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Abstract

The present work deals with two challenging problems of applied geostatistics: (i) Stationarity
assumptions often do not hold under real-world conditions. (ii) Geostatistical methods have to
be linked with spatial databases in order to be applicable in non-stationary situations. Solutions
for both problems are proposed and implemented.

(i) A central assumption in geostatistics is the stationarity of the process. However the spatial
variability of many natural phenomena heavily depends on the local geology, which is non-
stationary in most cases. To deal with this, the concept of process stationarity is replaced by a
stationarity of the governing influence relating the local semivariogram and the local geology as
stored in a Geographical Information System (GIS). A construction method is used, which can
meaningfully incorporate additional spatial information from GIS, e.g. smoothly varying geology
in the investigated area, spatially varying anisotropy induced by mountainous morphology, or
geological faults interrupting continuity. Least-squares parameter estimation is used for fitting
instationary semivariogram models in typical example situations, leading to non-linear optimiza-
tion problems. Furthermore, a method for semivariogram parameter estimation in the present
of linear trend is proposed.

(ii) Geostatistical tools that make use of the local geology need direct access to the data stored
in the GIS. A link between the presented geostatistical tools and the GIS software ArcView was
established. Thus, spatial data such as measured contaminant concentrations, soil properties
and morphology can be incorporated in geostatistical analyses.

R code that fits instationary semivariogram models and performs kriging was implemented and
can be obtained from the author1. It is applied to simulated datasets.

Zusammenfassung

Die vorliegende Diplomarbeit befasst sich mit zwei wichtigen Problemen der angewandten Geo-
statistik: (i) Stationaritätsannahmen werden unter realweltlichen Bedingungen oft nicht erfüllt.
(ii) Geostatistische Methoden müssen mit räumlichen Datenbanken verbunden werden, um unter
nichtstationären Bedingungen anwendbar zu sein. Lösungen für beide Probleme werden vorge-
schlagen und implementiert.

(i) In der Geostatistik ist die Stationarität des Prozesses eine zentrale Annahme. Die räumlich
Variabilität vieler Phänomene in unserer Umwelt hängt jedoch stark von lokalen geologischen
Verhältnissen ab, die meist aber instationär sind. Um damit umgehen zu können, wird das
Konzept der Stationarität des Prozesses ersetzt durch eine Stationarität des Einflusses der lokalen
Geologie, wie sie in einem GIS gespeichert ist, auf das lokale Semivariogramm. Es wird eine
Konstruktionsmethode benutzt, die auf sinnvolle Art räumliche Informationen aus dem GIS in
Semivariogrammmodelle einbinden kann, etwa sich über das Untersuchungsgebiet gleichmäßig
verändernde geologische Verhältnisse, sich räumlich verändernde Anisotropie im Gebirgsrelief
oder geologische Störungen, die die Kontinuität unterbrechen. Kleinste-Quadrate Schätzung
wird für die Anpassung instationärer Semivariogrammmodelle in typischen Beispielsituationen
verwendet. Dies führt zu nichtlinearen Optimierungsproblemen. Des weiteren wird eine Methode
der Schätzung von Semivariogrammparametern in Modellen mit linearem Trend vorgestellt.

(ii) Geostatistische Werkzeuge, die lokalen geologischen Verhältnisse berücksichtigen, benötigen
einen direkten Zugang zu Daten, die in einem GIS gespeichert sind. Im Rahmen dieser Arbeit
wurde eine Verbindung zwischen den vorgestellten geostatistischen Werkzeugen und dem GIS-
Programm ArcView erstellt. Auf diese Weise können räumliche Daten wie etwa Schadstoffkon-

1Current address: Universität Erlangen–Nürnberg, Institut für Geographie, Kochstr. 4/4, D–91054 Erlangen;
e-mail: ali@proforma.de.

ali@proforma.de
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zentrationen, Bodeneigenschaften oder die Morphologie in geostatistische Analysen einbezogen
werden.

R-Code, der instationäre Semivariogrammmodelle anpasst und Kriging durchführt, wurde erstellt
und auf simulierte Datensätze angewandt. Der Code kann über den Author2 bezogen werden.

2Gegenwärtige Anschrift: Universität Erlangen–Nürnberg, Institut für Geographie, Kochstr. 4/4, D–91054
Erlangen; e-mail: ali@proforma.de.

ali@proforma.de


Preface

The present work shows how geostatistical models and methods can be adapted in order to
facilitate the integration of geostatistical data analysis and Geographical Information Systems
(GIS) and make better use of the information stored within the latter. The main focus is on
models that represent local anisotropies given by geological covariables (Section 2.2) and on those
with linear trend (Section 2.6). Both models and respective fitting methods will be implemented
within the data analysis language R and linked with the GIS ArcView (Sections 3.3, 3.4).

The dataset of humidity indices from the Ecuadorian Andes (Prof. Dr. Michael Richter, Erlangen)
that I intended to study in Chapter 4 will only appear as an example for a sample session; it
is not presented in detail because of the great deal of work that would have been necessary
for completing the covariable data using a digital elevation model and for doing comprehensive
exploratory data analysis.

I wish to thank Prof. Dr. Helmut Schaeben and Dipl.-Math. Gerald van den Boogaart for su-
pervising my work and supporting its interdisciplinary scope. Furthermore thanks to Prof. Dr.
Wolfgang Näther for being the second reviewer of this Diploma thesis.

This work was only possible within a multidisciplinary environment including the fields of math-
ematics, geosciences and geocomputation. I am glad that I have found such an environment at
the Freiberg University of Technology and Mining.

Freiberg, June 2001

Alexander Brenning
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Chapter 1

Introduction

1.1 Why Use Geostatistical Methods within GIS?

Over thousands of years, the physical support for spatial information has been evolving, shifting
from wood and stone to paper, which made more efficient production and reproduction and
accurate representation of information possible. In the 20th century, technological innovation
has lead to a breath-taking acceleration of spatial data acquisition and has simultaneously created
the tools that are necessary for efficiently managing great amounts of spatial information, namely
information systems and, in this particular case, Geographical Information Systems (GIS). These
are instruments that enable us to store, modify and extract spatial data, as well as to visualize
and analyze it.

In connection with local networks and the world-wide web, spatial data can now be made virtually
omnipresent. Currently, GIS are more and more used in environmental planning, agronomy,
hydrology, logistics and many other scientific and economic fields. At the same time, the amount
of spatial information that is stored and processed within GIS still increases rapidly because
of the wide use of data derived from Remote Sensing and Global Positioning Systems (Kraas
1993, Longley et al. 1999).

These developments make it possible and necessary to apply modern data analysis techniques
to a much larger extent than in paper-based times, including the application of statistical meth-
ods for modeling spatial processes and distributions. There is still a need for adapting these
techniques and integrating them into GIS. The present work contributes to the solution of this
problem from a geostatistical point of departure, Geostatistics being understood as the mathe-
matical discipline that studies stochastic processes with continuous spatial indices in two or more
dimensions (Cressie 1993).

1.2 Why Drop Stationarity Assumptions?

Precisely the above described development of spatial information processing creates a need for
improving geostatistical techniques. The existence of detailed thematic data now permits the ap-
plication of more sophisticated and complex models that also reflect an improved understanding
of our physical environment and, if necessary, make use of the computer power available today.

How can these models look like, in the case of Geostatistics?

For example, consider mineral concentrations measured within an ore deposit that was created
through hydrothermal alteration, i. e. the intrusion of hot solutions into rock due to deep mag-
matism. Suppose an underlying pattern of tectonic faults that shows a preferred orientation,
say North–South, and that it already existed prior to the intrusion of hot solutions. As a conse-

1



CHAPTER 1. INTRODUCTION 2

quence, the mineral concentrations found today at two different points can be assumed to show
higher dependencies (or correlations) if they are aligned North–South than in an East–West con-
figuration. This direction-dependency of correlations, called anisotropy, can be modeled in some
special cases without great difficulty, e. g. if there is only one global direction of anisotropy, as
in the example above. However, more complex patterns of orientations may occur, for instance
due to foldings or depending on mountainous relief.

Another problematic situation occurs when a linear trend is present in the data. Until now, math-
ematically unsatisfactory strategies have been applied to model fitting under these conditions
(see Section 2.6).

Both anisotropy and presence of trend imply instationarity of the underlying stochastic process,
and solutions to both problems of variogram parameter estimation were proposed by van den
Boogaart (1999) and van den Boogaart (2000) and are studied and applied in this work.



Chapter 2

Some Geostatistical Theory

In the present chapter the reader is presumed to be familiar with the basic notions and results of
probability theory (see e. g. Bauer (1978), Billingsley (1995)). An introduction to geostatistical
theory will be given, including the presentation and application of the results obtained by van
den Boogaart (1999) and van den Boogaart (2000) and of some examples that will reappear in
the rest of this work.

2.1 Second-order Stochastic Processes

2.1.1 Introduction

Let (Ω,A, P ) be a probability space and let (Rd,Bd, λ) denote the Lebesgue-Borel measure space
and ‖ · ‖ the Euclidian norm on Rd, d ≥ 1. Furthermore, let D be an arbitrary non-empty set.

Definition 2.1.1 A real-valued random variable or random function on (Ω,A, P ) is an A-B1-
measurable function Z : Ω → R. A real-valued stochastic process (or just process) with the
parameter set D is a collection Z = (Zt)t∈D of real-valued random variables on (Ω,A, P ). If
D ∈ B2, Z is also called a random field. A process Z is of second order, if every random variable
Zt, t ∈ D, is square integrable.

In continuation we consider real-valued random variables and processes only. If a random variable
is integrable,

E(Z) =
∫

Ω
Z dP

denotes its expected value or mean value.

Remark and Definition 2.1.2 Let Z be a second-order process. Then the expected value
E(Zt) and the covariance

Cov(Zs, Zt) = E((Zs − E(Zs)) · (Zt − E(Zt)))

exist for all s, t ∈ D.

The mapping
m : D → R, m(t) := E(Zt)

is called the expected value or mean of Z, and

C : D ×D → R, C(s, t) := Cov(Zs, Zt)

the covariance function of Z. In geostatistics, the latter is commonly called the covariogram and
m the trend or drift of Z.

3



CHAPTER 2. SOME GEOSTATISTICAL THEORY 4

Definition 2.1.3 A process Z is called a Gaussian process, if for all n ∈ N and all t1, . . . , tn ∈ D
it holds: The joint distribution of Zt1 , . . . , Ztn is an n-dimensional normal distribution.

Remark 2.1.4 Every Gaussian process is a second-oder stochastic process, because every nor-
mal random variable is square integrable.

Question 2.1.5 For which functions m : D → R and C : D2 → R exists a second-oder process
with expected value m and covariance function C?

Definition 2.1.6 A function F : D ×D → R is positive semidefinite, if

∀ n ∈ N ∀ t1, . . . , tn ∈ D ∀ a1, . . . , an ∈ R :
n∑

i=1

n∑
j=1

aiajF (ti, tj) ≥ 0.

Theorem 2.1.7 Consider two functions m : D → R and C : D2 → R. Then the following
conditions are equivalent:

i) C is positive semidefinite and symmetric.

ii) There exist a probability space and a second-order process defined on it that has expected
value m and covariance function C.

Proof: ii) ⇒ i):

Let (Zt)t∈D be an arbitrary stochastic process on D with expected value m and covariance
function C. C is symmetric because it holds

C(s, t) = E((Zs −m(s)) · (Zt −m(t))) = E((Zt −m(t)) · (Zs −m(s))) = C(t, s).

Furthermore, we have

∀ n ∈ N ∀ t1, . . . , tn ∈ D ∀ a1, . . . , an ∈ R :

n∑
i,j=1

aiajC(ti, tj) =
n∑

i,j=1

aiajE((Zti −m(ti)) · (Ztj −m(tj))) =

= E
( n∑

i,j=1

aiaj(Zti −m(ti)) · (Ztj −m(tj))
)

= E
( n∑

i=1

ai(Zti −m(ti))
)2

≥ 0.

i) ⇒ ii): Draft of the proof:

We will construct a collection of finite-dimensional Gaussian processes. Their existence implies
the existence of of a Gaussian process on D, due to Colmogorov’s theorem.

Let C : D×D → R be positive semidefinite and m : D → R an arbitrary function. Furthermore,
let H(D) denote the collection of all finite subsets of D, and for I ⊂ J ⊂ D, let

πJ
I : RJ → R

I , τ 7→ τ |I

be the restriction mapping from J to I. For every J ∈ H(D) we define a measuring space
(ΩJ ,AJ) := (RJ , (B1)J). To (ΩJ ,AJ), we put the normal distribution PJ with expected value 0
and covariance matrix C|J×J as probability measure. (Note that PJ is well-defined, because
C|J×J is positive semidefinite.)

It can be shown that for all I, J ∈ H(D) with I ⊂ J , it holds

πJ
I PJ = PI .
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A collection (PJ)J∈H(D) of probability measures with this property is called projective.

Colmogorov’s Theorem (Bauer 1978) guarantees the existence of one unique probability mea-
sure P on1 (Ω,A) = (RD,BD) satisfying

∀ I ∈ H(D) : πD
I P = PI .

The probability measure P is called the projective limit of (PI)I∈H(D).

If for all t ∈ D we define random variables Zt = ω(t) + m(t) on the probability space (Ω,A, P ),
then we have a second-order process on D with mean m and covariance function C. It is, by
construction, a Gaussian process. 2

Remark 2.1.8 As a consequence of Theorem 2.1.7, a symmetric positive semidefinite function
C : D2 → R is often called a covariance function, even if a corresponding second-order process
has not been introduced explicitely.

Remark 2.1.9 Let C, D be positive semidefinite functions and λ ≥ 0. Then C + D, λC and
C + λ are also positive semidefinite.

2.1.2 Semivariograms and Semivariogram Models

In contrast to time series analysis, where the autocorrelation function is the most important
object that is studied, in Geostatistics the so-called semivariogram is usually preferred to the
covariance function.

Throughout the rest of this work, we always consider processes of second order with parameter
sets D ⊂ Rd.

Definition 2.1.10 For a stochastic process Z on D, the function

γ : D ×D → R, γ(s, t) := 1
2Var(Z(s)− Z(t))

is well-defined and is called the semivariogram of the process Z, 2γ its variogram.

Remark 2.1.11 If Z is a stochastic process with covariance funtion C and semivariogram γ,
then it holds:

2γ(s, t) = C(s, s) + C(t, t)− 2C(s, t). (2.1)

Example 2.1.12 i) Spherical semivariogram: For σ2 ≥ 0 and a > 0, the function γ : D×D → R

defined by

γsph(s, t) =

{
σ2
(

3
2
‖t−s‖

a − 1
2
‖t−s‖3

a3

)
if ‖t− s‖ < a,

σ2 otherwise
(2.2)

is the semivariogram of a stochastic process on D ⊂ Rd, d = 1, 2, 3. (This will be shown in
Example 2.2.9.)

The spherical semivariogram as a function of h = t− s ∈ Rd has only one continuous derivative
at h ∈ ∂Bd(0, a) and is continuous but not differentiable at 0 ∈ Rd, d > 1.

ii) Exponential semivariogram: For σ2 ≥ 0 and a > 0,

γexp(s, t) =
{

σ2 exp(−‖t− s‖/a) if ‖t− s‖ > 0,
0 if ‖t− s‖ = 0,

1Remark: The product σ-algebra BD :=
⊗

t∈D B of B is defined to be the smallest σ-algebra in RD, with

respect to which all projections πD
{t} are BD-B-measurable (Bauer 1978).



CHAPTER 2. SOME GEOSTATISTICAL THEORY 6

defines the exponential semivariogram of a stochastic process on D ⊂ Rd, d ≥ 1. At 0 it is
continuous, but not differentiable. The exponential semivariogram does not reach a maximum;
it converges to σ2 for ‖t− s‖ → ∞.

iii) Nugget effect : Sometimes it is desired to take into account measuring errors or microscale
variability of the measurements. This can be achieved by adding a so-called nugget effect semi-
variogram

γnug(s, t) =
{

0 if s = t,
σ2 if s 6= t

to a given semivariogram.

Further semivariograms are presented by Cressie (1993) and Stein (1999), for example.

