dried at the sun for about 6.0 h. Sand was used because of its worldwide availability and 

its use as an admixing agent in Fe0/H2O systems (Ndé-Tchoupé 2019). 
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Figure 6: This step needed to sieve the grad of medium sand media. Sand coarse is maintained between 

A (2 mm in diameter) and B (0.63 mm in diameter). The sieve material for sieve A is a metal net and 

for the sieve B is the mosquito net. Each sieve is made with wooden frame. 

 

4.3.3  Gravel 

The Gravel was pre-treated like coarse sand. The particle size separated by two sieves ranged 

from (B’) 4 mm to (A’) 8 mm (Fig. 7). Gravel was used as lower supporting layer and as top 

layer in the individual columns. The bottom gravel layer partially removes solids from raw 

water entering the first column (Fig. 5). The gravel layer also prevents the entrance of sand 

particles into the inlet pipe and facilitates the water flow in the inlet of the column. Wegelin 

(1996) also recommended a gravel layer with grain sizes between 4 to 8 mm. 
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Figure 7: Scheme of the steps to obtain gravel with 4 to 8 mm diameter. A’ is the first step of sieve to 

obtain gravel but the step B’ is to eliminate all sand size contain in gravel from A’. The sieve materials 

in sieves A’ and B’ consist of metal wire meshes fixed in a wooden frame. 

4.4 Construction protocol and guideline for the Fe0 based sand filter device 

This protocol describes the steps in preparing solid media (medium sand, coarse sand, gravel 

and Fe0-SW) for use in a Fe0 based filter device. 

(1)  Prepare the sand and gravel for their use in the filter device 

First, mixed sand and gravel must be separated into its different-sized grain sizes by passing 

through a series of sieves, because the filtration rate is strongly influenced by the grain size of 

media. Next, sand and gravel must be washed to remove finer particles such as silt, clay, and 

other impurities. 

An important factor is the selecting of source of sand and gravel. Last, use natural water to wash 

the sand and gravel, and place the media in the sun to dry: the solar radiation will inactivate any 

possible attached pathogens. If this is not possible, remember that pathogens within the water 

or attached to sand grains will be consumed by the filter’s normal biological processes or, when 

exposed to an anaerobic environment within the filter, will not survive. 

(2)  The following items are necessary: 

one 200 liters (50 gallons) raw water tank,  

one 50 liters (12,5 gallons) drinking water tank,  

Column integrated Tubes (diameter of 2 cm, length = 3 cm) to connect the columns, PVC pipe 

(inner diameter of 2 cm, length = 150 cm) and ring to attach PVC pipe and Column integrated 

Tubes. 

One tap for flow rate regularization.  

One 100 mL PET bottle filled with water to compact media in the column by manual tapping. 

Materials for testing filter flow rate including a measuring vessel (1-liter PET bottle is adequate) 

and one stopwatch.  

(3)  To place the media in the filter columns, certain procedures must be respected.  

At first, place the empty filter units inside the house or in a corner of a yard. It must be an 

appropriate place because its location final. Secondly fill the column with media from the 

bottom to the top as follows: a) Gravel, sand, and gravel for the BSF filter column and b) Gravel, 

coarse sand, Fe0 SW /coarse sand mixture (Fe0/sand), coarse sand, and gravel for the Fe0 SW 

based filter column. After filling, make sure that the drain hole, PVC connect pipe, and outlet 

pipe are unobstructed.   

Following steps are necessary for mounting the filter:  
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a) Installing the raw water tank by the height greater than that of the columns (to generate a 

gravity pressure) 

b) Place all the columns in order at the same horizontal level as follows: BSF1, Fe0/Sand Filter, 

BSF2. 

c) Connect the raw tank and the columns with PVC connecting pipes as follows: outlet of raw 

tank and inlet of the first column. Then outlet of the BSF1 column to inlet of Fe0/Sand Filter 

column. At the end connect the outlet of this to the inlet of BSF2.  

 

Ensure that the connecting pipes are securely attached to each column and to the raw water 

tank. 

Water is required to be inside the filter before starting the filtration of the raw water. This 

prevents pockets of air from being trapped within the media. The presence of air pockets would 

slow down the flow rate. A reliable filling of media in the column is essential for a proper 

operation of the filter. 

Fill natural raw water in 200 liters (50 gallons) and let it flow until all columns filling with 

water. After that, the level of water in all column is stable, let it flow through out of the outlet 

pipe of the last column for around 21 days. So that the filter should reach the maturation.  

The circulation and pressure of the water in the filter is determined by the hydraulic pressure. 

Due to a siphoning effect, the water will stop coming out of the filter when the water is at the 

same level as the bottom of the column integrated tubes. 

 

4.4.1 Testing filter flow rate 

The amount of water that flows through the filter is controlled by the column diameter, the 

thickness and grain size distribution of sand media contained within the filter and the control 

tap place by outlet of the influent tank. If the rate is too fast, the efficiency of bacterial removal 

may be reduced by lowering the flow at the tap. If the flow rate is too slow, the amount of 

treated water is insufficient to meet the needs of the users and the flow should be increased at 

the tap.  

The flow rates of a filter can be derived from the time it takes to fill up a container of a known 

volume with water. To test the flow rate, place a graduated 1-liter container under the outlet of 

the filter. The flow rate through the filter decreases as the height of the water in the influent 

reservoir drops. Measure with a stopwatch how long it takes to completely fill the 1-liter 

container with filtered water. For this study 0.34 liter has been obtained per min (that means 

176.5 sec for one liter).  
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The filter is still functional, but it will require more maintenance than normally due to frequent 

clogging. Some experimentation will be necessary to achieve the desired flow rate. Since the 

flow rate is controlled at the tap and by the porosity of the sand, the tap should be adjusted 

and/or the sand should be washed more intensively (removal of finer particles) to achieve the 

desired flow rate. 

 

4.4.2 Preparation of the material 

Consumers are required to disinfect the gravel and coarse and medium-sized sand by boiling it 

in water for approx. 3 hours, before drying it in the sun for about 6 hours. Afterwards, the SW 

chopped in small particles was mixed with coarse sand to obtain the reaction layer of the second 

column.  

4.5 Experimental procedure 

An intermittent gravity-driven filtration was performed for one year with the device described 

above (Fig. 4). Each filtration event was initiated by opening the outlet-controlled tap connected 

to column 1 and allowing the stored well water from the reservoir to flow through the entire 

system. Experiments were conducted on a daily basis from Monday to Friday. Two hundred 

liters of water were filtered per filtration event. Raw water was collected from a well, used for 

drinking and other domestic purposes (Tab. 2). Since the well water was polluted with 

microorganisms; there was no need for artificially seeding it. The volume of effluent recorded 

during the first 10 min was used to calculate the flow velocity. At the end of the filtration event, 

the reservoir was immediately refilled with 200 L well water. The initial flow rate was 0.34 L 

min−1 (20.40 L h−1) and was not further modified. This approach perfectly mimics pilot-scale 

intermittent filtration using household filters for daily water need in low-income communities. 