Remark 2.1.13 i) Semivariograms are symmetric and conditionally negative semidefinite, in
the sense that for all n ∈ N, for all s1, . . . , sn ∈ D and for all a1, . . . , an ∈ R with

∑
i ai = 0, it

holds
n∑

i=1

n∑
j=1

aiajγ(si, sj) ≤ 0.

(Proof: Use (2.1), the condition on the ais and the positive semidefiniteness of C.)

ii) In general it is difficult to determine whether a conditionally negative semidefinite function
γ : D×D → R is the semivariogram of a second-order process (Cressie 1993, pp. 86–90). Hence
it is important to keep in mind that, when talking about semivariograms, we make the non-trivial
assumption that there exists a corresponding stochastic process.

However, as a consequence of Theorem 2.1.7, it is a safe method to derive semivariograms from
covariograms using equation (2.1).

Remark 2.1.14 i) Different covariograms may yield the same semivariogram: Suppose that X
and Y are random fields with covariograms CX and CY = CX +∆, ∆ > 0, respectively. (CX +∆
is positive semidefinite, see Remark 2.1.9.) Thus, using (2.1) we get

2γY (s, t) = CX(s, s) + ∆ + CX(t, t) + ∆− 2(CX(s, t) + ∆) = 2γX(s, t).

ii) Let C, C̃ be covariograms and γC , γ
C̃

the corresponding semivariograms. Then γC + γ
C̃

is
the semivariogram corresponding to C + C̃.

Definition 2.1.15 Let Θ be an arbitrary non-empty set. Suppose that for every θ ∈ Θ, γθ :
D×D → R is a semivariogram (of a suitable process on D). Then the function γ : D×D×Θ → R

is called a semivariogram model. We also denote it as γ = (γθ)θ∈Θ. Θ is called the parameter set
of γ.

2.1.3 (In-) Stationarity and (An-) Isotropy

Stationary and isotropic processes have second-order structures that are in certain sense invariant
in space. This makes life much easier in mathematics, but in practice these properties generally
cannot be guaranteed. Nevertheless, stationary and isotropic processes constitute a firm point
of departure for exploring the instationary world, which will be seen later. First we have to take
a closer look at stationary and isotropic processes.

Definition 2.1.16 Let Z denote a stochastic process with mean m and covariance function C.
Then we define:



CHAPTER 2. SOME GEOSTATISTICAL THEORY 7

i) C is stationary , if a function Cstat : Rd → R exists such that for all s, t ∈ D it holds

C(s, t) = Cstat(t− s).

ii) C is isotropic, if a function Ciso : R+
0 → R exists such that for all s, t ∈ D it holds

C(s, t) = Ciso(‖t− s‖).

iii) The process Z is second-order stationary (or weakly stationary), if m(·) is constant and C
is stationary. Furthermore, if C is isotropic, then the process is isotropic. For convenience,
in this work second-order stationary processes will just be called stationary.

iv) Instationary and anisotropic processes and covariance functions are defined canonically.

Furthermore, if γ denotes the semivariogram of Z, we define:

v) γ is stationary, if a function γstat : Rd → R exists such that for all s, t ∈ D,

γ(s, t) = γstat(t− s).

vi) γ is isotropic, if a function γiso : R+
0 → R exists such that for all s, t ∈ D,

γ(s, t) = γiso(‖t− s‖).

vii) The process Z is intrinsically stationary , if m(·) is constant and γ is stationary.

Definition 2.1.17 (Sill and range) If γ is a stationary semivariogram on D = Rd and v ∈ Rd

a unit vector, the value
σ2(v) := lim

h→∞
γ(‖hv‖),

if existent, is called the sill of γ in the direction of v. Furthermore,

a(v) := inf{d ≥ 0 : γ(‖hv‖) = σ2(v) ∀h > d}

is the range of γ in the direction of v.

Example 2.1.18 The spherical and the exponential semivariogram presented in Example 2.1.12
are stationary and isotropic because they only depend on ‖t − s‖. The parameters σ2 and a of
the spherical semivariogram are its (omnidirectional) sill and range, respectively.

The exponential semivariogram approaches its parameter σ2 asymptotically as h → ∞. Hence
σ2 is its sill, but a range in the above sense is not defined. In practice, a value

aε := inf{d ≥ 0 : γ(‖hv‖) ≥ σ2 − ε ∀h ≥ d}

can be used instead.

Remark 2.1.19 (Geometric anisotropy) For θ = (θsill, θrg)T ∈ Θsph, let C iso
θ be an isotropic

covariogram.

i) For an arbitrary regular matrix R ∈ Rd×d consider the function C̃R : D ×D → R,

C̃R(s, t) = C iso(R(t− s)).

If the eigenvalues of R are not identical, C̃R will be an anisotropic covariogram. This kind of
anisotropy is called geometric anisotropy. In the direction of the greatest eigenvalue, the range
of C̃R is ρ(R) times the range of C iso, where ρ(R) = max{|λ| : λ eigenvalue of R} denotes the
spectral radius of R.

ii) Geometrically anisotropic processes are stationary, because C iso and R both depend on t− s
only.
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Remark 2.1.20 (Intrinsic vs. second-order stationarity) The class of all second-order sta-
tionary processes is strictly contained in the class of all intrinsically stationary processes.

We give an example from Cressie (1993) that is intrinsically stationary but not second-order
stationary. Let W be a zero-mean Gaussian process on Rd, d > 1, with covariance

C(s, s + h) = Cov(W (s),W (s + h)) = 1
2(‖s‖+ ‖s + h‖ − ‖h‖).

(W is a Brownian motion on Rd.) The process is second-order instationary because C depends
on s and h, not only on h.

Using (2.1), we calculate the semivariogram of Z,

γ(s, s + h) = 1
2‖s‖+ 1

2‖s + h‖ − 1
2(‖s‖+ ‖s + h‖ − ‖h‖) = ‖h‖,

which is a function of ‖h‖ only. Hence W is intrinsically stationary.

Note that the semivariogram of W is even isotropic, although the process W is not.

2.2 Van den Boogaart’s Method of Semivariogram Construction

2.2.1 Introduction

Now we study processes with covariance functions that are induced by a special kind of weight
function. We will see that these approximate stationary covariance functions arbitrarily well.

Weight functions are a very comfortable kit for constructing easy-to-understand covariogram
and hence semivariogram models. This is of particular importance in the instationary case and
motivates the use of weight functions when dropping stationarity assumptions.

Let E ⊂ Bd denote a non-empty measurable set.

Definition 2.2.1 A weight function on D × E is an arbitrary function w : D × E → R such
that for all s ∈ D ∫

E
w(s, p)2 dp < ∞.

Theorem 2.2.2 For an arbitrary weight function w on D × E and all s, t ∈ D there exists the
integral

Cw(s, t) :=
∫

E
w(s, p)w(t, p) dp, (2.3)

and the function Cw is positive semidefinite. Furthermore, Cw is the covariance function of a
second-order process on D; it is called the covariance function induced by w.

Proof: The integral Cw(s, t) exists and is finite, because the product of two square integrable
functions w(s, ·), w(t, ·) is integrable. Furthermore, if for n ∈ N, we choose arbitrary t1, . . . , tn ∈
and a1, . . . , an ∈ R, then we obtain

n∑
i=1

n∑
j=1

aiajCw(ti, tj) =
n∑

i=1

n∑
j=1

aiaj

∫
E
w(si, p)w(sj , p) dp

=
∫

E

n∑
i=1

aiw(si, p)
n∑

j=1

w(sj , p) dp =
∫

E

(
n∑

i=1

aiw(si, p)

)2

dp ≥ 0.

Hence Cw is positive semidefinite. Cw is also symmetric, so Theorem 2.1.7 applies and shows
that there exists a second-order stochastic process on D with covariance function Cw. 2
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Remark 2.2.3 The semivariogram γ corresponding to a covariogram C that is induced by an
arbitrary weight function w, is of the form

γ(s, t) = 1
2C(s, s) + 1

2C(t, t)− C(s, t)

= 1
2

∫
Rd

(
w(s, p)2 + w(t, p)2 − 2w(s, p)w(t, p)

)
dp

= 1
2

∫
Rd

(w(s, p)− w(t, p))2 dp. (2.4)

Definition 2.2.4 (Essential supremum) Recall the following definition: A measurable func-
tion f : Ω → R on a region T ⊂ Rd, is said to be essentially bounded , if the following expression
exists and is finite:

ess. sup
x∈T

|f(x)| := inf
Z⊂T

λd(Z)=0

sup
x∈T\Z

|f(x)|.

Then ess. supx∈T |f(x)| is called the essential supremum of f , and we put

‖f‖∞ = ess. sup
x∈T

|f(x)|.

The following Theorem and Remark are due to van den Boogaart (1999).

Theorem 2.2.5 (Approximation of stationary covariograms) Every stationary covari-
ogram C on D = Rd that has a spectral density g(ω) = dG/dλ can be approximated arbitrarily
well with respect to ‖ · ‖∞ by a covariogram (2.3) induced by a weigth function, i. e.: For every
ε > 0 there exists a weight function w on Rd ×Rd that induces a covariance function Cw with

‖C − Cw‖∞ < ε.

Proof: The proof consists of two parts: First we construct a sequence (Cri)i∈N of functions that
approximates C arbitrarily well with respect to ‖ · ‖∞, and then weight functions wri are given
that induce Cri , i ∈ N.

C is a real function on Rd and has spectral density g(ω) = dG/dλ, hence it can be written as

C(h) =
∫
Rd

cos(ωT h)g(ω) dω,

where
∫
Rd g(ω) dω < ∞ because G is a bounded measure. For 0 < r1 ≤ r2 ≤ . . ., consider the

sequence (gri)i∈N of measurable functions

gri : Rd → R, gri(ω) = min
(
ri,1[0,ri](‖ω‖)g(ω)

)
.

For all i ∈ N and ω ∈ Rd it holds

0 ≤ gri ≤ gri+1 and lim
k→∞

grk
(ω) = g(ω).

Thus, the monotone convergence theorem shows

lim
i→∞

∫
Rd

gri(ω) dω =
∫
Rd

g(ω) dω.

Putting

Cri(h) =
∫
Rd

cos(ωT h)gri(ω) dω,
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we get for all i ∈ N and h ∈ Rd

|C(h)− Cw(h)| =
∣∣∣∣∫
Rd

cos(ωT h)(g(ω)− gri(ω)) dω

∣∣∣∣
≤
∫
Rd

| cos(ωT h)(g(ω)− gri(ω))|dω

≤ ‖g − gri‖1;

this does not depend on h, and it is finite because ‖g‖1 and ‖gri‖1 are. Hence ‖C − Cri‖∞ <
‖g − gri‖1 for all i ∈ N, and

lim
i→∞

‖g − gri‖1 = 0

then implies
‖C − Cri‖∞ → 0

as i →∞.

We know that for all i ∈ N, gri is a bounded function with compact support. Therefore, √gri

and ω 7→ cos(ωT (s− p))
√

gri(ω) are integrable, the latter for all s, p ∈ Rd, and we can define a
real function wri : Rd ×Rd → R by

wri(s, p) = π−d/2

∫
Rd

cos(ωT (s− p))
√

gri(ω) dω.

We only give a draft of the rest of the proof. Now for all s, t, p ∈ Rd it holds∫
Rd

wri(s, p)wri(t, p) dp = π−d

∫
Rd

∫
Rd

∫
Rd

cos(ωT
s (s− p)) cos(ωT

t (t− p))

·
√

gri(ωs)
√

gri(ωt) dωt dωs dp

=
∫
Rd

cos(ωT
s (s− t))gri(ωs) dωt

= Cri(s− t).

We have shown that the ‖C − Cri‖∞ → 0 for i →∞, and that every Cri is induced by a weight
function wri . 2

Remark 2.2.6 Assuming the existence of a spectral density in Theorem 2.2.5 implies that
neither a nugget effect nor a covariance function not vanishing as ‖h‖ → ∞ can be approximated
arbitrarily well by weight functions. However a nugget effect can be added a posteriori to the
induced covariogram (van den Boogaart 1999).

Definition 2.2.7 (Translation invariant weight functions) A weight function w on D ×
E ⊂ Rd × Rd is called translation invariant, if there exists a function ws : Rd → R such that
w(s, p) = ws(p − s) for all s ∈ D, p ∈ E. w is called isotropic, if furthermore ws only depends
on ‖p− s‖.

Theorem 2.2.8 Translation invariant (isotropic) weight functions on Rd×Rd induce stationary
(isotropic) covariograms.

Proof: Let ws be a translation invariant weight function on Rd×Rd. Then, putting q = p−x,
the induced covariogram is

Cw(s, t) =
∫
Rd

w(s, p)w(t, p) dp =
∫
Rd

ws(p− x)ws(p− y) dp =
∫
Rd

ws(q)ws(q − (t− s)) dq,

which only depends on h := t− s.
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Now let w be isotropic. Consider an arbitrary t′ ∈ Rd with ‖h′‖ = ‖h‖, h′ := t′−s. Let R ∈ Rd×d

be an orthogonal matrix with Rh = h′. Then we have |det R | = 1 and hence, putting r := Rq
we get

ws(q)ws(q − h) = ws(r)ws(r − h′)

and
Cw(h) =

∫
Rd

ws(q)ws(q − h) dq =
∫
Rd

ws(r)ws(r − h′) · |det R |dr = Cw(h′).

We have shown that Cw does not depend on the orientation of h, i. e. it is isotropic. 2

Example 2.2.9 (Generalized spherical covariograms) For fixed R > 0 and D ⊂ E = Rd,
consider the weight function

w : D ×Rd → R, w(s, p) = 1[0,R](‖p− s‖), s ∈ D, p ∈ Rd.

We write νd(‖t − s‖) = λd(Bd(s,R) ∩ Bd(t, R)). Theorem 2.2.2 implies that the function Cw :
D ×D → R, defined by

Cw(s, t) =
∫
Rd

w(s, p)w(t, p) dp =
{

νd(‖t− s‖), if ‖t− s‖ < 2R,
0, otherwise,

(2.5)

is a covariogram.

i) d = 3: In the not vanishing case, we have to determine the volume of the dissection of two
spheres of radius R in R3, i. e. twice the volume outlined in figure 2.1 (left) with a solid line.
Using an equation from Rottmann (1991),

ν3(‖t− s‖) = 2
πh̄

6
(3r2

G + h̄2),

where
h̄ = R− 1

2‖t− s‖, r2
G = R2 − 1

4‖t− s‖2.

Simple transformations yield

ν3(‖t− s‖) = 4
3R3π

(
1− 3

2
‖t− s‖

2R
+

1
2

(
‖t− s‖

2R

)3
)

.

We normalize w dividing it by
√

ν3(0) =
√

4
3R3π and get w̃. We set h := ‖t− s‖ and a := 2R,

introduce a linear scaling parameter σ2 and finally yield

Cw̃(h) =
{

σ2 − σ2
(

3h
2a −

1
2

(
h
a

)
3
)
, if 0 ≤ h < a,

σ2 otherwise.
(2.6)

This is, by construction, the covariance function of an isotropic second-order process with param-
eter set D on an appropriate probability space, and hence γw̃(h) := Cw̃(0)−Cw̃(h) is an isotropic
semivariogram. Cw̃ and γw̃ can be transferred to D ⊂ Rl, l = 1, 2, taking D′ := D×{0}, which is
isometrically isomorph to D. Note that when doing this, we still integrate over E = R3 in (2.5),
so we get the same expression (2.6). For l = 2, γw̃ is identical to γsph from Example 2.1.12.

ii) d = 2: Now w is a function on D × R2. Put h := ‖t − s‖ < 2R. We have to calculate the
area ν2(h) of the dissection of two circles of radius R in R2. See figure 2.1 (right) for notation.
Subtracting the triangle from the sector, we get

ν2(h) = 2
(
R2 α

2 −
1
2ξ h

2

)
= R2α− 1

2sh,

where α = 2arccos h
2R and ξ =

√
R2 − h2/4. Thus, we obtain

ν2(h) = 2R2 arccos h
2R − 1

2h
√

R2 − h2/4.
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R

ξ h

t

s
α

Figure 2.1: Left: A sphere in R3 with notations from Example 2.2.9 i) (Rottmann 1991).
Right: Supports of w(s, ·) and w(s, ·)w(t, ·) (intersection) in Example 2.2.9 ii).

We normalize w and introduce a scaling parameter σ2:

w̃(s, p) :=
σ2w(s, p)√∫
R2 w(s, p)2dp

=
σ2w(s, p)√
λ(B2(s,R))

=
σ2w(s, p)

R
√

π
, s, p ∈ R2,

Cw̃(h) :=

{
σ2

R2π
·
(
2R2 arccos h

2R − h
2

√
R2 − h2/4

)
, if h < 2R,

0 otherwise.

The induced covariogram Cw̃ is isotropic, we write Cw̃(s, t) = Cw̃(‖t−s‖), and the corresponding
semivariogram (see figure 2.2) γw̃(h) = Cw̃(0) − Cw̃(h) = σ2 − Cw̃(h) is also isotropic. Cw̃ is
continuous, but its first derivative has a singularity at h = 2R (or, more precisely, at every
(s, s + h) ∈ D×D with ‖h‖ = 2R), unlike its “brother” Csph constructed above for d = 3, l = 2.

Remark and Definition 2.2.10 The normalizing procedure used in the preceding example
will be applied frequently. For convenience, we define:

Let w : D × E → R be an arbitrary weight function. Then for all s ∈ D,

ν(w, s) :=
(∫

E
w(s, ·) dp

)1/2

and N (w) := w/ν(w, ·)

are well-defined, and N (w) is a weight function. It induces a covariogram satisfying

C(s, s) = 1 for all s ∈ D.

2.2.2 Covariance Functions as Convolutions

In this section, we study stationary covariance functions that are induced by translation invariant
weight functions on D = E = Rd. We will show that these covariance functions are twice as
many times differentiable as the corresponding weight function. First a few technical results will
be proven.

Definition 2.2.11 (Convolution) Consider two functions f, g ∈ L1(Rd). If the integral

(f ∗ g)(s) :=
∫
Rd

f(r)g(s− r) dr (2.7)

exists at s ∈ Rd, then (f ∗ g)(s) is called the convolution integral of f and g at s. If (f ∗ g)(s)
exists at least for almost all s ∈ Rd, then f ∗ g is called the convolution of f and g.
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Theorem 2.2.12 For f, g ∈ L1(Rd), the convolution integral (f ∗ g)(s) exists for all s ∈ Rd and
is integrable.

Proof: We follow Grabmüller (1999). The functions (s, p) 7→ f(p) and (s, p) 7→ g(s− p) are by
inspection measurable with respect to the product σ-algebra Bd×Bd on Rd×Rd, because f and
g are measurable. Hence φ(s, t) := f(p)g(s− p) is also measurable. Integrating |φ(s, t)|,∫

Rd

(∫
Rd

|φ(s, t)|ds

)
dt

u:=s−p
=

∫
Rd

|f(t)|
(∫

Rd

|g(u)|du

)
dt = ‖f‖1‖g‖1 < ∞,

hence Fubini’s theorem shows f ∗ g ∈ L1(Rd). 2

Theorem 2.2.13 (Derivatives of a parametric integral) Let T ⊂ Rk, k ≥ 1, and E ⊂ Rd

be regions. Consider a function f : T × E → R, and assume that for all τ ∈ T , p 7→ f(τ, p) is
integrable. Define a function I : T → R by

I(τ) =
∫

E
f(τ, p) dp.

Now suppose that V ⊂ T is a neighbourhood of τ∗ ∈ T such that the following two conditions
hold:

i) For almost all p ∈ E, f(·, p) : τ 7→ f(τ, p) is continuously differentiable on V .

ii) There exists an integrable function g : V → R such that for all τ ∈ V :∣∣∣∣ ∂

∂τ
f(τ, p)

∣∣∣∣ ≤ g(p) almost everywhere.

Then I is differentiable at τ∗, and it holds

d
dτ

I(τ∗) =
∫

E

∂

∂τ
f(τ∗, p) dp.

Proof: We follow Gasquet and Witomski (1999). Let (τn)n∈N be an arbitrary sequence in V
that converges to τ∗. Define

dn(p) =
f(τn, p)− f(τ∗, p)

τn − τ∗
, p ∈ E.

Due to the mean value theorem, for all p ∈ E and all n ∈ N there exists a τ̃n(p) ∈ V such that

dn(p) =
∂

∂τ
f(τ̃n(p), p).

From the hypothesis, ∂f/∂τ is continuous in τ∗ for almost all p ∈ E, so

lim
n→∞

dn(p) =
∂

∂τ
f(τ∗, p)

for almost all p ∈ E, and

|dn(p)| =
∣∣∣∣∂f

∂τ
(τ̃n(p), p)

∣∣∣∣ ≤ g(p)

λd-almost everywhere. Lebesgue’s dominant convergence theorem then implies

lim
n→∞

∫
E
dn(p) dp =

∫
E

lim
n→∞

dn(p) dp

and hence the proposition holds. 2
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Theorem 2.2.14 Suppose f ∈ Lp(Rd) and g ∈ Lq(Rd), where 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1.
Then the following propositions hold:

i) (f ∗ g)(τ) is defined for all τ ∈ Rd.

ii) f ∗ g is uniformly continuous and bounded.

iii) ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

Proof: i) holds because of Theorem 2.2.12 and ∀ p > 1 : Lp(Rd) ⊂ L1(Rd).

We now show iii). Without loss of generality, assume q < ∞. From Hölder’s inequality we have

|(f ∗ g)(s)| ≤ ‖f‖p

(∫
Rd

|g(s− r)|qdr

)1/q

= ‖f‖p‖g‖q, for all s ∈ Rd,

and hence ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

ii) Now we only have to prove uniform continuity. We write

|(f ∗ g)(s)− (f ∗ g)(t)| ≤
∫
Rd

|f(r)| · |g(s− r)− g(t− r)|q dr

≤ ‖f‖p

(∫
Rd

|g(s− r)− g(t− r)|q dr

)1/q

for all s, t ∈ Rd. We first establish continuity when g is continuous with compact support. Let
A ⊃ supp g be a region. For ‖s− t‖ sufficiently small,∫

Rd

|g(s− r)− g(t− r)|q dr
u:=t−r=

∫
A
|g(s− t + u)− g(u)|q du

≤ 2λd(A) · sup
u∈A

|g(s− t + u)− g(u)|.

The supremum is finite since g is uniformly continuous on A, and hence f ∗ g is uniformly
continuous on Rd.

Now allow g ∈ Lq(Rd) and recall that the linear space C0
c of all continuous functions with compact

support in Rd is dense in Lq(Rd). Let (gn)n∈N ⊂ C0
c be a sequence with limn→∞ ‖gn − g‖q = 0.

Adding and subtracting (f ∗ gn)(s) and (f ∗ gn)(t), we get

|(f ∗ g)(s)− (f ∗ g)(t)| ≤ |(f ∗ g)(s)− (f ∗ gn)(s)|+ |(f ∗ gn)(t)− (f ∗ g)(t)|
+|(f ∗ gn)(s)− (f ∗ gn)(t)|

≤ 2‖f‖p‖g − gn‖q + |(f ∗ gn)(s)− (f ∗ gn)(t)|,

using Hölder’s inequality. By construction, ‖f‖p‖g − gn‖q → 0 for n →∞, and the last term is
uniformly continuous for all n ∈ N due to the inequality shown above. It follows directly that
f ∗ g is uniformly continuous on E. 2

Theorem 2.2.15 Suppose f ∈ L1(Rd) and g ∈ Ck(Rd), and let the αth derivative2 ∂αg/∂sα of
g be bounded for all α with 0 ≤ |α| ≤ k. Then it holds

f ∗ g ∈ Ck(Rd) and
∂α(f ∗ g)

∂sα
= f ∗ ∂αg

∂s
.

2As usual, α ∈ Nd
0 denotes a multi-index, and we write |α| =

∑
i αi.
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Proof: For the αth derivative of a function h, we write h(α). By applying Theorem 2.2.14 with
p = 1 and q = ∞ we see that f ∗ g(α) is continuous for all α with 0 ≤ |α| ≤ k. The function
s 7→ f(p)g(s− p) is k times differentiable, and for all 0 ≤ |α| ≤ k we have

|f(r)g(α)(s− r)| ≤ |f(r)| · sup
u∈Rd

|g(α)(u)|.

Since f ∈ L1(Rd), we can integrate under the integral sign (Theorem 2.2.13). Hence

(f ∗ g)(α)(s) =
∫
Rd

f(p)g(α)(s− r) dr = (f ∗ g(α))(s).

2

Corollary 2.2.16 (Differentiability of covariance functions) Let w be a k times continu-
ously differentiable translation invariant weight function, and suppose that ∂αw/∂sα is bounded
for all 0 ≤ |α| ≤ k. Then the induced stationary covariance function Cw : Rd → R is 2k times
continuously differentiable, and it holds

∂βCw

∂sβ
=

∂α1w

∂sα1
∗ ∂α2w

∂sα2
,

for all β, α1, α2 ∈ Nd with 0 ≤ |β| ≤ 2k, 0 ≤ |α1,2| ≤ k and α1 + α2 = β.

Proof: Apply Theorem 2.2.15 twice. Note that the square integrability of the weight function
is not needed here. 2

Remark 2.2.17 The differentiability of a stationary covariogram C is closely related to the
“smoothness” of the corresponding process in terms of L2-differentiability. A second-order pro-
cess Z on Rd is said to be L2-differentiable at s ∈ Rd if (Zs+hjej

− Zs)/hj converges in L2 as
hj → 0, j = 1, . . . , d, where (ej)j=1,...,d is the natural basis of Rd. If C : Rd → R is two times
differentiable at 0, then Z is L2-differentiable at all s ∈ Rd. (See Cressie (1993, p. 60) for details
and references.)

Remark 2.2.18 (Fourier transform of a covariance function) Consider a translation in-
variant weight function w on Rd and the induced covariance function c = w ∗ w. We can apply
results from Fourier Analysis to this class of covariance functions: The Fourier transform C(ω)
of c(h) can be determined using

C(ω) = W (ω)2,

where W (ω) denotes the Fourier transform of w. This is a consequence of the Convolution
Theorem.

Studying the Fourier transform or spectral density of stationary covariograms allows inference
on the local behaviour of the stochastic process (or the assumed model). See Stein (1999) for an
application to geostatistics.

2.2.3 Modeling Local Anisotropy: the Elliptical Class of Models

Theorem 2.2.5 shows that the class of covariograms induced by a weight function is sufficiently
large as to be useful instruments for covariance modeling. In the following, the construction
method will be used for creating a class of semivariograms and covariograms that can adapt to
local anisotropies that may be quite irregular, but following a known pattern, e. g. topography
or tectonic structures.

In this subsection, we choose d = 2 and E = R2. However, the approach followed here can easily
be transferred to processes with higher-dimensional parameter sets.
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Definition 2.2.19 (Elliptical semivariograms) Let wo
τ : R → R, τ ∈ T 6= ∅, be a square

integrable function with support ⊂ B2(0, 1). For φ ∈ [0, π[, r ≥ 0 and q ∈ ]0, 1] we define

R(φ; r, q) =
1
r

(
cos φ sinφ

−q−1 sinφ q−1 cos φ

)
to be a combined contraction and rotation by −φ satisfying

R(φ; r, q)Ell2(0; r, q, φ) = B2(0, 1),

where Ell(0; r, q, φ) denotes the two-dimensional ellipse around 0 with longer radius r in an angle
of φ with the x1-axis and axis ratio q.

Now consider a function θ = (σ2, φ, a, q, τ) : D → R
+
0 × [0, π[×R+× ]0, 1]× T . Then we define

w∗
(a,q,τ) : D ×Rd → R, w∗

θ(s, p) = wo
τ(s)(‖R(φ(s); a(s)

2 , q(s))(p− s)‖),

well
θ = σ2N (w∗

θ),

where N is the normalizing functional from Remark and Definition 2.2.10. Then the weight
function well

θ is called an elliptical weight function on D. Covariograms and semivariograms
induced by elliptical weight functions are also called elliptical. w0 will be referred to as a kernel
function.

A component of θ is called a parameter , if it is a constant function, otherwise a covariable.

Remark 2.2.20 In this work, the elliptical semivariograms considered have parameters σ2, a,
q and τ , and one single covariable φ, unless specified otherwise.

Remark 2.2.21 i) Kernel functions for elliptical semivariograms are for example

wind(h) = 1[−1,1](h), (“simple kernel function”)

wlin(h) =
{

1− |h| if |h| < 1,
0 otherwise,

(“linear kernel fn.”)

wpwl
b (h) =


1 if |h| ≤ b,
1− (|h| − b)/(1− b) if b < |h| < 1,
0 otherwise,

(“piecewise linear kernel fn.”)

wbez
ν (h) =

{
(h + 1)ν(h− 1)ν if |h| < 1,
0 otherwise,

(“Bezier kernel fn.”)

Simple elliptical semivariograms (induced by the simple kernel function) with q = 1 are isotropic
and coincide with the semivariogram γw̃ in Example 2.2.9 ii).

The covariograms and semivariograms induced by the Bezier kernel function (see figure 2.2) are
at least b2νc times continuously differentiable because wbez

0 is (exactly) bνc times continuously
differentiable (Corollary 2.2.16). The other kernel functions presented are not differentiable on
∂B2(0, 1).

ii) For Θ = ]0,∞[× ]0,∞[× ]0, 1[×T and an arbitrary kernel function wo
τ , the family of all induced

semivariograms γθ = γ
ell,wo

τ

(σ2,a,q)
, θ = (σ2, a, q, τ) ∈ Θ, form a semivariogram model (γell

θ )θ∈Θ.

iii) Simple elliptical covariograms (i. e. for w0 = wind
0 ) can be written as

Cθ(s, t;φ) =
σ2

λ(Ell(0; a/2, q))
λ (Ell(s; a/2, q, φ(s)) ∩ Ell(t; a/2, q, φ(t))) ,

i. e. they represent a standardized measure for the overlapping of ellipses.

Even the simple area of dissection of these ellipses is difficult to determine analytically. Therefore
quasi-Monte Carlo integration methods will be applied in this work in order to approximate
elliptical semivariograms (see Sections 3.2.3 and 3.3.5).
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0
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d)

Figure 2.2: Semivariogram plot of the form γ(s, s + hν), h ∈ R, ‖ν‖ = 1, for:
a) Spherical semivariogram (Example 2.2.9 i)).
b) Simple elliptical semivariogram (Remark 2.2.21, Example 2.2.9 ii)).
c) Elliptical semivariograms corresponding to the linear (solid line) and piecewise linear (break
point b = 0.8; dashed) kernel function.
d) Elliptical semivariograms corresponding to the Bezier kernel function with exponents ν = 0.3
(solid line), 1 (dotted) and 3 (dashed).

Remark 2.2.22 The following example shows how the class of elliptical semivariograms can be
extended, and how parameters and covariables can be chosen in order to represent qualitative
knowledge of the processes to model.

Example 2.2.23 (Modeling soil loss by water run-off) Soil erosion by water run-off is a
geomorphological process that basically depends on topography, vegetation, land use, soil prop-
erties and precipitation regime. At a small scale, however, the size of the catchment area and
the slope’s inclination are the most important factors that influence soil erosion.

We wish to construct weight functions and semivariograms that are consistent with our knowledge
of the processes governing soil erosion. In particular we know that the soil loss at one point
depends on the soil loss uphill in the same catchment area, and that there is little correlation
with soil loss on the other side of a ridge or on the opposite side of a valley. We want to
represent this knowledge of correlation being restricted to a catchment area. (In addition, large
scale dependencies may be modeled with a different semivariogram.)

For a point s ∈ D, let A(s) ⊂ R2 denote its catchment area, i. e. the area of land that drains to
s. Then a weight function w on D ×Rd with suppw(s, ·) = A(s) respects our knowledge of the
relation between soil erosion and topography.

As an example, we define a weight function by

wθ̃(s, p) = well
θ (s, p)1A(s)(p), θ̃ = (θ,1A(·)),

where well
θ is an arbitrary elliptical weight function with covariable a : s 7→ 2 supp∈A(s) ‖p − s‖

and parameters σ2 and τ , the axis ratio q = 1 being constant and hence φ without any effect.