The pH value, the iron level, and the extent of water decontamination were monitored. 

Complete water analysis including search for pathogens was performed twice per month at the 

Centre Pasteur in Douala. 

 

4.6 Sample collection and efficiency characterization 

The 1 L sample bottles were provided by the Laboratory at the Centre Pasteur du Cameroon 

(Douala) and used to collect water samples from the filter unit twice per month for microbial 

analysis. These samples included the raw water from a private well (Tab. 2). The time from 

sample collection and transportation to the lab was less than 4 hours. It is considered that the 

effects of time and temperature on microbial survival is negligible. 
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Table 2: Average composition of the used well water. The well is polluted with coliforms and depicts 

high levels of conductivity and turbidity compared to the WHO guidelines (2017). WHO stands for 

World Health Organization. 

Parameter Unit Well Water WHO (guideline) 

Turbidity  (NTU) 35 ± 2  < 5  

Conductivity (μS.cm-1) 296 ± 7 250  

Total iron (mg L-1) 1.45 ± 0.25 < 0.2 

Nitrate  (mg L-1) 23.5 ± 4.5 < 50  

 pH value (25 °C) (-)  4.9 ± 0.2 6.5 – 8.5 

Total coliform (TC) (UFC mL-1) 1 949 ± 45 0.0 

Faecal coliforms (FC) (UFC mL-1) 1 495 ± 97 0.0  

 

The efficacy of the designed filter to treat water was accessed by the extent of reducing the 

concentration of fecal coliform (FC) and total coliform (TC). In addition, turbidity, permeability 

loss, nitrate, and iron concentration were monitored. 

 

4.7 Analytical methods 

Iron concentrations were determined by using a UV–Vis spectrophotometer (Dr. Lange 

CADAS 200 LPG 392). The working wavelength was 510 nm. A cuvette with 1.0 cm light path 

was used. The iron determination followed the o-phenanthroline method (Saywell and 

Gunningham 1937, Fortune and Mellon 1937). The spectrophotometer was calibrated for iron 

concentrations ≤10.0 mg L−1. The pH values were measured by a WTW pH meter. Conductivity 

was analyzed by the ISO 7888 method using a portable (WTW 340i) conductivity meter with 

automatic temperature compensation, so that all results refer to 20 °C. All other parameters 

including turbidity and biological analysis were performed at the laboratory of the Institute 

Louis Pasteur in Douala using following analytical method (Tab.3): 

  



45 

 

Table 3: Analytical method used in this study for physico-chemical and biological parameters 

 

Physico-chemical 

parameters Abbreviation Unit Analytical method Water fraction 

Location of       

analysis 

Turbidity Turb NTU* 

NF EN ISO 7027:   

nephelometry Whole water  in situ 

Conductivity EC μS cm-1 ISO 7888 Whole water  in situ  

Total Iron Fe mg L-1 

Validated in-house method: 

o-phenanthroline 

Dissolved fraction 

(filtered at 0.45 

μm)  Laboratory  

Nitrates NO3 mg L-1 

Validated in-house method: 

capillary electrophoresis 

Dissolved fraction 

(filtered at 0.45 

μm)  Laboratory  

Power of hydrogen pH (25 °/ 77 °F) (-) NF T90-008 Whole water  in situ 

Total coliforms TC (UFC mL-1) NF ISO 4832 

Dissolved fraction 

(filtered at 0.45 

μm)  Laboratory  

Faecal coliforms FC (UFC mL-1) NF ISO 4832 

Dissolved fraction 

(filtered at 0.45 

μm)  Laboratory  

Temperature T °C 

Integrated temperature 

probe of the combined pH 

electrode sensor Whole water  in situ 

 

*NTU = Nephelometric Turbidity Units 

 

4.8  Expression of Experimental Results 

4.8.1  Value of E 

To characterize the extent of the decontamination for individual contaminants (e.g., coliform, 

nitrate, turbidity), the effectiveness of the treatment (E) or attenuation percentage was 

calculated as follows (Equation (1)): 

E = [1 − (C/C0)] × 100 [%]       (4.1) 

where C is the concentration after the experiment in the effluent concentration, and C0 the initial 

aqueous influent concentration. The effectiveness comprises adsorption in the filter and 

possible other reactions that may occur during water throughput. 
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4.8.2  Hydraulic Conductivity 

Changes of the hydraulic conductivity (permeability) were characterized by calculating the 

percentage of the relative permeability φ at each filtration event relative to the initial value of 

the hydraulic conductivity φ0 (Equation 2): 

φ = 100 × φ/φ0 [vol.%]      (4.2) 

4.9 Results and Discussion 

4.9.1  Results 

4.9.1.1 Hydraulic conductivity 

Figure 8 and Table 4 (row 3) summarize the changes of relative filtration rate (φ) in the 

investigated filter. The results of a previous experiment for 6 months with a 50:50 Fe0/sand 

volumetric ratio (experiment 1) are also shown. It is seen that the filter in experiment 1with the 

same Fe0-SW was not sustainable as an almost 90% permeability loss was observed. The 

present experiment with a 10% Fe0 (vol/vol) was designed accordingly (experiment 2). The 

results of experiment 1 depict the typical profile of permeability loss in Fe0-based filtration 

systems (Westerhoff and James (2003), Mackenzie et al. (1999) with the φ value dropping very 

abruptly. This behavior can be attributed to a local formation of a cake (more spongy, stratified 

form) within the filter (Santisukkasaem and Das 2019). Clearly most of the filter material stays 

still porous, but the inter-connectivity is suppressed in the domain where cake is formed. This 

is a testimony that the used Fe0 ratio is too high (Domga et al. 2015). 

The progressive decrease of the φ values observed in this work (41.5 % in 12 months) was 

mainly attributed to iron corrosion products. This assumption is supported by results of George 

and Ahammed (2019) who performed similar experiments but with three individual systems 

(BSF and Fe0-amended BSF) for 4 months. The φ values were 50.0%, 42.9%, and 15.6% for 

the systems Fe0-nails/sand, Fe0- scrap/sand, and BSF respectively. While George and Ahammed 

(2019) are still speculating about the presence of Fe0 as cause of decline in flow rate, the present 

study was designed to verify the textbook knowledge that iron corrosion is a volumetric 

expansive process (Landolt 2007), which implies that systems with lower Fe0 ratios are more 

permeable (Tepong-Tsinde et al. 2015a, Domga et al. 2015, Caré et al. 2013). 

The design tested in this work, a Fe0 SW filter sandwiched between two BSF filters, was an 

attempt to prolong the service life of the filter by consuming dissolved O2 in the first BSF, 

therefore operating under O2 depleted conditions and avoiding rapid system clogging (Tepong-

Tsinde et al. 2015a, Noubactep et al. 2012). The second BSF was used as Fe scavenger to fix 

iron escaping from the Fe0 filter. The results of George and Ahammed (2019) confirmed the O2 
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scavenging nature of both BSF and Fe0 filters. Westerhoff and James (2003) also used hybrid 

Fe0/sand layers as O2 scavengers to sustain the efficiency of Fe0/H2O systems. 

The qualitative similitude between this work and that of George and Ahammed (2019), 

Mackenzie et al. (1999) and Westerhoff and James (2003) should not be overemphasized. This 

study used 300 g of Fe0 SW making up a volumetric ratio of 10% while George and Ahammed 

(2019) used 7.5 kg of mild steel nails and the same mass of iron filing scrap uniformly mixed 

with sand throughout the reactive layer (Tab. 4). Given differences in key characteristics 

including density, form, intrinsic reactivity, and size of the zerovalent iron used, a quantitative 

comparison is difficult or even impossible. Obviously, under the respective operative 

conditions, the permeability loss at the end was acceptable. 

The results achieved herein are more comparable to those of Bradley et al. (2011). The authors 

used a different grade of steel wool (d = 25 μm vs. 50 μm herein) in the same volumetric 

percentage (10%) and reported a completed SW depletion after 170 days (almost 6 months). 

Upon Fe0 depletion, the SW filter performed worse than the parallel operating BSF. This key 

observation was postulated by Noubactep et al. (2012) and considered while designing the 

system tested by Tepong-Tsindé et al. (2015a). In fact, O2 depleted by Fe0 is essential for the 

formation of the biofilm (Schmutzdecke), and pore filling by iron corrosion products have 

created preferential flow paths (Miyajim 2012). 
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Figure 8: Flow rate variation over the length of filter runs for the Fe0 SW ratios of 50 % and 10 vol.% respectively. 

Experimental conditions: 800 g SW for 50 % Fe0 and 300 g SW for 10 % Fe0 of Fe0 SW (grade 0) of 35 µm fiber 

thickness from “Grand Menage”; filling material: sand. Column length 100 cm, column diameter 20 cm. The 

system was fed with natural well water polluted by fecal coliforms. 

 

Lufingo (2019) recently presented the first systematic characterization of Fe0 SW specimens 

using their own developed tool (the Phen test). His results confirm the observed trends that 

neither the elemental composition, the size, or the surface state alone determine the kinetics and 

the extent of Fe0 dissolution in aqueous solution. However, because the pH value was still 

slightly increasing at the end of the experiment, it can be considered that SW was not depleted 

in his tests. Assuming that each natural water should be regarded as a unique system impacting 

the efficiency of Fe0 filters (Naseri et al. 2017), the results achieved herein are not easily 

transferable to other locations with different water qualities. The authors suggest, however, that 

it is possible to design an efficient SW containing 10% Fe0 (vol/vol) for use at household level. 

More systematic research is needed using, for example, the seven grades of Fe0 SW 

characterized by Lufingo et al. (2019) in combination with typical model (examples of water) 

waters representing the most common water sources (surface water, less and more saline 

groundwater) [Luo et al. 2013]. 
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Table 4: Characteristics of the effluent water over the testing period. The effluent iron concentration was 

constantly lower than the detection limit of the UV–Vis spectrophotometer ([Fe] < 0.2 mg L−1). φ is the 

water flow velocity in L h-1. 

 

t pH  Total coliform Turbidity Nitrate 

(days)  (L h-1) (CFU/100 mL) (NTU) (mg L-1) 

Raw water 4.9 - 1,950 35.0 23,5 

1 6.6 20.0 0.11 1.09 0.21 

15 6.7 20.0 0.11 1.07 0.19 

30 6.6 20.0 0.11 1.00 0.20 

45 6.8 20.0 0.10 1.00 0.20 

60 6.8 19.6 0.10 1.01 0.15 

75 6.9 19.6 0.10 1.00 0.15 

90 6.7 18.8 0.10 0.99 0.12 

105 6.6 18.8 0.08 0.80 < 0.1 

120 6.8 17.9 0.08 0.90 < 0.1 

135 7.0 17.5 0.08 0.90 < 0.1 

150 7.1 17.5 0.08 0.80 < 0.1 

165 7.3 17.1 0.08 0.80 < 0.1 

180 7.4 17.1 0.08 0.80 < 0.1 

195 7.5 16.7 0.02 0.90 < 0.1 

210 7.5 16.7 < 0.02 0.90 < 0.1 

225 7.5 15.8 < 0.02 0.80 < 0.1 

240 7.6 15.8 < 0.02 0.90 < 0.1 

255 7.6 15.6 < 0.02 0.90 < 0.1 

270 7.7 15.6 < 0.02 0.80 < 0.1 

285 7.5 15.0 < 0.02 0.80 < 0.1 

300 7.6 15.8 < 0.02 0.70 < 0.1 

315 7.9 15.2 < 0.02 0.80 < 0.1 

330 8.1 13.8 < 0.02 0.70 < 0.1 

345 8.3 13.0 < 0.02 0.80 < 0.1 

360 8.6 12.5 < 0.02 0.70 < 0.1 

 

4.9.1.2  Turbidity removal 

Table 4 (row 5) summarizes the results of turbidity removal by listing the residual turbidity; the 

corresponding percent removal is depicted in Figure 9. The average influent turbidity was 35 

NTU. The average effluent turbidity from the system was 0.7 NTU. The average turbidity 

removal efficiency from the influent was >98 % during the experiment. This corroborates the 

results of George and Ahammed (2019) and Bradley et al. (2011) reporting about quantitative 

turbidity removal in both BSF and Fe0-amended BSF. George and Ahammed (2019) also 
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reported that the amendment of Fe0 filters does not improve their turbidity removal efficiency. 

The results presented herein seem to confirm this assertion. However, the removal efficiency 

depends on the design and the operational conditions. In essence, Fe0 amendment should 

improve turbidity removal because of pore space reduction (expansive corrosion) [Domga et al. 

2015].  

 

Figure 9: Permeability loss (percent) of the filter material and efficiencies of the removal of fecal 

coliform, turbidity, and nitrate (percent) in the effluent water over the length of filter run for the 

experiment with 10% Fe0 SW (vol/vol). Experimental conditions: 300 g SW at 26  2 °C; filling 

material: Sand; column length: 100 cm, column diameter: 20 cm. The system was fed by natural well 

water polluted by fecal coliform. 

 

4.9.1.3  Nitrate removal 

Table 4 (row 6) lists the results of NO3
− concentration in the outlet water over time. The 

corresponding percent removal is presented in Figure 9. The average influent NO3
− 

concentration was 23.5 mg L−1. Compared to the results of George and Ahammed (2019), it is 

clear that NO3
− removal mainly occurs in the Fe0 SW column. In fact, the authors spiked their 

influent solution with 26.0 mg L−1 NO3
− and observed NO3

− removal in all the three systems. 