The catchment area of a point can be determined by analyzing Digital Elevation Models (DEM),



CHAPTER 2. SOME GEOSTATISTICAL THEORY 18

and a great number of oracle calls 1A(s)(p) is necessary in order to approximate the induced
semivariogram by numerical integration.

A computationally less demanding method is the following, which approximates wθ̃ quite well in
not too irregular relief. Let R(s) be the shortest distance to the ridge that lies uphill from s, and
let φ(s) ∈ [0, 2π[ denote the gradient of topography at s expressed as an angle, and δ(s) ∈ ]0, π]
an opening angle. Then for an arbitrary elliptical weight function well

θ , with q = 1 and covariables
a = 2R and φ, we define

w′
θ̃
(s, p) = well

θ (s, p)1Sec(s;φ(s),δ(s),R(s)/2)(p),

where Sec(s;φ(s), δ(s), a(s)/2) ⊂ B2(s, a(s)/2) denotes the sector with opening angle δ(s) and
radius a(s)/2 oriented according to φ(s). The opening angle δ(s) could for example be constant
or a function of local curvature at s.

2.2.4 Modeling Boundaries between Subprocesses

In many geostatistical applications we find the following situation: The parameter set D of
the process Z of interest decomposes into η disjoint subsets D1, . . . , Dη ⊂ D such that the
subprocesses Z1 := Z|D1 , . . . , Zη := Z|Dη have little or no correlation between each other.

Instead of studying each subprocess Zi separately, one might wish to study the process Z as a
whole.

Question 2.2.24 How can boundaries between subprocesses with little or no correlation be
modeled using weight functions?

In this subsection we follow a constructivist approach, studying transformations of weight func-
tions and their effects on the induced covariogram model rather than asking for necessary con-
ditions on the weight functions given certain properties of subprocesses. Consequently, the
definitions presented here are mainly intended to be useful for practical purposes.

Definition 2.2.25 (Ordinary and strong boundaries) Let wo
1, . . . , w

o
η be weight function

on D × E, E = Rd. Then we define:

i) The weight functions wi on D × E,

wi(s, p) := wo
i (s, p)1Di(s), i = 1, . . . , η,

and the induced covariograms C1, . . . , Cη are said to have ordinary boundaries (between
D1, . . . , Dη).

ii) The weight functions w∗
i on D × E,

w∗
i (s, p) := wo

i (s, p)1Di(s)1Di(p), i = 1, . . . , η,

and the induced covariograms C∗
1 , . . . , C∗

η are said to have strong boundaries (between
D1, . . . Dη).

If the covariograms C1, . . . , Cη have ordinary (strong) boundaries between D1, . . . , Dη, then a
process Z on D with covariogram

C =
η∑

i=1

Ci

is also said to have ordinary (strong) boundaries between D1, . . . , Dη.

In a colloquial way, let us agree on speaking of ordinary boundaries only if they are not strong.
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0 Di − Dj

0

σ2

Figure 2.3: Covariograms with ordinary and strong boundaries near the boundaries.

Remark 2.2.26 If a stochastic process Z on D has ordinary or strong boundaries between
D1, . . . , Dη, then the subprocesses Z|D1 , . . . , Z|Dη are pairwise uncorrelated.

Proof: For i 6= j, consider arbitrary s ∈ Di, t ∈ Dj . We have to show that C(s, t) = 0. For
k = 1, . . . , η and all p ∈ E, we have

wk(s, p)wk(t, p) = wo
k(s, p)wk(t, p)1Dk

(s)1Dk
(t) = 0,

since at least one of 1Dk
(s) and 1Dk

(t) is zero. Hence C(s, t) = 0. 2

Remark 2.2.27 Suppose that the process Z with covariogram C =
∑η

i=1 Ci has ordinary or
strong boundaries between D1, . . . , Dη. Then its semivariogram writes

γ =
η∑

i=1

γi, 2γi(s, t) =


0, if s, t 6∈ Di,
Ci(s, s), if s ∈ Di, t 6∈ Di,
Ci(t, t), if s 6∈ Di, t ∈ Di,
Ci(s, s) + Ci(t, t)− 2Ci(s, t), if s, t ∈ Di.

Remark 2.2.28 Let Z be a process with ordinary boundaries and covariogram C =
∑η

i=1 Ci.
Suppose that for i = 1, . . . , η, Ci is induced by the weight function (s, p) 7→ wo

i (s, p)1Di(s), where
wo

i induces a covariogram on Di that is generically stationary with respect to gi : Di → Rk.
Define g : D → Rk+η by g|Di := (gi,1D1 , . . . ,1Dη)T .

Then Z is generically stationary on D with respect to g.

Remark 2.2.29 i) Near the boundaries, covariograms with ordinary and strong boundaries are
greater than their analogues with ordinary boundaries (figure 2.3). This is due to the normalizing
factor that decreases rapidly as the integration domain is being cut by 1Di .

ii) When approximating covariograms with strong boundaries using numerical integration, the
functions 1Di , i = 1, . . . , η, have to be evaluated at each node p ∈ E. In practice, D1, . . . , Dη

generally are polygons stored within a Geographical Information System, and evaluations of 1Di

have to be considered as expensive “oracle calls” (see Section 3.2.3).

Now we will consider a way of constructing covariograms of correlated subprocesses. Instead of
adding covariograms of subprocesses, we will add weight functions.

Definition 2.2.30 (Soft boundaries) Let wo
1, . . . , w

o
η be arbitrary weight functions on D×E,

E = Rd. Then the weight function w : D × E → R, defined by

w(s, p) =
η∑

i=1

wi(s, p)1Di(s), (2.8)

and the induced covariogram C are said to have soft boundaries between D1, . . . , Dη.
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0 a1 a2

0

1

Figure 2.4: Covariograms C(s, s + hν) (left) and C ′(s, s + hν) from Example 2.2.32 (s ∈ A1,
‖ν‖ = 1).

Remark 2.2.31 Suppose that Z is a process with soft boundaries, its covariogram being induced
by a weight function (s, p) 7→

∑η
i=1 wi(s, p)1Di(s). Let Zi be a process on Di with covariogram

induced by wi|Di×E , i = 1, . . . , η. If for all i = 1, . . . , η the process Zi is generically stationary
with respect to gi : Di → Rk, then Z is generically stationary with respect to g : D → Rk+η,
g|Di = (gi,1D1 , . . . ,1Dη)T .

Example 2.2.32 Suppose D1 ∪D2 = D, D1 ∩D2 = ∅, and let C,C ′ denote covariograms with
soft boundaries between D1 and D2 induced by weight functions

(s, p) 7→ wlin
(σ2

1 ,1,1)(s, p)1D1(s) + wlin
(σ2

2 ,1,1)(s, p)1D2(s)

and
(s, p) 7→ wlin

(1,a1,1)(s, p)1D1(s) + wlin
(1,a2,1)(s, p)1D2(s),

respectively (cf. Definition 2.2.19, Remark 2.2.21), where σ2
1 < σ2

2 determine different sills on D1

and D2, and a1 < a2 are different ranges. This may produce covariograms as shown in figure 2.4.

The discontinuity of C can be accepted if we take into account that the correlogram C̄(s, t) =
C(s, t)/

√
C(s, s)C(t, t) does not depend on σ2

1, σ2
2 but remains continuous.

However, it will generally not be desirable to introduce a positive correlation C̄ ′(s, t) for s ∈ A1

and ‖t− s‖ > a1. This effect will however be negligeable if the ranges a1 and a2 do not defer too
much and the weight functions are small near the support’s boundary.

Remark 2.2.33 (Smooth transitions) The problem encountered in Example 2.2.32 with soft
boundaries may be overcome by allowing the weight function’s parameter θ ∈ Θ to vary smoothly
in space, i. e. taking w̃(s, p) = wf(s)(s, p) for a smooth function f : D → Θ. In such a situation,
the induced covariogram is said to have smooth transitions.

This approach follows the same principle that was used when turning from geometric anisotropies
to those modeled by elliptical covariograms with smoothly varying direction of anisotropy φ(s)
(see Remark 2.1.19 and Definition 2.2.19).

Summary 2.2.34 When modeling independent subprocesses, prefer ordinary boundaries to
strong ones, and simply add covariograms of subprocesses.

When modeling smooth transitions within a process or between subprocesses, use semivariogram
parameters smoothly varying in space, rather than soft boundaries.
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2.3 Generic Stationarity: towards Stationarizing
Instationarity

In Section 2.2.3 the class of elliptical semivariograms was presented, which were found to be
in general non-geometrically anisotropic. However, by construction their anisotropy can be
considered as rather regular because it is merely determined by the direction φ(s), s ∈ D,
of local anisotropy, which is assumed to be known.

Now we want to introduce a concept that is more general than that of stationarity and includes
the elliptical case and other situations with “understandable” anisotropies.

Example 2.3.1 Let Z be a process on E = Rd with elliptical semivariogram γ with parameter
θ ∈ Θ and direction of local anisotropy φ : Rd → [0, π[. Then for all s, s + h, t, t + h ∈ D with
φ(s) = φ(t) and φ(s + h) = φ(t + h) it holds

γ(s, s + h) = γ(t, t + h) (2.9)

(see the proof given below). That is, elliptical semivariograms have “something like” a station-
arity property conditional on the direction of local anisotropy φ.

However, there will probably exist points u, u+h ∈ D with φ(s) 6= φ(u) or φ(s+h) 6= φ(u+h). If
we go beyond the semivariogram itself and study the way how the generation of our semivariogram
depends on φ, we will find out that for all s, t ∈ D, we have

γ(s, t) = γg(t− s |φ(s), φ(t)),

where the function γg : Rd × [0, π[×[0, π[→ R, is defined by

γg(h |φ1, φ2) = σ2

∫
Rd

Nwo
θ(‖R(φ1; θ)(p)‖)Nwo

θ(‖R(φ2; θ)(p− h)‖dp. (2.10)

Thus, γ depends on t− s, φ(s) and φ(t) only.

The last two equations suggest that “if we had φ(s) = φ(u) and φ(s + h) = φ(u + h), then we
would get γ(s, s + h) = γ(t, t + h)” — a hypothetic version of (2.9), based on our belief in the
validity of the law expressed in (2.10).

The following definition reflects this concept in a precise way.

Proof: Let wo : R → R be a kernel function such that γ is equal to the induced elliptical
semivariogram with suitable parameter θ = (σ2, a, q). Consider arbitrary s, s + h, t, t + h ∈ D
with φ(s) = φ(t) and φ(s + h) = φ(t + h) as above, and let ν be the normalizing function from
Remark and Definition 2.2.10. Then it holds

R(φ(s); a
2 , q) = R(φ(t); a

2 , q), R(φ(s + h); a
2 , q) = R(φ(t + h); a

2 , q).

Because of this and p−s̃ = (p+ t̃−s̃)− t̃, s̃, t̃ ∈ D, we get for the weight function wθ corresponding
to γ

wθ(s, p) = wθ(t, p + t− s), wθ(s + h, p) = wθ(t + h, p + t− s).

The translation invariance of the integral over E = Rd then yields (using the translation p 7→
p′ = p + t− s) ∫

E
wθ(s, p)wθ(s + h, p) dp =

∫
E
wθ(t, p′)wθ(t + h, p′) dp′.

and furthermore
ν(wθ, s) = ν(wθ, t), ν(wθ, s + h) = ν(wθ, t + h),

The last three equations together with (2.1) prove (2.9). 2
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The basic idea of the following definition is due to van den Boogaart (1999).

Definition 2.3.2 (Generic stationarity) Consider a stochastic process Z on D with covari-
ance function C, semivariogram γ and mean m, and let g : D → T be a function onto an arbitrary
set T . Then we define:

i) The process Z is strongly generically stationary with respect to g, if there exists a function
Pg : Bd × T → R such that

∀ s, t ∈ D ∀B ∈ Bd : P (Zs ∈ B) = Pg(Zs ∈ B | g(s)) = Pg(Zt ∈ B | g(s)).

ii) Γ ∈ {C, γ} is generically stationary with respect to g, if there exists a function Γg : Rd×T →
R such that

∀ s, t ∈ D : Γ(s, t) = Γg(t− s | g(s), g(t)).

iii) If there exists a function Eg : D × T → R such that

∀ s, t ∈ D : m(s) = Eg(Zs | g(s)) = Eg(Zt | g(s)),

then m is generically stationary with respect to g, and Z is first-order generically stationary
with respect to g.

iv) Z is (second-order or weakly) generically stationary, if m and C are, and the process is
intrinsically generically stationary, if m and γ are generically stationary.

v) The functions Pg, Γg and Eg are called influence laws of generic stationarity, and g an
influence function.

Remark 2.3.3 Consider a process that is generically stationary with respect to local geology,
and let s, t ∈ D be two arbitrary points. Then generic stationarity says that the distribution laws
of Zs and Zt are or become the same, if local geology around s and t are the same or are “forced”
to be the same. That is, generic stationarity assumes that there is something like a law of nature
that determines the distribution of a random variable given the local geology g. Depending on
how we choose the function g, generic stationarity becomes a triviality or an instrument that
describes how a distribution law is determined by the environment.

Theorem 2.3.4 (Stationarity and generic stationarity) For a stochastic process Z on D,
the following conditions are equivalent:

i) Z is stationary.

ii) Z is generically stationary with respect to a constant mapping on D.

iii) Z is generically stationary with respect to every mapping on D.

Proof: iii) ⇒ ii) is trivial.

ii) ⇒ i): If Z is generically stationary with respect to a constant mapping g : D → R, then Cg

in Definition 2.3.2 actually does not depend on g(s) and g(s + h), and thus Cg and C depend on
h only.

i) ⇒ iii) is trivial. 2

Remark 2.3.5 Consider a generically stationary stochastic process Z with influence function
g. g can take two extreme cases:
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i) g is constant. Then Z is stationary in the usual sense.

ii) g = idD : s 7→ s. Then Z is an arbitrary process, there is no condition on its mean or
covariance function.

One could say that a constant influence function gives no information on local geology, while iden-
tity contains complete knowledge of local geology and hence explains arbitrary spatial variation
of the process’ first- and second-order structures.

“Between” these two extremes, there exists a broad variety of meaningful influence functions and
laws, as we saw in Example 2.3.1.

2.4 Kriging

In this section, only a brief review of the most important kriging techniques is given. We refer
to Cressie (1993) for further details and proofs.

Suppose that the process Z on D can be modeled as

Zs = Ys + βTf(s) for all s ∈ D, (2.11)

where Y = (Ys)s∈D is a zero-mean stationary random field on D, f : D → Rk, k ≥ 1, is
a deterministic function and β ∈ Rk a parameter vector. In this model, βTf(s) represents a
deterministic trend, to which randomness is included by adding Y .

Note that (2.11) defines a generalized linear model with residuals Y correlated according to a
stationary covariogram.

For simplification, we assume f1(s) = 1 for all s ∈ D, i. e. a constant overall mean β1 (or in other
words, an intercept) is incorporated into the model.

Suppose that we observe Zs1 , . . . , Zsn , s1, . . . , sn ∈ D. Write Z(n) = (Zs1 , . . . , Zsn)T . We wish to
predict Zs0 , s0 ∈ D, by a linear predictor

Ẑs0 = λTZ(n), λ ∈ Rn.

The mean squared error of this predictor is defined by

σ2(s0) = E(Zs0 − Ẑs0)
2.

If there exists a linear predictor that minimizes the mean squared error among all linear predic-
tors, it is called a best linear predictor. A predictor is said to be unbiased, if

E(Ẑs0) = E(Zs0).

Now let γ denote the semivariogram of Z. Write γ0 = (γ(s0, s1), . . . , γ(s0, sn))T .

Theorem 2.4.1 Suppose that the semivariogram matrix Γ = (γ(si, sj))i,j=1,...,n is regular, F =
(f(si)T )i=1,...,n ∈ Rn×k is of full rank, and f(s) ∈ Im(F T ).