The conventional BSF showed the lowest NO3
− removal. The NO3

− removal in BSF is well-

documented, but the removal is never quantitative (Nakhla and Faroow 2003, Murphy et al. 
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2010). Thus, although the influent water used herein was not additionally spiked by NO3
− 

(Table 2), its removal was quantitative and occurred presumably in the Fe0 SW column 

(Westerhoff and James 2003). 

The mechanism of NO3
− removal is complex and implies microbiological process in the BSF 

units (George and Ahammed 2019, Murphy et al. 2010) and both abiotic and biotic processes 

in the Fe0 SW unit (Westerhoff and James 2003, George and Ahammed 2019). 

 

4.9.1.4  pH value and iron breakthrough 

Table 4 lists the pH values (row 2) in the system’s effluent. No iron breakthrough was observed. 

The iron concentration was constant below the detection limit of 0.2 mg L−1. The pH value 

progressively increased within the operational time and reached 8.5 at the end of the 

experiments. The iron concentration was monitored to check whether any breakthrough 

occurred. The results showed that the second BSF quantitatively fixed iron for the whole 

duration of the experiment. Systems without scavenging BSF contain higher iron concentrations 

(Westerhoff and James 2003, Heimann et al. 2018). For example, Westerhoff and James (2003) 

reported on up to 6 mg L−1 Fe in their effluent solutions. The very low iron concentration 

recorded herein is also in agreement with the pH dependent solubility of Fe hydroxides (Liu 

and Millero 1999) as discussed for the “Fe0 remediation” literature by Ghauch (2015). The fact 

that no iron breakthrough is observed herein suggests that the amount of iron (mainly Fe2+) 

escaping column 2 could not saturate the amount of sand in the second BSF. Fe2+ is adsorbed 

onto sand by pure electrostatic interactions (Btatkeu-K et al. (2014a and 2014b)). 

 

4.9.1.5  Removal of coliforms 

Table 4 (row 4) and Figure 9 show a very pronounced reduction in total coliform concentration 

over the whole operation time: There was a quantitative coliform removal already at the 

beginning of the experiment (E > 99.99%), and this trend kept through to the end (one year). 

This is due to three synergy processes: (i) formation of the biofilm in BSF, (ii) in situ generation 

of iron corrosion products (FeCPs), and (iii) reduction of the flow rate. As discussed in Section 

4.9.1.1, accumulation of FeCPs reduces the porosity and the permeability, what improves 

coliform removal through adsorption (Bradley et al. 2011, Noubactep et al. 2012). It is essential 

to recall that the intrinsic bacterial inactivation capacity of Fe0 was already reported in the 19th 

century (Bischof (1873,1877,1878), Notter (1878), Hatton (1881), Bache (1891), Tweeddale 

(1898), Baker (1934), and Leffmann(1991)) and has been independently demonstrated in the 

recent “Fe0 remediation” research (Bojic et al. 2001, Lee et al. 2008, Diao and Yao (2009), 
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Crampon et al. 2019, Hu et al. 2019, Sun et al. 2019). In the 19th century, quantitative pathogen 

removal in Fe0 filters was demonstrated before the nature of individual bacteria was established. 

On the contrary, current research efforts are trying to demonstrate the efficiency of Fe0 filters 

for pathogen removal on a case-by-case basis (You et al. 2005, Ingram et al. 2011, Shi et al. 

2012, Marik et al. 2019). 

 

4.9.2  Discussion 

Previous studies testing contaminant removal from water by using Fe0-based column household 

water filters are numerous (Naseri et al. 2017). They were mostly designed to test diverse Fe0 

specimens for the removal of selected contaminants (George and Ahammed 2019) and/or to 

compare the efficiency of Fe0 filters to that of other systems, including BSFs (Noubactep et al. 

2012). In a recent review, Hu and Noubactep (2019c) compiled available results to demonstrate 

the suitability of Fe0 filters for water treatment. However, results from independent research are 

difficult to compare to each other. This section illustrates this difficulty based on selected 

references on the removal of pathogens from water. The six selected publications (Table 6) 

were not only focused on pathogen removal, they were selected to reflect the large diversity of 

experimental designs. The focus is not on achieved results but on operational conditions. They 

determine the results, but are rarely considered while discussing achieved results (Naseri et al. 

2017). 

Six operational parameters were selected for this discussion: (i) the column dimensions (D and 

L), (ii) the Fe0/sand ratio, (iii) the initial flow velocity (F0), (iv) the experimental duration (t), 

(v) the Fe0 type, and (vi) the used Fe0 mass. Only Fe0/sand ratio and the Fe0 type were specified 

by all six publications. The used volumetric Fe0 ratio varied between 10% and 50%, while Fe0 

SW and granular materials were used. Concerning the column dimensions, small-scale columns 

and columns pertinent to pilot-scale tests were used while the flow velocities differed by more 

than three orders of magnitude. Lastly, 0.15 to 23 kg of Fe0 materials were used for operational 

duration varying from 10 to 365 days. There is no scientific basis to compare results from such 

experiments, particularly because the kinetics of iron corrosion are never linear, and the systems 

are dynamic in nature (Hu and Noubactep 2019c). 

Table 5 compiles some results of six selected peer- reviewed articles with column experiments 

for the removal of biological contamination including column dimension (length and diameter), 

the Fe0 to sand ratio, the initial flow velocity (φ0), the experimental duration (t), Fe0 type, and 

the used Fe0 mass it is seen that one paper has not explicitly given the experimental duration. 

Shi et al. (2012) used the number of pore volumes in their discussion. Two papers tested periods 
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exceeding four months (120 days). In general, there is a large variability of the considered 

operational parameters. * is given in weight/weight; ‘n.s.’ stands for not specified and ‘non SI’ 

for units given in a not known system, for example ‘2″ x 2′ PVC plain-end-pipe’. 

 

Table 5: Summary of parameters of column experiments for the removal of biological contamination 

compared with data from six selected peer-reviewed articles. 

 

 

* is given in weight/weight; ”n.s.” stands for not specified and ”non SI” for units given in a not 

known system, for example “2′′ × 2 PVC plain-end pipe”. 

 

Table 5 additionally shows a general weakness of the research projects undertaken to date: the 

long-term efficiency of Fe0 systems for water treatment has not been investigated. Experiments 

designed for more than three months are rare. The time span of most tests is rather counter-

intuitive in a context where long-term monitoring data is urgently needed (Hu and Noubactep 

2019c, Hu et al. 2019). 

 

4.9.3 Significance of the Results 

Fe0 materials have demonstrated their suitability for the design and dissemination of affordable, 

efficient, and sustainable safe drinking water provision systems over the past 170 years 

(Devonshire 1890, Tucker 1892, Lauderdale and Emmons 1951, Hussam 2009, Banerji and 

Chaudhari 2017). For the most recent success stories in decentralized systems, Hussam (2009) 

used a proprietary material and Banerji and Chaudhari (2017) used affordable iron nails. 

Progress in the large-scale realization of these and similar devices has been highly impeded by 

the lack of easy transferable designs. Using universally available steel wool (Fe0 SW) in this 

study was a step toward achieving a universal access to safe drinking water (Noubactep et al. 

2009, Ndé-Tchoupé et al. 2015, Tepong-Tsindé et al. 2015a, Nanseu-Njiki et al. 2019, Ndé-

Tchoupé 2019, Yang et al. 2020). 

L D Fe0 to sand 0 t Fe0 type miron Reference 

(cm) (cm) (vol/vol) (L h-1) (days)  (kg)  

10 3.8 50/50 0.06 10 granular 0.15 You et al. 2005 

20 n.s. 10/90 0.03 300 SW 0.26 Bradley et al. 2011 

0.77 0.14 50/50* n.s. 15 granular 23.0 Ingram et al. 2011 

10 3.8 50/50 4.38 n.s. granular n.s. Shi et al. 2012 

non SI non SI 35/65 222 154 granular n.s. Marik et al. 2019 

n.s. n.s. n.s. n.s. 120 granular 7.5 George et al. 2019 

100 20 10/90 20.4 365 SW 0.30 This study 
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Based on a concept presented by Noubactep et al. (2009) and a mathematical model reasonably 

predicting optimal Fe0/sand ratio for a sustainable filter (Caré et al. 2013, Domga et al. 2015), 

the present work has tested a volumetric Fe0/sand ratio of 10:90 (300 g Fe0 SW plus 14,200 g 

coarse sand) and obtained a filter that is able to treat well water polluted with pathogens for one 

year while depicting a permeability loss of only 41.5 %. After one year the system was still 

capable of producing 200 L water per day, with an acceptable flow velocity (8.33 L h−1). This 

amount is far above the water needs of an average family. Assuming that each person needs 8 

L water per day for drinking and cooking, the designed filter can supply 25 people with safe 

drinking water, whether they are living in a small village, an urban slum, or a modern city. The 

filter is relatively easy in design. The most challenging task is to homogeneously build up the 

reactive zone consisting of Fe0 SW and sand. A dry packing approach in small lots was adopted. 

For future works, however, a wet packing approach as suggested by Sleiman et al. (2016) should 

be tested. These authors pre-wetted the Fe0/sand mixture to facilitate homogeneous Fe0 

distribution in the column material. 

The most important result here is that a column containing 10% vol.% of Fe0 SW and 90 vol.% 

of sand corresponding to just 2 wt.% of Fe0 and fed with a turbid natural water was still 

permeable after one year of operation. This result might not be reproduced by another Fe0 SW 

or a different water source, but the Fe0 /sand ratio can be further decreased (and the column 

length increased) until a satisfactory balance is identified for each specific case. Sleiman et al. 

(2016) used just 1% of Fe0 in their systems while Erickson et al. (2017) hardly used more than 

5% (w/w). Clearly, there is room for adjusting the operational conditions to any site-specific 

situation. Where necessary, additional units made of affordable materials should be added to 

remove contaminants that are not well addressed by Fe0/H2O systems such as some radioactive 

substances or fluoride (Lauderdale and Emmons 1951, Gwenzi et al. 2017). 
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5 General discussion  

5.1  Significance of the results  

The present work is a continuation of an effort started some twelve years ago with the aim to 

make Fe0 filters a universal solution for safe drinking water provision (Noubactep and Woafo 

2008, Noubactep et al. 2009, Noubactep and Schöner 2010a). One initial goal was to design a 

household filter which can operate for at least six months without any maintenance (Noubactep 

et al. 2009). The concept was rooted on experimental evidence achieved in the framework of 

the development of Fe0-based permeable reactive barriers for ground water remediation 

(O´Hannesin and Gillham 1998, Richardson and Nicklow 2002, Henderson and Demond 2007) 

where Fe0 used as filter material can quantitatively remove biological and chemical 

contaminants from polluted waters. 

An initial survey of the literature revealed that Fe0 household filters have been often tested for 

arsenic removal (Khan et al. 2000, Ngai et al. 2006, Hussam and Munir 2007, Ngai et al. 2007). 

Reviewing the existing literature, it was observed that Fe0 filters designed for As removal 

eliminate beside arsenic up to 24 other contaminants including inorganic and organic 

components as well as pathogens (Tuladhar and Smith 2009). This observation was in tune with 

several previous works which have tested Fe0 for water treatment on a contaminant by 

contaminant basis (Bojic et al. 2001, Richardson and Nicklow 2002, Bojic et al. 2004, 

Purenovic et al. 2004, Bojic et al. 2007, Bojic et al. 2009). In particular, Bojic et al. (2001, 2004, 

2007, 2009) clearly demonstrated that heavy metals, halogenated carbons and pathogens are 

removed by flocculation or coagulation in the vicinity of the Fe0 surface. This view is indeed 

known to scientists since the 1850s (Bischof 1873, Tucker 1892, Baker 1934, van 

Craenenbroeck 1998, Mwakabona et al. 2017, Antia 2020, Cao et al. 2020). Clearly, the 

corrosion products of Fe0 are contaminant scavengers but the kinetics of iron corrosion is not a 

linear function of time, but rather depends on a myriad of operational parameters including the 

Fe0 intrinsic reactivity, temperature, and water chemistry (Cao et al. 2020, Ogata et al. 2020, 

Müller et al. 2020, Yang et al. 2020, Lanet et al. 2021, Yang et al. 2021). Moreover, iron 

corrosion is a volumetric expansive process (Whitney 1903, Pilling and Bedworth 1923). 

The next question to answer was which species shall be used to test Fe0 filters? An operational 

indicator was one needed. Methylene blue (MB) was identified as a tracer to characterize the 

reactivity of Fe0/H2O systems (Miyajima 2012, Miyajima and Noubactep 2013). Mitchell et al. 

(1955) in their historical work already demonstrated the suitability of MB for this aim by 

showing that sand is an excellent adsorbent for MB but iron oxide-coated sand has practically 
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no adsorptive affinity to MB. In order words, by rationally selecting the amount of Fe0 and sand 

in a system, it is possible to reconstruct the extent of sand coating by in-situ generated iron 

corrosion products (Xiao et al. 2020, Yang et al. 2021). The extent of porosity loss and the 

related permeability loss can also be evaluated (Njaramba et al. 2021, Yang et al. 2021). 

Permeability loss is due to initial pore space saturation as a result of the expansion of in-situ 

generated iron corrosion products which rapidly occurs under conditions accelerating the 

corrosion process (e.g. presence of chloride ions) (Zhao et al. 2011, Stefanoni et al. 2018). 