Then a best linear unbiased predictor for Zs0 is Z∗
s0

= λTZ(n), where λ ∈ Rn is given by(
Γ F

F T 0n×n

)(
λ
µ

)
=
(

γ0

f(s0)

)
. (2.12)

Furthermore, the mean squared error of Z∗
s0

is

σ2(s0) = (λT , µT ) · (γT
0 , f(s0)T )T . (2.13)

Proof: Cf. Cressie (1993).
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Remark 2.4.2 i) In geostatistics, best linear unbiased prediction is called kriging .
ii) If the mean of Z is an unknown constant, we can put k = 1 and f(s) = 1 for all s ∈ D. Best
linear unbiased prediction is then called ordinary kriging.
iii) For f 6≡ 1, best linear unbiased prediction is called universal kriging.
iv) If the mean of Z is a known constant, best linear unbiased prediction is called simple kriging.
v) Kriging for a process (1]−∞,b] ◦ Zs)s∈D is called indicator kriging.

Remark 2.4.3 A process Z of the form (2.11) is generically stationary with respect to g = βTf .

2.5 Estimation of Semivariogram Parameters

Suppose that we observe realizations z1 = Zs1(ω), . . . , zn = Zsn(ω), ω ∈ Ω, of a stochastic process
Z on D ⊂ Rd at n locations s1, . . . , sn ∈ D. We estimate the semivariogram γ of Z at (si, sj) by

γ̃ij = (zi − zj)2, i, j ∈ {1, . . . , n}.

The matrix Γ = (γ̃ij)i,j=1,...,n is called an empirical semivariogram based on the data z =
(z1, . . . , zn). We want to find a semivariogram estimator γ∗ for γ that fits the empirical semi-
variogram Γ “best”.

Definition 2.5.1 (Mean squared error) Let γ̂ be an estimator for the semivariogram γ of Z.
The mean squared error of γ̂ is defined to be

mse(γ̂) =
n∑

i=1

n∑
i=1

(γ̂(si, sj)− γ̃ij)2. (2.14)

Remark 2.5.2 We consider a semivariogram model (γθ)θ∈Θ and want to minimize the mean
squared error mse(γθ) by choosing an appropriate parameter vector θ ∈ Θ. If such an optimal
parameter θ∗ ∈ Θ exists, it is called a best parameter estimator in Θ and γθ∗ a best semivariogram
in (γθ)θ∈Θ. Searching for such an estimator is referred to as fitting semivariogram models or just
fitting semivariograms. In this situation, the function

mse : Θ → R, mse(θ) =
1
n2

n∑
i=1

n∑
i=1

(
γθ(si, sj)− (zi − zj)2

)
2 (2.15)

is called the mean squared error function of the semivariogram model (γθ)θ∈Θ with respect to
the data z ∈ Rn.

Remark 2.5.3 (Covariogram fitting) For a non-geo-statistician, a more straightforward way
of modeling the second-order structure of a stochastic process could consist of fitting a covari-
ogram model (Cθ)θ∈Θ. The “canonical” mean squared error corresponding to this problem is

n∑
i=1

n∑
j=1

(Cθ(si, sj)− (zi −m(si))(zj −m(sj)))2, θ ∈ Θ.

Unfortunately, this requires knowledge of the expected value m of Z, which in general cannot be
assumed even if m is constant. This problem does not arise in the case of semivariogram fitting
using (2.15).

Remark 2.5.4 i) Suppose that γθ is linear in θ ∈ Θ. Then

minimize mse(θ) (2.16)
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is a quadratic optimization problem. A comprehensive theory and efficient algorithms for this
kind of problems exist. See e. g. Krekó (1974) and Nocedal and Wright (1999).

ii) In general, (2.16) defines a non-linear optimization problem. The target function mse may
possess local minima. (See Section 3.2.5 for a numerical example.) Computational aspects are
discussed in Section 3.2.5.

2.6 Modelling in the Presence of Global Trend

2.6.1 Introduction

We return to the situation of Section 2.4, considering a process Z that can be modeled as

Zs = Ys + βTf(s) for all s ∈ D, (2.17)

where Y = (Ys)s∈D is a zero-mean stationary process on D, f : D → Rk, k ≥ 1, a deterministic
function and β ∈ Rk a parameter vector.

Again we assume f1(s) = 1 for all s ∈ D, i. e. a constant overall mean β1 is incorporated into the
model.

Let γZ denote the semivariogram of Z, γY the semivariogram of Y . There are two ways of pre-
dicting Zs0 , s0 ∈ D, based on observations Zs1 , . . . , Zsn , s1, . . . , sn ∈ D using kriging techniques:

i) If γZ(s0, si), i = 1, . . . , n, is known, we can apply universal kriging.

ii) If γY (s0, si), i = 1, . . . , n, and β are known, then Ys1 , . . . , Ysn are known, too, we can
predict Ys0 through simple kriging, and the trend value at s0 is given by βTf(s0). Adding
the predictor for Ys0 to βTf(s0), we get an unbiased predictor for Zs0 .

In practice, γZ or (γY , β) have to be estimated. In situation ii), we can proceed in the following
way (Goovaerts 1997):

(1) Assume that Ys0 , . . . , Ysn are independent and identically distributed. Estimate β by β̂ by
fitting the linear model (2.17) to the observed data.

(2) Assume that the residuals of the linear model are (spatially) correlated and stationary. Fit
a semivariogram model to the residuals of the linear model.

(3) Predict the trend component of Zs0 as β̂Tf(s0), and predict Ŷs0 using the semivariogram
fitted in step (1) for simple kriging of the linear model’s residuals. Estimate Zs0 by the
sum of both predictors.

Writing down explicitely the assumptions made in steps (1) and (2), it becomes obvious that
there is a contradiction. A work-around could consist of repeating step (1), this time using a
covariogram corresponding to the estimated semivariogram3 for fitting a generalized linear model
with correlated errors, and proceeding with steps (2) and (3) in the same way as before.

However, there is no guarantee that subsequent repetitions of this procedure lead to converging
estimates for β and the semivariogram parameters, which should be a minimum requirement for
“believing” in this method. Furthermore, there remains the problem that the residuals of the
linear model may be instationary, which enters in conflict with the assumption made in step (3)
(van den Boogaart 2000).

3When using semivariograms and covariograms induced by weight functions, there is a canonical correspondence.
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A more promising approach follows alternative i) and consists of estimating γZ taking into
account the presence of global trend, and doing universal kriging with the obtained estimator.
This strategy was studied by van den Boogaart (2000) and will be presented, implemented
(Section 3.3.4) and applied (Section 4.3) in the present work.

2.6.2 Estimation of Semivariogram Parameters

The following definition presents an analogue of the classical empirical semivariogram estimator
for the model with trend.

Definition 2.6.1 (Empirical semivariogram model) Let 0 = h0 < . . . < hp = ∞, Θ =
[0,∞[p. Then the function γθ, θ ∈ Θ, defined by

γθ(s, t) =
{

0, if s = t,
θi, if hi−1 < ‖t− s‖ ≤ hi

(2.18)

is called an empirical semivariogram with breaks at h1, . . . , hp−1 ∈ R+, and the collection (γθ)θ∈Θ

an empirical semivariogram model.

Remark 2.6.2 Define
P = In − F (F T F )−1F T

and write Z(n) = (Zs1 , . . . , Zsn)T . Then P is symmetric and idempotent, and it holds

E(PZ(n)Z
T
(n)P

T ) = −PΓP T = PCP T . (2.19)

Proof: Symmetry and idempotence of P are easily verified. Furthermore, it holds PF = 0n×n.
Hence,

PZ(n) = P (Y(n) + Fβ) = PY(n)

and
E(PZ(n)) = P E(Y(n)) = P0n = 0n. (2.20)

Furthermore, 1n = (1, . . . , 1)T ∈ Im(F ) because f1 ≡ 1, and hence P1n×n = P1n1
T
n = 0n×n.

Then, putting c0 = C(s, s) independently of s ∈ D and using Γ = c0 − C, it follows

PΓP = P (c01n×n − C)P = −PCP.

This implies
Cov(PZ(n), PZ(n)) = P Cov(Y(n), Y(n)) P = PCP = −PΓP,

and finally the hypothesis follows by applying (2.20):

E(PZ(n)Z
T
(n)P

T ) = Cov(PZ(n), PZ(n)) + (EPZ(n))(EPZ(n))
T︸ ︷︷ ︸

=0n×n

= PCP = −PΓP.

2

Remark 2.6.3 We observe a realization z = Z(n)(ω), ω ∈ Ω, and know the matrix P , and we
are looking for a semivariogram γθ, θ ∈ Θ, that “fits” the true semivariogram matrix Γ best.
Remark 2.6.2 motivates the following concept of mean squared error for the model with linear
trend; it was proposed by van den Boogaart (2000).
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Definition 2.6.4 (Restricted mean squared error) Let γ̂ be an estimator for the semivar-
iogram of Z, Let z denote a realization of Z(n), and use the notation introduced above. Then by

rmse(γ̂) = ‖PzzT P + PΓP‖2/n2 with ‖(aij)i,j=1,...,n‖2 =
n∑

i,j=1

a2
ij . (2.21)

we define a mean squared error in a projected linear space, which we propose to call the restricted
mean squared error of γ̂.

Remark 2.6.5 i) Remark 2.5.2 applies analogously.
ii) In contrast to the concept of mean squared error introduced in 2.5, the restricted mean squared
error can be used for fitting covariogram models even without knowing the mean of Z; we just
have to replace PΓP by −PCP , which in fact is identical (see Remark 2.6.2).

Remark 2.6.6 In general, the mean squared error (2.14) and the restricted mean squared error
(2.21) in presence of constant trend are not identical.

Proof: We study two linear mappings P̃ , Φ̃ : Rn×n → Rn×n, defined by

P̃ (A) = PAP, Φ̃(A) = (1
2aii + 1

2ajj − aij)i,j=1,...,n

for A = (aij)i,j ∈ Rn×n. Using the notation introduced earlier in this section, we can express
both concepts of means squared error in terms of P̃ and Φ̃:

mse(γ) = ‖Φ̃(zzT − C)‖2/n2, rmse(γ) = ‖P̃ (zzT − C)‖2/n2.

Assuming f ≡ 1, we have
P = In − 1

n1n×n.

Then, if A is symmetric, we get 1n×nA = A1n×n, and

P̃ (A) = (In − 1
n1n×n) A (In − 1

n1n×n)
= A− 2

n1n×nA + 1
n21n×n1n×n︸ ︷︷ ︸

n1n×n

A

= A− 1
n1n×nA.

We choose the tridiagonal matrix

T =


1 1 0

1
. . . . . .
. . . . . . 1

0 1 1


and compare mse(T ) with rmse(T ).4 It can easily be seen that

P̃ (T ) =
1
n



n−2 n−3 −3 · · · −3 −2

n−2 n−3
. . . . . .

...
...

−2 n−3
. . . . . . −3

...
... −3

. . . . . . n−3 −2
...

...
. . . . . . n−3 n−2

−2 −3 · · · −3 n−3 n−2


,

4The reader might wonder why the simpler matrix In is not used here. The reason is that then the result
suggests a very simple relationship between mse and rmse, which would be misleading.
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which yields

‖P̃ (T )‖2 = 3− 11
n

+
10
n2

.

Turning to the model without trend, first we observe that for any matrix A with constant diagonal
elements a11 = . . . = ann = a, it holds

Φ̃(A) = Φ̃(A− aIn) + Φ̃(aIn) = (aIn −A) + aΦ̃(In),

and using Φ̃(1n×n) = 0n×n, we obtain

Φ̃(In) = Φ̃(In − 1n×n) = 1n×n − In.

Thus, we see that
Φ̃(A) = aIn −A + a1n×n − aIn = a1n×n −A.

Hence, the tridiagonal matrix T yields

Φ̃(T ) = 1n×n − T,

and, counting the non-zero elements of Φ̃(T ),

‖Φ̃(T )‖2 = n2 − n− 2(n− 1) = n2 − 3n + 2.

We observe that ‖Φ̃(T )‖2 6= ‖P̃ (T )‖2 (and that there is apparently no simple relation between
both terms). 2



Chapter 3

Geostatistics and GIS

The present chapter treats issues concerning the implementation of geostatistical techniques and
of a GIS interface. First, an introductory part (Section 3.1) leads to the selection of software
platforms to be used in this work. Section 3.2 then consists of a presentation of mathematical
methods that form a theoretical background for implementation (Section 3.3).

Sections 3.3 and 3.4 deal with the implementation of geostatistical objects and functions and of
a GIS interface.

3.1 Introduction

3.1.1 Integration of GIS and Data Analysis Tools

Basically we can distinguish three stages of integration of tools for geostatistical data analysis
or other purposes and Geographical Information Systems (GIS), as shown in figure 3.1.

A very common practice today is the loose coupling scenario, which consists in exporting data
from the GIS, performing data analysis tasks independently within the tool, and finally importing
results into the GIS. However, this may cause problems due to incompatibility of file formats,
and meta-information such as information on the semantics of data and data types have to be
handled by the user and may get lost during multiple analyses and export-import processes.

In a second scenario, GIS and tool still are independent software, but both possess communication
interfaces that allow the user to pass data to and execute analyses within the data analysis tool
while he is working in a GIS environment (or vice versa). This linkage may consist in running
the tool within the GIS, in executing single tool commands from within the GIS, or, potentially,
in Object Linking and Embedding (OLE). The data analysis environment R, for example, can be
run within the GRASS GIS shell, and GRASS’ data base then can be accessed after dynamically
loading compiled GIS library functions into the R environment (Bivand 1999). Furthermore,
R offers the possibility of executing commands by calling or being called by a Dynamic Link
Library (DLL) (R Development Core Team 2000), and the GIS software ArcView, for example,
allows such calls to be done (ESRI 1996). However, communication by means of DLL calls always
requires a certain amount of interface programming at a lower level (usually in C).

The highest degree of integration is achieved when the tool is fully integrated within a GIS. This
is, without any doubt, the most comfortable situation for users who want to apply statistical
standard methods within a GIS without having to familiarize themselves with a specialized en-
vironment. However, a GIS will not be able to offer the broad spectrum of methods available
within R or S-PLUS, for example. Probably the first GIS that fully integrated a rather com-
prehensive set of geostatistical methods is ESRI’s ArcGIS 8.1 Geostatistical Analyst released in
May 2001 (ESRI 2001).

29
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Figure 3.1: Levels of integration of data analysis tools and GIS (taken from Bivand and Neteler
(2000)).

Now, which level of integration should be aimed at and can be reached in this work?

What we need is a flexible programming environment that allows us to implement, test and apply
modeling techniques for generically stationary geostatistics. Efficient mathematical algorithms
and a variety of data analytical methods should be available, and mathematical objects should
be easy to handle. Furthermore, we do not want to restrict the applicability of the code to a
specific GIS.

Therefore, the goal will be to implement geostatistical functions and objects fully within a
general-purpose data analysis environment, and to provide direct access to this functionality
from an exemplarily chosen GIS in a tight-coupling scenario.

3.1.2 Choice of the Platform: R 1.2.2 and ArcView 3.1

There exists a great number of mathematical and statistical programming environments that
could be used for implementing geostatistical methods. For this work, R 1.2.2 was chosen,
a “language and environment for statistical computing and graphics” as it defines itself. R
offers a simple and effective programming language that includes conditionals, loops and user
defined functions, and there exists a simple kind of object-oriented design. There are many
operators and functions for handling mathematical objects such as matrices, and a great variety
of statistical models and methods is also available, among them linear models, clustering and
time-series analysis. Furthermore, so-called packages, i. e. bundles of functions dealing with a
special problem, are available for free and extend the functionality of R.

The R environment is an open-source software freely available for download at http://www.
r-project.org. Open-source software is not only cheaper than commercial alternatives; the
main advantage of using it is related to the efficiency of problem-solving within a community
(“bazaar”) of users. Among them, at least one participant will already have met and solved
one’s problem, if the community is large enough. Furthermore, full access to source code makes
it possible to find out details of the implementation that are not documented in the manuals.
(Bivand 1999)

http://www.r-project.org
http://www.r-project.org
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R differs very little from the language S and its derivative S-PLUS. The main differences concern
the placement of objects in memory and scoping rules. However, only small changes may be
necessary when transferring code between both systems.