 

5.1.1  The validation of the MB discoloration method  

This thesis has particularly validated the suitability of MB to characterize the effects of chloride 

ions on the efficiency of Fe0/H2O systems for contaminant removal. In presence of chloride 

ions, aqueous iron corrosion is accelerated rendering Fe corrosion products abundantly 

available in the system. MB was observed to be weakly adsorbed onto the positively charged 

in-situ generated iron oxides (partly in-situ coated on sand). This confirms the ion-selective 

nature of Fe0/H2O systems reported by Phukan et al. (2015). Previous studies tested Fe0 as 

removing agent for dyes mostly in wastewater treatment (Miyajima and Noubactep 2013 and 

ref. cited therein). In successfully testing dyes in general and MB in particular as operative 

indicators for the characterization of Fe0-based systems, the practicability and cost-efficiency 

of experimental device using dyes in general (Noubactep 2009, Phukan et al. 2015) is made 

available for the investigation of various aspects relevant for the design of Fe0 filters. This 

aspect is important for scientific research under financially less favorable conditions (e.g. 

developing countries) (Cao et al. 2021a, 2021b, 2021c). 

The MB method has for instance already been used to investigate the impact of the Fe0/sand 

ratio on the durability of Fe0 filters (Miyajima 2012, Miyajima and Noubactep 2013). Results 

confirmed theoretical predictions that no pure Fe0 filter is sustainable and that the volumetric 

Fe0 proportion should not exceed 51 %. Many field applications have fortuitously used similar 

Fe0 ratios. However, the objective in using sand as admixing agent was to save iron costs 

(Mackenzie et al. 1999, Westerhoff and James 2003, Kaplan and Gilmore 2004, Bi et al. 2009). 

In other words, the MB method has demonstrated that admixing Fe0 with inert (e.g. pumice, 

sand) or reactive materials (e.g. MnO2) is a prerequisite for durable systems (Ullah et al. 2020, 

Njaramba et al. 2021). The next question to answer is: Why are sustainable household filters 

not been yet designed? 
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5.1.2  Reasons for existing designs failure  

The reasons for the failure of existing designs are numerous as summarized by Noubactep et al. 

(2012). Beside inappropriate Fe0/sand ratios, the use of very different types of Fe0 materials 

was regarded as the main cause of lack of transferable results. This situation is exacerbated by 

experiments lasting for just some few weeks or months while there is a large uncertainty on the 

long-term corrosion rate (Moraci et al. 2016, Noubactep 2016, Naseri et al. 2017, Yang et al. 

2020, Yang et al. 2021). The present work has successfully tested steel wool, a readily available 

Fe0 material for an experimental duration of 12 months. There are seven (7) grad of steel wool 

(Lufingo et al. 2019, Hildebrant et al. 2020) of which grade 000 (extra fine - d1 = 25 m) was 

successfully tested for pathogen removal until material depletion after some 8 months (Bradley 

et al. 2011). The grade of Fe0 SW (fine) tested herein corresponds to twice larger filaments (fine 

- d2 = 50 m) than those tested by Bradley et al. (2011) and could clean polluted water for one 

year without material exhaustion. 

 

5.2  Improving household Fe0-based filters design  

The results of this study suggest that an effective and sustainable household Fe0-based filter for 

a large family (e.g. ≥ 10 people) in the developing world should comprise: (i) at least one 

polyethylene tank (≥ 1 000 L) installed beside the water treatment plant for raw water storage; 

(ii) a slow sand filter (SSF) for pre-filtration (e.g. for the removal solid matters); (iii) a Fe0/sand 

filter (which is the unit in which the reactive filtration effectively takes place), eventually (iv) 

SSF for the removal of Fe escaping from the Fe0/sand filter; and finally (vi) a polyethylene tank 

to collect and store the produced drinking water. The number of filters in series depends on the 

extent of the raw water contamination and the required quality of potable water (Notter 1878, 

Naseri et al. 2017, Yang et el. 2020. Huang et al. 2021b, Nya et al. 2021). 

 

5.2.1  Considerations for efficient household Fe0-based on-site filters  

A minimum of six variables including Fe0 intrinsic reactivity, Fe0 shape and size, Fe0 content 

(amount and proportion), solution pH, and the redox potential have been demonstrated to have 

an important impact on the decontamination efficiency of Fe0/sand filters (Tepong-Tsindé et al. 

2015, Ndé-Tchoupé et al. 2015, Naseri et al. 2017, Huang et al. 2021b, Nya et al. 2021). This 

makes comparisons and correlation of available data difficult. However, a profound analysis of 

the fundamental reactions involved in the present work, together with some recently obtained 

design criteria (Noubactep 2012, Nde-Tchoupé et al. 2015, Naseri et al. 2017), have brought 
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out a number of important considerations which may simplify design efforts. They can be 

summarized as (i) use only volumetric Fe0 ratios ≤ 50%; (ii) characterize the intrinsic reactivity 

of used Fe0; (iii) use as little Fe0 as necessary for reliable observations; and (iv) avoid too short 

experimental times. Testing Fe0 materials at pilot scale can be summarized in the following: (i) 

test several well-characterized Fe0 materials; (ii) test several Fe0/sand ratios (Fe0 < 50%), for a 

given Fe0 material and a Fe0/sand ratio; (iii) test the number of each unit for satisfactory water 

treatment; (iv) insert wood charcoal units before Fe0/sand units; (v) partly or totally replace 

sand by porous materials including: anthracite, gravel, MnO2 and pumice. 

 

5.2.2  Containment 

The household Fe0-based filter designed and presented herein is an open architecture which 

could be constructed, modified, adapted, and improved on a site-specific basis. Filters 

containers can be locally built, for example from stackable prefabricated concrete rings 

commonly used for tank construction. Commercially available plastic tanks can be also 

modified and used. Appropriately skilled masons can construct custom ferro-cement tanks. In 

this case the dimensions should enable facile filling of filter media and routine maintenance 

including the removal/replacement of all materials. Some cover material (lid) should be used to 

exclude sunlight and inhibit the growth of photosynthetic microorganisms (algae, 

cyanobacteria) in the system. Tank tops should be wrapped in fine mesh screening to prevent 

entrance of insects, bird droppings, leaves, and bits of debris, etc. into the system. 

 

5.3 Designing functioning Fe0-based filters 

This thesis, was initiated to enable the design of Fe0 filters able at operating for 12 months 

without clogging nor material depletion. This objective was largely achieved: (i) a filter with a 

1:1 volumetric Fe0:sand ratio clogged after six months, while (ii) a second filter with a 1:9 

volumetric Fe0:sand ratio was still permeable after 12 months. To the best of the author’s 

knowledge, this is the first study based on the science (Hu et al. 2019) of the system that has 

lasted for 12 months. Comparable studies have just lasted for some few months (George and 

Ahammed 2019, Njaramba et al. 2021) and are certainly of low operational value as clogging 

is very rapid once it starts (Westerhoff and James 2003). In other words, this work presents a 

prototype for a functioning household filter, provided the raw water is of comparable quality 

(e.g. E coli level, NO3
- level, pH value). This prototype can be adapted to the treatment of more 

or less contaminated waters. A viable prototype for Fe0 filters using steel wool is presented. 
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The tested 1:9 volumetric Fe0:sand ratio can be also optimized for wastewater treatment and 

community-scale drinking water systems. Erickson et al. (2012) and Wakatsuki et al. (1993) 

used far lower Fe0:sand ratios (< 5 %) in this Fe0-based filters for wastewater treatment.  