As GIS platform, the commercial software ArcView 3.1 was chosen, because it is being used at
many universities (including Freiberg University), in environmental agencies and consultancies.
Furthermore, the author was already quite familiar with ArcView when starting this work. Un-
fortunately, it is a commercial software. However, anticipating what will be seen later in Section
3.4, a relatively small amount of code had to be developed in order to create a basic user interface
within ArcView’s object-oriented programming language AVENUE, so it should be quite easy
to write similar interfaces for other GIS.1 While it is rather easy to implement windows-based
applications within AVENUE, it is not suited for handling mathematical objects.

In total, about 100KB of R code, 30 KB of C code and 30 KB of AVENUE source code were
produced. The code was developed in R 1.2.2, Microsoft Visual C++ 5.0 and ArcView 3.1
within a Microsoft Windows 2000 5.0 / NT 4.0 client–server environment at the Department of
Mathematics and Computer Science, Freiberg University for Mining and Technology. The server
has two Pentium II processors and 1 GB of memory, and the client that usually was used has a
Pentium II family processor and 64 MB of memory.

Source code and binaries can be obtained from the author (e-mail: ali@proforma.de).

3.2 Mathematical Background

3.2.1 Preliminaries

First we recall some definitions and remarks from numerical linear algebra that will be needed
in this chapter.

Definition and Remark 3.2.1 (Matrix norm) Let ‖ · ‖ be an arbitrary norm on Rn. On
the linear space Rn×n we define the mapping

‖ · ‖ : Rn×n → R, ‖A‖ := sup
x 6=0

‖Ax‖
‖x‖

and call it the matrix norm induced by the vector norm ‖ · ‖.
The induced matrix norm is a norm, and it holds

‖Ax‖ ≤ ‖A‖‖x‖, ‖AB‖ ≤ ‖A‖‖B‖

for all A,B ∈ Rn×n and x ∈ Rn.

Definition 3.2.2 (Spectral radius) Let λ1, . . . , λn ∈ C be the eigenvalues of A ∈ Rn×n. Then
the spectral radius of A is defined to be

ρ(A) := max
i=1,...,n

|λi|.

Remark 3.2.3 (Spectral norm) The matrix norm ‖ · ‖2 induced by the Euclidian norm on
Rn is called the spectral norm. For all A ∈ Rn×n it holds

‖A‖2 = ρ(AT A)1/2.

1In fact GRASS GIS should be an R programmer’s favourite GIS, for two reasons: First, R can be run within
GRASS, and there exists a contributed R package that allows addressing GRASS objects with the R language;
and second, GRASS is open source software, just as R. See Bivand (1999) and Bivand and Neteler (2000) for more
details on integrating GRASS and R.

ali@proforma.de
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If A is symmetric, then ‖A‖2 = ρ(A).

(Proof: See Werner (1992).)

Question 3.2.4 Consider a system of linear equations Ax = b, where A ∈ GL(n) is a regular
matrix and b ∈ Rn. In how far does an error in the data A and b affect the solution?

Definition 3.2.5 (Condition number) The condition number of a regular matrix A ∈ GL(n)
with respect to the matrix norm ‖ · ‖ is defined by

condA := ‖A‖‖A−1‖.

Remark 3.2.6 Suppose A ∈ GL(n). Then it holds condA ≥ condIn = 1. If A is symmetric,
the condition number of A with respect to the spectral norm ‖ · ‖ = ρ(·) is

cond2A = ρ(A)ρ(A−1) = |λmax|/|λmin|,

where λmax and λmin denote eigenvalues of A with greatest and smallest absolute value, respec-
tively.

Theorem 3.2.7 (Singular-value decomposition) For an arbitrary matrix A ∈ Rn×p with
n ≥ p and rank r, there exist matrices U ∈ Rn×p and V ∈ Rp×p with UT U = Ip and V T V = In

and real numbers σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0 such that

A = UDV T , (3.1)

where D = diag(σ1, . . . , σn). This representation is called the singular-value decomposition of A.

(Proof: See Werner (1992).)

Remark 3.2.8 (Singular values) In the situation of Theorem 3.2.7, σ2
1, . . . , σ

2
r are the (posi-

tive) eigenvalues of AT A (and of AAT , too). σ1, . . . , σr are called the singular values of A. If A
is symmetric and regular, then σ1, . . . , σn are the eigenvalues of A, and we have

cond2A = σ1/σn.

3.2.2 Generating Random Data

It is common to use random data with certain well-known properties in order to test statistical
techniques (see Chapter 4). These simulated datasets can be generated quickly on demand and
possess exactly the desired mean and covariance structure unlike real-world data gathered at high
cost. In this section, we present some background for creating random datasets corresponding
to a Gaussian process. We refer to Gentle (1998) and Cressie (1993) for further details.

We wish to generate numbers that can “practically” not be distinguished from realizations of
normal random variables Z1, . . . , Zn with mean m ∈ Rn and covariance matrix C ∈ Rn×n. These
numbers are called a simulation of Z1, . . . , Zn. (See Remark 3.2.15 and Gentle (1998) for more
precise quality criteria.)

Remark 3.2.9 Let S1, . . . , Sn be independent standard normal random variables, i. e. S =
(S1, . . . , Sn)T ≡ N(0, In). Then for arbitrary m ∈ Rn and A ∈ Rn×n, Z = m + AS is nor-
mally distributed with mean m and covariance matrix AAT . Therefore we wish to decompose a
covariance matrix C as C = AAT , simulate S, and derive a simulation of Z.

Definition and Remark 3.2.10 A symmetric matrix C ∈ Rn×n is positive definite if for all
x ∈ Rn \ {0}, xT Cx > 0. It is positive semidefinite, if for all x ∈ Rn, xT Cx ≥ 0.

A symmetric matrix is positive definite (positive semidefinite) if and only if all its eigenvalues
are positive (non-negative). The covariance matrix of a finite collection (Z1, . . . , Zn)T of random
variables is symmetric and positive semidefinite.
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Decompositions of Covariance Matrices

We recall the following results (Werner 1992):

Corollary 3.2.11 (Singular-value decomposition) The singular-value decomposition of an
arbitrary symmetric matrix C ∈ Rn×n of rank r is of the form

C = UDUT = (U
√

D)(U
√

D)T ,

where D = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0, U ∈ Rn×n is orthogonal and√
D = diag(

√
σ1, . . . ,

√
σn).

Theorem 3.2.12 (Cholesky decomposition) Let C ∈ Rn×n be symmetric and positive def-
inite. Then there exists a unique lower triangular matrix L ∈ Rn×n with positive diagonal
elements and C = LLT . This decomposition is called the Cholesky decomposition of C.

Remark 3.2.13 i) A standard algorithm for computing the Cholesky decomposition as pre-
sented by Werner (1992) needs ∼ 1

3n3 floating point operations. For the diagonal elements of L
and C, it holds lkk ≤

√
ckk, k = 1, . . . , n. This has a stabilizing effect on the algorithm (Werner

1992).

ii) When possible, the Cholesky decomposition should be preferred to the singular-value de-
composition of a positive definite matrix. However, it will cause an error if the matrix is not
“numerically positive definite”. In this case, the singular-value decomposition can be used.

Random Numbers

For the discussion of random numbers and their generation, we refer to Gentle (1998). Here we
just give a few remarks of general character and concerning generators available in R.

Remark 3.2.14 i) Random numbers are computed deterministically from a finite number k of
predecessors or, at the beginning of the sequence, from k starting values, called seed. These
numbers belong to the finite set of numbers that can be represented within a computer, so the
sequence will inevitably repeat as soon as the same k values appear for a second time. The
number of random numbers generated before the sequence starts to repeat, is called cycle length
or period of the sequence.

ii) Most currently used generators of uniformly distributed random numbers are based on modulo
operations with repsect to a huge prime number. Common periods are around 1018, for example.

Remark 3.2.15 (Quality criteria) i) A large period is desirable.

ii) There shall be no geometric regularities. (This is in particular a problem of linear congruential
generators, which produce subsequences (xi, . . . , xi+k−1) forming a lattice in Rk.)

iii) Random numbers should pass common statistical tests, among them goodness-of-fit tests of
(possibly transformed) random numbers, and autocorrelation tests of different order.

Remark 3.2.16 (Random numbers in R) R uses by default a multiply-with-carry algorithm
recommended by Marsaglia for generating uniform random numbers, and the Kinderman–Ramage
generator for normal random numbers. R also offers a variety of other generators for the uniform
and normal case; see the R help topics RNG and RNGkind for details and references.
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3.2.3 Approximating Semivariograms with Quasi-Monte Carlo Integration

When we fit a semivariogram model or do kriging, a great number of semivariogram evaluations
is needed (cf. equations (2.12), (2.15), (2.21)), which are generally computed by approximating
the integral in (2.3) (or (2.4)), if a model of the elliptical class is used (cf. Definition 2.2.19).
Quasi-Monte Carlo techniques, which use quasi-random nodes, possess good convergence rates
and are often preferred to numerical methods, especially in higher-dimensional integration.

A brief introduction to quasi-Monte Carlo integration is presented here following Niederreiter
(1992), and it is applied to the approximation of induced covariograms. For further details on
quasi-Monte Carlo Methods and the approximation of integrals in general, we refer to Niederreiter
(1992), Evans and Swartz (2000) and Press et al. (1992).

Quasi-Monte Carlo Integration

Let f : Id → R be an arbitrary Riemann-integrable function on the d-dimensional unit cube
Id = [0, 1]d, and consider the integration problem

I(f) :=
∫

Id

f(p) dp. (3.2)

(More general integration domains are considered in Remark 3.2.24.) We use the quasi-Monte
Carlo approximation

ÎK(f) :=
1
K

K∑
i=1

f(pi) ≈ I(f)

with p1, . . . , pK ∈ Id. We want a sequence of nodes (pi)i∈N ⊂ Id with

lim
K→∞

ÎK(f) → I(f).

A sufficient condition for this to hold is that the sequence2 (pi)i∈N is uniformly distributed in Id

in the sense of
lim

K→∞
ÎK(1J) = λd(J) for all subintervals J of Id.

This suggests that the nodes p1, . . . , pK should be “evenly distributed” over Id. The irregular-
ity of distribution or deviation from uniform distribution is measured using various notions of
discrepancy. Here we only introduce the star discrepancy, because it appears in the error bound
given later in Theorem 3.2.18.

Definition 3.2.17 The star discrepancy of the sequence of nodes p1, . . . , pK ∈ Id is

D∗
K(p1, . . . , pK) = sup

J∈I∗

∣∣∣∣∣ 1
K

K∑
i=1

1J(pi)− λd(J)

∣∣∣∣∣ ,
where I∗ denotes the collection of all subintervals of Id of the form

∏d
i=1[0, ui[.

The following error bound is due to Proinov (1988); we cite it from Niederreiter (1992).

Theorem 3.2.18 If f is continuous on Id, then for a finite sequence of nodes p1, . . . , pK ∈ Id,
we have

|ÎK(f)− I(f)| ≤ 4ω(f ;D∗
K(p1, . . . , pK)1/d),

2In a more general setting, sequences of finite sequences p(K) = (p
(K)
i )i=1,...,K can be considered, if the first K

elements of p(K+1) are not equal to p(K).
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where ω denotes the modulus of continuity of f ,

ω(f ; t) = sup
u,v∈Id

‖u−v‖∞≤t

|f(u)− f(v)|,

for t ≥ 0 and ‖u‖∞ = max1≤i≤d |ui|.

Remark 3.2.19 i) The more the integrand varies at small distance, the greater will be its
modulus of continuity and hence the approximation error.

ii) The greater the discrepancy of a sequence of nodes is, the greater will be the approximation
error. There exist error bounds that are linear in the star discrepancy (Niederreiter 1992). These
are “best possible” error bounds in certain sense, which motivates the search for low-discrepancy
sequences of quasi-random numbers.

Low-Discrepancy Sequences

Remark 3.2.20 Now we will take a look at the sequence of nodes used. In contrast to Monte
Carlo methods, which are based on (pseudo-) random numbers that aim to reach a maximum
degree of “randomness”, quasi-Monte Carlo techniques use more evenly spaced quasi-random
numbers that in fact have nothing to do with randomness but aim at minimizing discrepancy
(figure 3.2.

Definition 3.2.21 (Low-discrepancy sequence) A sequence (pn)n∈N in [0, 1]d is a low-dis-
crepancy sequence if for all N > 1,

D∗
K(p1, . . . , pK) ≤ c(d)

(log K)d

K
, (3.3)

where c(d) depends only on the dimension d.

Remark 3.2.22 The Koksma-Hlawka inequality, which gives an error bound that is linear in
the star discrepancy, shows that quasi-Monte Carlo integration with low-discrepancy sequences
of nodes has an error bound of the order of O((log N)dN−1). Monte Carlo integration, using
random nodes, has error bounds of the order of O(N−1/2) (Niederreiter 1992).

Definition 3.2.23 (Sobol sequence) We give a brief description of the generation of Sobol
sequences following Cheng and Druzdzel (2000). For details on this and other low-discrepancy
sequences and their implementation, we refer to Antonov and Saleev (1979), Niederreiter (1992),
Bratley and Fox (1988), Press et al. (1992) and Evans and Swartz (2000).

The Sobol sequence (Xn)n∈N, Xn = (x1
n, . . . xw

n )T in w dimensions consists of numbers between
zero and one that are generated as binary fractions of length w bits from a sequence (V1, . . . , Vw)
of special binary fractions Vi = (v1

i , . . . , v
w
i )T ∈ {0, 1}w of length w bits. The numbers Vi are

called direction numbers.

For the generation of direction numbers, we start with a primitive polynomial over the field with
elements {0, 1}. If the primitive polynomial of degree q in dimension j is

pj(x) = xq + a1x
q−1 + . . . + aq−1x + 1,

then the direction numbers in dimension j are generated using the q-term recurrence relation

vj
i = a1v

j
i−1 ⊕ a2v

j
i−2 ⊕ . . .⊕ aq−1v

j
i−q+1 ⊕ (vj

i−q/2q),
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Figure 3.2: 1024 random and quasi-random points in two dimensions (from Cheng and Druzdzel
(2000)).

where i > q. Here ⊕ denotes the bitwise XOR operation. The starting values vj
1 · 2w, . . . , vj

q · 2w

can be arbitrary odd integers smaller than 2, 22, . . ., and 2q, respectively. Then, writing n =∑w
i=0 bi2i, bi ∈ {0, 1}, the nth element of the Sobol sequence in dimension j is generated by

xj
n = b1v

j
1 ⊕ b2v

j
2 ⊕ . . .⊕ bwvj

w.

For each dimension, a different primitive polynomial should be used.

Antonov and Saleev (1979) proposed to use the bits of the Gray code of n to select direction
numbers. This version in the implementation of Press et al. (1992) will be used in this work.

Approximation of Covariograms and Semivariograms

Remark 3.2.24 We want to approximate the integral of a continuous function f̃ := f ◦T−1 on a
domain Ĩd := TId, where T : x 7→ a+Bx, a ∈ Rd, B ∈ GL(d), is an affine-linear transformation.
The approximation problem

ÎK(f̃) =
λd(TI)

K

K∑
i=1

f(T−1pi) ≈
∫

Ĩd

f(T−1p) dq = I(f̃)

on Ĩd, p1, . . . pK ∈ Ĩd, has the error bound

|ÎK(f̃)− I(f̃)| ≤ λ(Ĩ)d · 4ω(f ;D∗
K(p1 . . . , pK)1/d)

as a consequence of Theorem 3.2.18.