The other issue successfully addressed in this thesis is the mechanism of NO3
- removal by Fe0. 

While active researchers are still reporting on "NO3
- removal by reducing Fe0" (Khalil et al. 

2018, Liu and Wang 2019. Kodikara et al. 2020, Villen-Guzman et al. 2020), the results of this 

work clearly demonstrate that the amount of removed NO3
- is far larger than the Fe0 amount 

initially available in the system. In fact, during the 12 months 204 g of NO3
- were removed, 

which would have necessitated 1102 g of Fe0. However, the total amount of Fe available was 

300 g.  

In fact, NO3
- is reduced by Fe2+ from Fe0 oxidative dissolution. The oxidation of Fe2+ to Fe3+ 

releases one mole of electrons (Eq. 5.3-1) while the oxidation of one mole of N2 to NO3
− 

releases 10 electrons (Eq. 5.3-2). Eq. 5.3-3 gives the balance for the reduction of NO3
− by Fe2+ 

(from Fe0).  

 

Fe2+  Fe3+ + e−         (5.3-1) 

 

2 NO3
− + 10 e− + 12 H+  N2 + 6 H2O     (5.3-2) 

 

10 Fe2+ + 2NO3
− + 12 H+  Fe3+ + N2 + 6 H2O    (5.3-3) 

 
 

In this study, N2 was not quantified; it is just assumed that the reduction of NO3
− (to N2) is 

quantitative. From a pure kinetic perspective, it is even not likely that this reaction can be 

quantitative but discussing this issue is over the scope of this work. It suffices to elegantly 

exclude abiotic reduction by Fe0 as relevant reaction mechanism. These results clearly showed 

that NO3
- microbial degradation occurred in the system and was event very significant. The 

importance of microbial activity in Fe0 filters corroborates the view that the long-term 

permeability is the main issue of Fe0-based filters (Naseri et al. 2017, Noubactep 2021a, 

Njaramba et al. 2021, Huang et al. 2021b, Yang et al. 2021, Noubactep 2022). 

The results achieved in this work (Tepong-Tsindé et al. 2019) have inspired the further 

development of the concept that Fe0 can be the cornerstone in global efforts for universal access 

to safe drinking water (Noubactep 2010, 2011). On the one hand, it is confirmed that a key issue 

to design functioning Fe0 filters is to spatially disperse reactive Fe0 materials in a matrix of a 

non-expansive aggregate (e.g. sand) (Caré et al. 2013, Domga et al. 2015). In this this regard, 

this work and related ones have recalled that steel wool is not an homogeny class of Fe0 

materials (Lufingo et al. 2019). On the other hand, taking advantage of the modular multi-stage 
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system for safe drinking water supply presented by Dr. Kearns (Kearns 2016, Huang et al. 

2021b, Nya et al. 2021), Fe0 units can be simply replaced upon material depletion or bed 

clogging. In other words, despite the absence of reliable data on the long-term corrosion 

kinetics, functioning Fe0 filters can be designed and used. All is needed is to train user for 

maintenance, including the frequency of replacement. Clearly, unlike for subsurface permeable 

reactive barriers which need Fe0 materials able at reacting for the long term (decades) without 

maintenance, Fe0 based water filters can be designed to operate even for three months. In this 

regard, for the same polluted water, it can be expected that units with the material used herein 

are replaced twice less frequently than units using the Fe0 SW from Bradley et al. (2011). This 

simple idea makes Fe0 filters probably the best design capable at enabling universal access to 

safe drinking water by 2030 (Naseri et al. 2017, Noubactep 2018, Yang et al. 2020, Huang et 

al. 2021b, Nya et al. 2021). In fact, the technical expertise is available since 1881 (140 years). 

All what is needed are systematic, and well monitored pilot-scale investigations with well-

characterized Fe0-materials. 
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6  General conclusions 

This dissertation provides novel insights into the dynamics of metallic iron (Fe0) depletion in 

filtration systems. There is a 160-years-old technical expertise on using Fe0 water filters for 

households (Antia 2020, Cao et al. 2020, Cao et al. 2021d). Fe0 water filters are affordable and 

easy to implement. However, designing new filters is fraught by the evidence that past research 

has not properly considered the sustainability as resulting from the intrinsic characteristics of 

Fe0 materials, in particular, the time-dependent and non-linear decrease of the corrosion 

kinetics. Taking steel wool (Fe0 SW) as an example, several dozens of articles have presented 

Fe0 SW as a good reactive material for water treatment without even specifying the used grade 

(Ndé-Tchoupé et al. 2015, Lufingo et al. 2019, Ndé-Tchoupé et al. 2019). In other words, the 

Fe0 filtration technology has been developed with little attention to its sustainability, which is 

indeed a pivotal factor in the implementation of any real applications. Clearly, despite plentiful 

availability of data, the emerging technology of Fe0 filters cannot be quantitatively assessed due 

to inhomogeneity of operational conditions, including the used Fe0/sand ratio and the 

experimental duration. As far as the experimental duration is concerned, only Bradley et al. 

(2011) have tested a Fe0 SW (d = 25 m) for ten months and realized a material depletion after 

eight months. A coarser Fe0 SW (d = 50 m) is tested herein for 12 months.  

This work describes conditions for a water filter design and includes the results from a pilot 

study of a household filter in Douala (Cameroon). The presented Fe0-based filter is an 

innovation that combines two proven water treatment techniques: (i) removal of microbes by 

biological sand filtration (BSF) process and (ii) contaminant adsorption and co-precipitation 

with iron oxide-hydroxides. The BSF, preceding the Fe0/sand layer, additionally contributed to 

lower the O2 level, thus sustaining the functionality of the filter overall. The designed Fe0 SW 

filter containing 10 vol.% of Fe0 is affordable and applicable for the water conditions generally 

encountered in scattered villages and pre-urban areas in developing countries. This technology 

is easily adaptable to many kinds of off-site treatment situations, including farms, health 

centers, hotels, restaurants, and rural schools. Beside Fe0, no chemicals must be used, therefore 

maintenance is easy. 

The results indicate a clear advancement in designing Fe0-based household water units by 

rationally combining BSF and Fe0/sand filters (Ullah et al. 2020, Yang et al. 2020). By using a 

comparable volumetric Fe0/SW ratio but a different Fe0 SW grade than Bradley et al. (2011), a 

system still depicting acceptable permeability after one year was obtained. The designed system 

was able to convert polluted well water containing nitrate, particles, and microbes into clean 

drinking water according to WHO standards. The results of this study suggest that Fe0 SW 
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filters are very affordable as only small amount of affordable SW (300 g) is required to provide 

each day 200 L of clean water over one year. 