Corollary 3.2.25 (Approximation of covariograms) i) Consider a covariance function C
induced by a weight function w with bounded support. We want to approximate (non-zero
values of) C(s, t), s, t ∈ D, E = Rd, i. e. the integral of fs,t(p) = w(s, p)w(t, p) over a suitable
interval A ⊃ supp fs,t = suppw(s, ·) ∩ suppw(t, ·). If we define an overall modulus of continuity
of f to be

ω(f ; t) = sup
s,t∈D

sup
u,v∈A

‖u−v‖∞≤t

|fs,t(u)− fs,t(v)|, t ≥ 0

and write ĈK(s, t) = ÎK(fs,t), we get the error bound

|ĈK(s, t)− C(s, t)| ≤ λd(A) · 4ω(f ;D∗
K(p1, . . . , pK)1/d). (3.4)

Proof: This is a consequence of Theorem 3.2.18 and Remark 3.2.24. 2
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Example 3.2.26 (Moduli of continuity: the elliptical case) Let well
θ be an elliptical weight

function on D = E = R2 with parameters θ = (σ2, a, q, τ), τ ∈ T , corresponding to a kernel func-
tion wo

τ (see Definition 2.2.19). We give the moduli of continuity of fs,t(p) = well
θ (s, p)well

θ (t, p)
in some special cases. Let us assume σ2 = a = q = 1. Write ν(wθ) =

∫
R2 well

θ (s, p)2 dp, which is
independent of s when q = 1.

i) Simple weight function wind
(1,1,1): It holds

ωind
(1,1,1)(t) = 1/π,

because of the discontinuity of wind
θ at ‖p‖∞ = 1 and ν(wind

(1,1,1)) = π.

ii) Linear weight function wlin
θ : Suppose ‖p‖∞ = t, p ∈ R2. Then:

ωlin
(1,1,1)(t) = (1− f0,0(p)) = (1− (1− t)2)/ν(wlin

(1,1,1)) = (2t− t2)/ν(wlin
(1,1,1)).

iii) Piecewise linear weight function wpwl
(1,1,1,b):

ωpwl
(1,1,1,b)(t) ≤ min

(
1,

2t

1− b
− t2

(1− b)2

)
/ν(wpwl

(1,1,1,b)),

taking into account that, prior to normalization, wpwl
θ (R2) = [0, 1] and hence fs,t(R2) ⊂ [0, 1],

i. e. wpwl
θ and fs,t do not vary by more than 1, and that the greatest variation at distances ≤ (1−b)

can be deduced by generalizing the formula for the linear weight function in i) with a := 1− b.

iv) Now let wθ be an isotropic elliptical weight function that is continuously differentiable on
R2. Furthermore, suppose that wθ(p) = wθ(0, p) decreases monotonically as ‖p‖∞ grows. Then
it holds

ω(fθ; t) ≤ 2t sup
p∈R2

|wθ(hv)| sup
p∈R2

‖gradwθ(p)‖∞.

Proof (draft): Maximum variation of fθ;s,t is achieved when s = t, so, writing f = fθ;0,0 we have

sup
s,t∈R2

sup
u,v∈R2

‖u−v‖∞≤t

|fθ;s,t(u)− fθ;s,t(v)| = sup
u,v∈R2

‖u−v‖∞≤t

|f(u)− f(v)|.

Furthermore, due to the mean value theorem we get

|f(u)− f(v)| ≤ t sup
p∈R2

‖grad f(p)‖∞ for ‖u− v‖∞ ≤ t.

Now,
grad f(p) = 2wθ(p)gradwθ(p)

leads us to
t sup

p∈R2

‖grad f(p)‖∞ ≤ 2t sup
p∈R2

|wθ(p)| sup
p∈R2

‖gradwθ(p)‖∞.

2

Remark 3.2.27 When approximating covariograms of elliptical weight functions, the following
operations produce high cost, and the number of computations needed by different algorithms
should hence be compared:

i) Oracle calls: When using a covariogram with strong boundaries around A ⊂ D, then for
each node p we have to evaluate the term 1A(p). This may result in an oracle call, i. e. a
call to an “expensive” function, such as a SelectByPolygon request from R to ArcView.
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ii) Weight function evaluations: It should be our aim to avoid redundant evaluations that
yield zero anyway.

iii) Evaluations of 1Ell(s,φ,a,q) and transformations between polar and Euclidian coordinates:
These evaluations are almost as expensive as evaluations of relatively simple weight func-
tions, and they are in many cases avoidable.

We wish to know how the cost grows as the number of measurement points, N , and the number
of nodes, K, increase. We will consider infill asymptotics, where a fixed domain is subsequently
filled with measurement points, and increasing-domain asymptotics, where, roughly speaking, the
density of points is preserved while spreading new measurement points out over an increasing
area. Note that in both cases we will require the accuracy to remain unchanged, i. e. the number
of nodes will have to increase.

We will now present two algorithms that compute the quasi-Monte Carlo approximation of
covariograms induced by elliptical weight functions. Both algorithms support ordinary and strong
boundaries (see Definition 2.2.25).

The first algorithm generates nodes when needed, minimizing the number of weight function
evaluations by generating nodes in polar coordinates within one of the weight function supports.
The second algorithm uses a different strategy: Nodes are created a priori, so the number of
“oracle calls” will be minimized.

For simplicity, the first algorithm is only presented for the approximation of integrals on circles
instead of ellipses.

Algorithm 3.2.28 (Integration on dissections of circles)

Input: s1, s2 ∈ A ⊂ R2, a1, a2 > 0,
w : R2 ×R2 → R weight function with suppw(si, ·) ⊂ B2(si, ai/2), i = 1, 2,
K: number of nodes to create.

Output: Î ≈
∫
R2 w(s1, p)w(s2, p)1A(p) dp.

01 if ‖s2 − s1‖ ≥ (a1 + a2)/2 then return 0
02 Î := 0
03 generate quasi-random nodes p̃1, . . . , p̃K ∈ B2(s1, a1/2) (p̃i = (ri, ϕi))
04 in polar coordinates relative to s1

05 pi := p̃i transformed to euclidian coordinates (i = 1, . . . ,K)
06 for i := 1 to K do
07 if pi ∈ B2(s2, a2/2) then // check for the integrand’s support
08 if pi ∈ A then // oracle call
09 Î := Î + r · w̃(s1, p̃i)w(s2, pi)
10 end if
11 end if
12 end for
13 Î := Î · λ2(B2(s1, a1/2))/K
14 return Î

For a sequence s1, . . . , sN of measurement points, call the algorithm for each pair (si, sj) with
i < j and use the symmetry of the integral.

Remark 3.2.29 (Algorithm 3.2.28) i) If A = R2, the algorithm uses ordinary boundaries,
otherwise strong boundaries.

ii) The algorithm performs O(N2) oracle calls “pi ∈ A”, O(N2) weight function evaluations
and O(N2) “ellipse tests” and coordinate transformations both with infill and fixed-domain
asymptotics.
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iii) In line 9, the factor r in the integrand is due to integration in polar coordinates. It causes
difficulties when integrating on ellipses, because the radius then depends on ϕ, too. With respect
to normalization of the integral in order to get an elliptical covariogram, see Remark 3.2.33 below.

iv) An important improvement can be made in Algorithm 3.2.28 by using adaptive sampling:
After a first integration step with few nodes, find a sector of B2(s1, a1) that fully contains the
dissection of both circles, and then integrate over this sector only.

v) Instead of using a fixed number of nodes, go on creating them until the desired error bound
is reached (“sampling until”).

vi) Integrate over the smaller circle, swapping s1 and s2 (and a1, a2) in line 03. The dissection
of both circles forms a greater part of the smaller circle than of the greater one, so a higher
percentage of nodes will fall into the dissection when generating them within the smaller circle.

Remark 3.2.30 (Reduction of oracle calls) We wish to reduce the number of oracle calls
necessary for quasi-Monte Carlo integration. More precisely, from a computational point of
view, we can distinguish between two concepts of oracle call, because instead of 1A(p), we will
compute 1A({p1, . . . , pK}). So on one side, we have to execute calls to the oracle (routine,
software,. . . ), for example a GIS or R function, and on the other, evaluate the oracle function
1A(pi) (in a mathematical sense) for each i = 1, . . . ,K. Now we can describe the aim expressed
in the beginning of this Remark in the following way: We wish to reduce both the number of calls
to the oracle and the number of evaluations of the oracle function. Now we present a strategy
that provides an important reduction of the number of calls to the oracle.

Definition 3.2.31 (A priori nodes) Consider integration problems (I(f ; i))i=1,...,N for some
function f . If we use the same nodes p1, . . . , pK for each quasi-Monte Carlo approximation
ÎK(f ; i), i = 1, . . . , N , then we call these nodes a priori nodes.

Algorithm 3.2.32 (Integration on dissections of ellipses using a priori nodes)

Input: (i) (si, gi, ai, qi)T
i=1,...,N ⊂ A× [0, π[× ]0, R]× ]0, 1] (A ⊂ R2)

(ii) F , pairwise disjoint sets F1, . . . , FL with
⋃

i Fi = F ⊃ B(s1, . . . , sN ;R)
and R := maxi ai/2

(iii) quasi-random nodes p1, . . . , pK ∈ B(s1, . . . , sN ;R) and 0 = K0 ≤ . . . ≤ KL = K
such that pKi−1+1, . . . , pKi ∈ Fi for i = 1, . . . , L

(iv) λ2(F1), . . . , λ2(FL)
(v) a weight function w on R2 with supp w(si, ·) ⊂ Ell(si, gi, ai/2, qi), i = 1, . . . , N

Output: (Îij)i,j=1,...,N ,
Î ≈

∫
R2w(si, p)w(sj , p)1A(p) dp

01 Î := (0)i,j=1,...,N

02 B := (bij)i=1,...,Nj=1,...,K , bij = 1Ell(si,gi,ai/2,qi)(pj)
03 χ := (1A(pi))i=1,...,K // oracle call
04 for 1 ≤ i ≤ j ≤ N do
05 if ‖sj − si‖ < (ai + aj)/2 then
06 for each λ ∈ Λ := {l : Fl ∩ Ell(si, gi, ai/2, qi) ∩ Ell(sj , gj , aj/2, qj) 6= ∅} do
07 for k := Kλ−1 + 1 to Kλ do
08 if χk = 1 and bik = bjk = 1 then
09 Îij := Îij + w(si, pk)w(sj , pk)
10 end if
11 end for
12 end for
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infill asymptotics increasing-domain as.
Alg. 3.2.28 Alg. 3.2.32 Alg. 3.2.28 Alg. 3.2.32

oracle calls N2 1 N2 N

function evaluations N2 N2 N2 N2

test if node is contained
within ellipse, or trans-
formation of polar coordi-
nates

N2 N N2 N2

Table 3.1: Comparison of the asymptotic cost of Algorithms 3.2.28 and 3.2.32.

13 end if
14 Îij := Îij ·

∑
l∈Λ lλ2(Fl)/

∑
l∈Λ(Kl −Kl−1)

15 Îji := Îij

16 end if
17 return (Îij)i,j

Remark 3.2.33 (Algorithm 3.2.32) We discuss implementational issues and possible improve-
ments.

i) In practice, a regular decomposition of F is chosen, so that the set Λ in line 06 is rather easy
to determine. For example, let F and F1, . . . , FL be rectangles with constant widths λ2

1(F1) =
. . . = λ2

1(FL) ≥ R and heights λ2
2(F1) = . . . = λ2

2(FL) ≥ R, then Λ has ≤ 9 elements.

ii) Similarly not all elements of B have to be computed explicitly: For all l, i with Fl∩Ell(si; ·) = ∅,
put bi,1 = . . . = bi,K = 0.

iii) A normalization of the integral can be introduced into the algorithm in one of the fol-
lowing ways: (a) If I(s) =

∫
R2w(s, p)21A(p) dp can be determined analytically, divide Îi,j by

(I(si)I(sj))1/2 in line 14. (b) In the general case, add a few lines in the innermost “for” loop
in order to approximate I(sν) by Î(sν), ν = i, j, on Ell(sν ; ·) (not just on the dissection of two
ellipses!) and divide Îij by (Î(si)Î(sj))1/2 in line 14.

iv) When approximating a semivariogram γ, γ(si, si) = 0 is known, so we do not need to per-
form the corresponding integral approximation. If furthermore the normalization can be done
analytically (cf. iii) (a) above), it is sufficient to generate nodes in B∗(s1, . . . , sN ;R), i. e. on the
dissection of circles around s1, . . . , sN , not in their union (input (iii) to the algorithm).

Remark 3.2.34 (Cost of Algorithm 3.2.32) With strong boundaries (A ( D), the algo-
rithm for quasi-Monte Carlo integration using a priori nodes needs O(N) evaluations of the
oracle function 1A when considering increasing-domain asymptotics, and only O(1) evaluations
for infill asymptotics, because in this case, no new nodes have to be created. Moreover, with
increasing-domain asymptotics, O(N2) times has to be checked if a node is within an ellipse
(line 02), but with infill asymptotics only O(N) times, because then the number of nodes is
constant. Finally, O(N2) function evaluations are needed with both asymptotics.

See Table 3.1 for a comparison with Algorithm 3.2.28, and remember that in this setting, oracle
calls are only needed when using strong boundaries.

Algorithm 3.2.35 (Generation of a priori nodes)

Input: s1, . . . , sN ∈ R2

K ∈ N, the number of nodes to generate
R > 0, the maximum radius of circles to be considered
a rectangle F , pairwise disjoint F1, . . . , FL with

⋃
i Fi = F ⊃ B(s1, . . . , sN ;R)
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Output: K nodes in B(s1, . . . , sK ;R) from a two-dimensional Sobol sequence
c, the total number of nodes that had to be generated in F
K1, . . . ,KL, the number of nodes in F1, . . . , FL

01 i := 0, c := 0
02 while i < K do
03 q := next element of a quasi-random sequence in F
04 if q ∈ B2(s1, . . . , sk;R) then
05 pi := q
06 i := i + 1
07 end if
08 c := c + 1
09 end while
10 sort (pj)j=1,...,K so that pKi−1+1, . . . , pKi ∈ Fi, i = 1, . . . , L, 0 = K0 ≤ K1 ≤ . . . ≤ KL

11 return (p1, . . . , pK), c, (K1, . . . ,KL)

Remark 3.2.36 (Algorithm 3.2.35) i) From the output of Algorithm 3.2.35, N/c is the quasi-
Monte Carlo approximation of λ2(B(s1, . . . , sN ;R)).

ii) The algorithm can be modified in order to generate a higher number of nodes in “more
important” areas Fi. Furthermore we might generate quasi-random points in Fi, not globally, in
F . However systematic errors near the boundaries between neighbouring Fis have to be avoided.

iii) When approximating semivariograms with ordinary boundaries with a normalization term
that is known analytically, we can replace B(s1, . . . , sN ;R) by B∗(s1, . . . , sN ;R), generating
nodes only on pairwise dissections of circles.

3.2.4 Kriging with Approximated Semivariograms

In Section 2.4 we already studied the variability of kriging predictors in terms of the kriging
variance (2.13). This inherent randomness of predictions is due to the fact that they are based
on data that is considered random itself. However, we also have to be aware of prediction errors
caused by errors in approximated semivariogram values used for kriging.

We apply a general result on disturbed systems of linear equations to the kriging equations (2.12).

Theorem 3.2.37 Let A ∈ GL(n) and ∆A ∈ Rn× be matrices with ‖A−1‖‖∆A‖ < 1. Then
A+∆A is regular. For given b ∈ Rn \{0} and ∆b ∈ Rn, let x ∈ Rn and ∆x ∈ Rn be determined
by the systems of linear equations

Ax = b and (A + ∆A)(x + ∆x) = b + ∆b.

Then it holds
‖∆x‖
‖x‖

≤ condA

1− condA‖∆A‖
‖A‖

[
‖∆A‖
‖A‖

+
‖∆b‖
‖∆b‖

]
.

(Proof: See Werner (1992).)

Remark 3.2.38 Theorem 3.2.37 gives an upper bound for the error in the solution of a disturbed
system of linear equations. The greater the condition number of A is, the greater will be the
error bound. Therefore the matrix A is said to be badly conditioned if condA is big.

An orthogonal matrix U ∈ Rn×n is well-conditioned with respect to the spectral norm:

cond2U = ‖U‖2‖UT ‖2 = ρ(UT U)1/2ρ(UUT )1/2 = ρ(In) = 1
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(see Remark 3.2.3). Furthermore,

cond2UA = cond2AU = cond2A

for all A ∈ GL(n).