Considering that the duration of effective decontamination of Fe0-based systems depends on 

both, the water composition and the nature of used Fe0, the achieved results are only qualitative. 

The presented results call for further systematic research, which can start by duplicating the 

experiments reported herein with the seven grades of Fe0 SW from the same supplier. Another 

field for future research is the characterization of the effects of typical water constituents on the 

efficiency of Fe0 SW filters to eliminate pollutants. Relevant parameters include the presence 

of Cl−, HCO3
−, humic substances, PO4

3−, and SO4
2−. Filter containers can be locally designed 

and constructed.  

Providing a chemistry- and electricity-free filter barrier against waterborne diseases by 

contaminants based on SW filtration appears possible for hundreds of millions of people. Up 

scaling the presented design for larger communities is one of the next steps. There is a real 

chance to achieve the US SDGs by implementing Fe0 filters everywhere (Nanseu-Njiki et al. 

2019, Yang et al. 2020, Huang et al. 2021b). Strategies for the rapid dissemination of such 

household and small community Fe0-based filter designs have already been developed and 

presented in the literature (Ngai et al. 2007; Banerji and Chaudhari 2017). 
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7. Epilogue 

The presented work corresponds to the original manuscript evaluated by two referees. Minor 

revisions were performed, strictly limited at improving Chapter 5 and actualizing bibliographic 

references. The major concern raised by the referees and during the defense was the lack of 

mass balance to support the mechanistic discussion. This concern is addressed in the revised 

version where it is demonstrated, that on a pure chemical perspective, at least 1000 g of Fe0 is 

needed to achieve the reduction of the 204 g of nitrate observed in this work. Another concern, 

not addressed here, was the lack of duplicates (triplicates) for statistical considerations. The 

reason why this was not done is that the main operational parameter tested herein was the 

experimental duration. In fact, current and past experiments testing household filters have lasted 

just for some few weeks (Bradley et al. 2011, George and Ahammed 2019, Njaramba et al. 

2021). Only Bradley et al. (2011) tested their filters for up to 10 months. Herein, two sets of 

conclusive experiments were performed for 6 and 12 months. Performing them in duplicates or 

triplicates would be better, however, there was also lack of funding for material and analysis. 

Having used steel wool like Bradley et al. (2011), this thesis is regarded as starting point for the 

design of Fe0-based filters for decentralized safe drinking water provision. 

The results of this work have inspired the actualization of the concept orginally presented in 

2009 (Noubactep et al. 2009). This has let to a Special Issue at the MDPI-Journal Processes 

(www.mdpi.com/journal/processes) with 13 articles (Noubactep 2021). This special issue 

elucidates the applicability, benefits, constraints, effectiveness, and limitations of Fe0 filters for 

safe drinking water provision. Tools to make rainwater a primary water source were also 

presented (Hussain et al. 2019, Guan et al. 2020) together with ways to transform existing 

centralized water management systems into decentralized ones (sectorization) (Vegas Niño et 

al. 2021). 

Beside safe drinking water provision, research on Fe0/sand filters for the treatment of 

agricultural drainage water and domestic and industrial wastewater will benefit from the results 

of this thesis (Chen et al, 2019, Konadu-Amoah et al. 2021, Li et al. 2021). In fact, in the past 

few years, a great body of results on testing Fe0/aggregate filters have been published (Shearer 

et al. 2018, Kulkarni et al. 2019, Marik et al. 2019, Chopyk et al. 2019, Kim et al. 2020, Kim et 

al. 2021, Njaramba et al. 2021). Tested aggregates include pumice and sand. However, available 

results are not based on a holistic approach in investigating the complex Fe0/sand systems (Hu 

et al. 2021b, Konadu-Amoah et al. 2021, Yang et al. 2021, Noubactep 2022). In particular, little 

attention has been paid to the Fe0/aggregate ratio and the experimental duration (Konadu-

Amoah et al. 2021, Yang et al. 2021, Noubactep 2022). For this reason, even the excellent work 
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of Njaramba et al. (2021) is limited for the too short experimental duration (90 days or three 

months). The paramount importance of the experimental duration arises from the evidence, that 

the long-term kinetics of iron corrosion is not known (Stefanoni et al. 2018, Stefanoni et al. 

2019, Yang et al. 2021, Noubactep 2022). It is hoped that science-based design of Fe0-based 

filters presented herein will accelerated the design of efficient and sustainable systems for 

decentralized safe drinking water provision and wastewater treatment worldwide. 
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Practical example of calculation and ideas concerning porosity 

loss and clogging by using steel wool filters. 
 

Assumption, calculations, and results in this part of work imply that per volume of sand it takes 

such a maximum quantity of iron to avoid clogging. 

Assumption: 

100g Fe0/sand mixture with 10 vol.% steel wool + 90 vol.% coarse sand 

Fe concentration in the mixture: 2.07 wt.% = 2.07 g per 100g mixture 

 

Calculations: 

Full transformation of 2.07 g Fe0 into ferrihydrite (assumed formula Fe(OH)3): 2.07 * 1.9136 = 

3.96 wt.%  

This corresponds to 3.96 g ferrihydrite in 100 + (3.96 - 2.07) g = 101,89 g mixture 

Density of ferrihydrite: 3.8 g/cm3; 3.96 g ferrihydrite per 101,89 g mixture correspond to 3.96 

/ 3.8 = 1.042 cm3 

Density of Fe0 (not as steel wool): 7.87 g/cm3; 2.07 g Fe0 per 100 g mixture correspond to 2.07 

/ 7.87 = 0.263 cm3 

Result: 

The volume of Fe0 of 0.263 cm3 increased to 1.042 cm3 through complete oxidation into 

ferrihydrite. At the same time, the 10 vol.% of the steel wool space are vacated. This means, 

that altogether the pore space increased through the oxidation by nearly 9 vol.% (rough 

calculation with rounded numbers). In addition, we have a huge pore space between the sand 

grains of at maximum 26 % (value for closest packing of spheres/round grains with equal 

diameter). 

Consequence: 

Through the application of voluminous steel wool, as used in the manuscript, a clogging of the 

filters through oxidation of Fe0 can never happen, even at very high steel wool concentrations. 

On the contrary, steel wool amended filters should get an increased porosity in the iron-

containing section. Fig.10 illustrate a cake formed in the filter during the elapsed time of 1 year.  
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 Picture of cake formed in the filter during the elapsed time of 1 year. 

 

However, clogging could occur, if the formed ferrihydrite gels/nanoparticles would move up in 

the column and would accumulate in certain layers. Another explanation: under sub/anoxic 

conditions Fe2+ may migrate and accumulate in more oxidizing layers. The understanding of 

formation and transport behavior of the formed oxidized iron phase(s) is the key for 

understanding an eventual clogging.  
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