Remark 3.2.39 (Kriging with approximated semivariograms) For simplicity, we con-
sider the system of linear equations Γθ = γ instead of the kriging equations (2.12). We have
approximations Γ, γ of semivariogram evaluations and we write Γ+∆Γ and γ +∆γ for the exact
values. Suppose ‖Γ‖∞ = ‖γ‖∞ ≤ nσ2, where σ2 is the sill of the semivariogram. We do not
know the errors ∆Γ and ∆γ, but we might have some absolute error bound |∆γi[j]| ≤ ε = ε̃σ2,
i, j = 1, . . . , n. Then we have

‖∆Γ‖∞ ≤ nε, ‖∆γ‖∞ ≤ nε.

Applying Theorem 3.2.37, we get

‖∆θ‖∞
‖θ‖∞

≤ 2ε̃ cond∞Γ
1− ε̃ cond∞Γ

,

provided that ‖Γ‖2
∞ < 1/ε̃ and cond∞Γ < 1/ε̃.

This result could not yet be applied to kriging with approximated elliptical semivariograms,
because the actual error bounds (or more precisely, the constant c(d) in (3.3)) of quasi-Monte
Carlo approximation with Sobol nodes could not be found in the available literature. Using the
(too loose) Monte Carlo error bounds that are currently implemented (see Section 3.3.6), the
condition cond∞Γ < 1/ε̃ could generally not be satisfied.

Theorem 3.2.40 For an arbitrary matrix A ∈ Rn×p, n ≥ p, there exist an orthogonal matrix
Q ∈ Rn×n and a matrix

R =
(

R1

0

)
∈ Rn×p,

where R1 ∈ Rp×p is an upper triangular matrix, such that

A = QR.

This representation is called a QR decomposition of A.

(Proof: See Werner (1992).)

Remark 3.2.41 Typical methods for computing the QR decomposition of a matrix are the
Householder, Givens and fast Givens method. Each needs O(n3) floating point operations (flops)
for quadratic matrices, the Householder method requiring about half the number of flops needed
by the Givens method. (Werner 1992)

Remark 3.2.42 (Backsolving) For a regular matrix A ∈ Rn×n, suppose that a QR decompo-
sition A = QR is given. We wish to solve the system of linear equations Ax = b ∈ Rn. This is
equivalent to

Rx = QT b =: c, (3.5)

which can be solved by backsolving,

xi =
1
rii

ci −
n∑

j=i+1

rijxj

 , i = n, n− 1, . . . , 1,

since R is an upper triangular matrix. Note that

cond2A = cond2R,

i. e. the modified problem (3.5) has the same condition number (with respect to the spectral
norm) as the initial problem Ax = b (see Remark 3.2.38).
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Remark 3.2.43 (Kriging cost) Consider the situation of Section 2.4. We want to predict
realizations of Zp1 , . . . , Zpk

based on observations Zt1 , . . . , Ztn . Using kriging predictors Z∗
pi

=
(Zt1 , . . . , Ztn)T θ(i) for Zpi requires solving equation (2.12), which we write

Γ̃θ(i) = γ̃(i), i = 1, . . . , k.

Note that Γ̃ does not depend on i, so we can determine its QR decomposition or its inverse in
advance at a cost of O(n3) flops. Both backsolving and multiplying γ̃ with a matrix require
O(n2) flops “only”.

3.2.5 Minimizing the Mean Squared Error

Remark 3.2.44 We give a result that is useful for implementation: When evaluating the re-
stricted mean squared error function of the trend model, the matrix

P = In − F (F T F )−1F T

has to be calculated, where F ∈ Rn×p is assumed to be of full rank. Let

F = UDV T ,

be the singular-value decomposition of F with U ∈ Rn×p, D,V ∈ Rp×p, UT U = Ip, V T V = In

and a diagonal matrix D (see Theorem 3.2.7). Then, writing DD = D2 and D−1D−1 = D−2 we
get

F T F = V DT UT UDV T = V D2V T ,

(F T F )−1 = V D−2V T ,

F (F T F )−1F T = UDV T V D−2V T V DUT = UDD−1D−1DUT = UUT (3.6)

and hence
P = In − UUT .

Remark 3.2.45 Within the scope of the present work, it was not possible to implement and
compare different optimization techniques for minimizing [restricted] mean squared errors. Only
a few remarks are given here.

Remark 3.2.46 (Minimization in R) In R, minimization can be carried out using a Newton-
type algorithm available through the function nlm. (For details, see the references given in the
R help files.) In this work, nlm is used for minimizing [restricted] mean squared error functions.
nlm computes numerical derivatives of the target function and consequently needs a high number
of (expensive) function evaluations. Derivative-free techniques such as evolutionary algorithms
may therefore run much faster.

There also exist specialized numerical methods for nonlinear least-squares problems (see e. g.
Nocedal and Wright (1999)). These make use of the special structure of derivatives of mean
squared error functions.

Furthermore, linear parameters —in general only sill parameters— can be estimated more effi-
ciently using linear optimization methods, and note also that a (preliminar) a priori estimation
of a linear parameter can be made using just one approximation of the semivariogram matrix.

Observation 3.2.47 At this place some of the experiences made with fitting semivariograms of
the elliptical class during this work should be anticipated. All observations were made using the
implementation described later on in Section 3.3.
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Figure 3.3: A mean squared error function with local minima: contour plot and a cross-section
at the global minimum.
The mean squared error function corresponds to the simple elliptical semivariogram (with q = 1)
and a simulated dataset of 150 observations on [0, 1]2 generated using a spherical semivariogram.
For semivariogram approximations, a total of 10 000 a priori nodes was created globally, which
corresponds to high precision.

Simple elliptical semivariograms: Mean squared error functions with and without trend (2.21,2.15)
corresponding to the simple elliptical semivariogram (Example 2.2.9, Remark 2.2.21) both pos-
sess local minima (see figure 3.3). This must be due to the singularity of the semivariogram’s
first derivative at distances equal to the range. The problem does not vanish when using very
high numbers of nodes for quasi-Monte Carlo integration. The piecewise linear elliptical kernel
function (Remark 2.2.21) with parameter b close to 1 is practically identical to the simple one,
but it is continuous. The minimization of mean squared error performed quite well with the
semivariogram corresponding to piecewise elliptical kernel functions with b = 0.95, for example.

Integration accuracy: When minimizing mean squared error functions of semivariogram models
using quasi-Monte Carlo integration, a relatively small number of nodes and consequently a small
accuracy have no effect on the parameter estimates. A “small” number of nodes may be a few
dozen within a circle with radius equal to half the semivariogram’s estimated range, and hence
just a handful of nodes in some of the dissections of circles or ellipses.

Degrees of smoothness: The degree of smoothness of the Bezier semivariogram (cf. Remark 2.2.21)
cannot be fitted in a straightforward way. The estimated smoothness parameter ν (≥ 1) is always
too small even when the empirical semivariogram reflects the smoothness. Weighted least squares
may be a solution (apart from estimating ν by eye).

3.3 Implementation of Geostatistical Methods

While the previous section presented a mathematical framework for an implementation of geo-
statistical methods and discussed different algorithms, now the actual implementation realized
within the data analysis language R 1.2.2 will be described. Although a broad range of ob-
ject classes and methods was created, of course not all possible alternatives could be realized,
and especially exploratory data analysis and visualization techniques had to step behind in or-
der to put a stronger emphasis on itelligent handling of generically stationary semivariogram
models and a flexible quasi-Monte Carlo integration algorithm. (In the following sections, some
recommendations for further development of the code are made.)
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Because of our emphasis on generically stationary processes, the generated R and C code will be
called MoGeS, which stands for “Modeling Generic Stationarity”.

3.3.1 An Overview

The current implementation deals with the following geostatistical tasks:

Exploratory Data Analysis: Perform a series of operations on and visualization of the data
or parts of it in order to recognize spatial and non-spatial regularities, trend, anisotropies
etc.

Semivariogram modeling: Select from a variety of stationary and instationary models, deter-
mine covariables, assign fixed values to parameters, and add semivariograms. Furthermore,
visualize semivariograms, and of course, compute them.

Semivariogram fitting: Estimate semivariogram parameters by minimizing the [restricted]
mean squared error function.

Kriging: Compute universal and ordinary kriging predictors and variances.

Interaction with a GIS: Read and write geostatistical datasets and meta-data in an inter-
changeable file format.

Simulation of datasets: Create random data to a given semivariogram and trend surface.

The specific tasks result in a series of routines, most of them being represented as methods
of object classes. These are entities formed by functions and data, which model the involved
mathematical objects and data structures:

Semivariogram models are represented as objects of class sv, which is an abstract parent of
svfn, svc and csv representing different degrees of “specification” and “aggregation” (see
Section 3.3.3). Semivariogram models “know” which parameters they need, if they are
stationary etc., and of course they can evaluate “themselves”.

Parameters determine semivariograms. They are modeled as an independent object class param
in order to allow meta-data such as semantics or the range of valid parameter values to be
handled consistently together with the parameter vector itself.

Geostatistical data is of course needed for any geostatistical analysis; it consists of locations,
measurements and covariables stored in a svm.data object.

Nodes are generated a priori for quasi-Monte Carlo integration; they are stored in a smp.data
object.

Fitted semivariogram models are represented by a svm object, which contains information
on parameter estimates and other results of mean squared error minimization trials.

See Table 3.2 for a complete list of objects and their methods created for this work.

In the following subsections, a rather “task-oriented” than object-oriented description of the
implementation is provided.
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Object class Methods
svm.data as.svm.data as.svm.data.svm.data

is.assoc.svm.data is.svm.data
mask.svm.data new.id.svm.data
random.dataset.svm.data read.svm.data
unify.svm.data within.ellipse.svm.data
write.svm.data

sv is.sv plot.sv
random.dataset.sv

svfn as.csv.svfn as.svfn
as.svfn.svfn checkparam.svfn
compute.svfn correctparam.svfn
get.param.prop.svfn getrange.svfn
is.isotropic.svfn is.stationary.svfn
is.svfn penalty.svfn
print.svfn set.param.prop.svfn

svc as.csv.svc checkparam.svc
compute.svc correctparam.svc
get.param.prop.svc getrange.svc
is.svc penalty.svc
print.svc set.param.prop.svc

csv as.csv as.csv.csv
checkparam.csv compute.csv
getrange.csv is.csv
penalty.csv print.csv
unify.csv

param as.character.param as.param
as.param.param as.vector.param
checkparam.param correctparam.param
fixparam.param getrange.param
is.param mask.param
penalty.param print.param
unify.param

smp.data is.smp.data is.summary.smp.data
plot.smp.data print.smp.data
summary.smp.data within.ellipse.smp.data

svm is.svm predict.svm
print.svm summary.svm
svm

summary.svm is.summary.svm print.summary.svm

Table 3.2: Object classes and their methods, as returned by methods.
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Generic function Methods
as.param as.param.matrix as.param.param

as.param.vector
as.svm.data as.svm.data.list as.svm.data.svm.data
compute compute.csv compute.svc

compute.svfn
random.dataset random.dataset.default random.dataset.matrix

random.dataset.sv random.dataset.svm.data
svm svm.kriging svm.mse
checkparam checkparam.csv checkparam.param

checkparam.svc checkparam.svfn
fixparam fixparam.param fixparam.vector
unify unify.csv unify.list

unify.matrix unify.param
unify.svm.data unify.vector

mask mask.param mask.svm.data
mask.vector

getrange getrange.csv getrange.param
getrange.svc getrange.svfn
getrange.vector

penalty penalty.csv penalty.param
penalty.svc penalty.svfn

within.ellipse within.ellipse.matrix within.ellipse.smp.data
within.ellipse.svm.data

Table 3.3: Generic functions and their methods, as returned by methods.

calc.mse.data eda.boxplot
eda.boxplot.stats eda.filter.pairs
eda.pairs eda.pairs2
eda.plot.aoi eda.plot.positive.correlations
eda.plot.positive.correlations2 eda.plot.semivariogram
eda.semivariogram.cloud generate.grid
generate.random.points needs.smp.data
setnames svm.kriging
svm.mse

Table 3.4: Further (non-generic) functions (incomplete list).

generate QMC sampling points exp QMC int ellipses exp
QMC GetSMPRectangles exp within ellipse exp
within ellipse smp exp sobseq init exp
sobseq exp sobseq2d exp

Table 3.5: C routines used for quasi-Monte Carlo approximation and Sobol sequence generation
(only exported functions are listed).
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3.3.2 Handling Geostatistical Data

In our context, geostatistical data consists of

• locations s1, . . . , sN of measurement or prediction sites,

• measurements z1, . . . , zN or predicted values (if available),

• covariables (g(si)T )i=1,...,N of the semivariogram model (if required),

and, in the case of a model with trend,

• covariables (f(si)T )i=1,...,N for the linear trend (2.17).

In MoGeS, this data is modeled as an object of class svm.data, which is basically a list with
components named "xy", "z", "g" and "f", where "xy" is the only one that is required. A
svm.data object can be created from a list object using a as.svm.data method, and it can be
read from a text file (exported from a GIS) by read.svm.data.

The components are matrices of N rows, and the columns of "g" must be named so that they
can be identified by a semivariogram object (see below, Section 3.3.3). The following code
creates a simple svm.data object with uniformly distributed points on ]0, 1[2 and a "g" covariable
describing a (global) geometric anisotropy:

> N <- 100
> d <- as.svm.data( list(xy=cbind(runif(N),runif(N)),
+ indicator=rep(1,N), orientation=rep(pi/4,N)) )

If we want to simulate measurements corresponding to an elliptical semivariogram with sill 1,
range 0.3 and axis ratio 0.7, we could for example enter:

> d <- as.svm.data( list(indicator=rep(1,N), orientation=rep(pi/4,N)) )
> d <- random.dataset( d, svfn.elliptical.pwlinear,
+ param=param(c(1,0.4,0.7)), create.xy="unif", n=N, smp=5000 )

(The param object and function will be described later on; smp=5000 specifies that 5000 a priori
nodes shall be used for semivariogram approximation.)

Sometimes we want to merge together geostatistical datasets or extract a subsample. The latter
is done by svm.data’s mask method,

mask.svm.data(d, m)

where m is a logical or numeric vector specifying which data rows to return. For example,

> d.poly1 <- mask(d, d$g[,"ind.poly1"]==1)

assigns to d.poly1 all measurements and corresponding data that are within a region with
indicator covariable stored in the "ind.poly1" column of the covariable matrix d$g. Merging
is done by a unify method (see Appendix A for details; similar mask and unify methods were
implemented for other object classes).
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Function name Description Parameters Covar.
svfn.elliptical (abstract) elliptical model σ2, a, q (. . . ) 1A, φ
---.bezier elliptical with Bezier kernel σ2, a, q, ν 1A, φ
---.linear linear elliptical σ2, a, q 1A, φ
---.pwlinear piecewise linear elliptical σ2, a, q, b 1A, φ

---.geometrical
abstract elliptical, with geometric
anisotropy (φ constant) σ2, a, q (. . . ) 1A

---.vargeometrical
abstract elliptical, with geometric
anisotropy (φ as parameter) σ2, a, q, φ (. . . ) 1A

svfn.empirical
(global) empirical semivariogram
with 10 steps

σ2
1, . . . , σ

2
10 –

svfn.nugget nugget effect σ2 1A

svfn.nugget.global global nugget effect σ2 –
svfn.spherical spherical semivariogram σ2, a –

Table 3.6: Implemented semivariogram models. Parameter semantics: σ2 = sill, a = range, q =
axis ratio, b = break point, ν = exponent of Bezier kernel function, φ = direction of anisotropy.
Covariable semantics: 1A = characteristic function, φ = direction of local anisotropy. “Abstract”
means that the kernel function of the semivariogram has to be determined by an argument to
svfn.elliptical.

3.3.3 Semivariogram Models

A generically stationary semivariogram model is a function depending on site locations, param-
eters and an influence function (covariables), and in the case of a the class of elliptical semivar-
iograms, we need further arguments in order to choose between several kernel functions. Fur-
thermore, when approximating a semivariogram function, we will need arguments that influence
numerical integration. In MoGeS, the class of elliptical semivariogram models is implemented as
a function

svfn.elliptical(d, ref, param, smp, fun, fun.params, global,
strong.boundaries, extra.info, cov, arglist, ...)

In this list of arguments, d is a svm.data object that contains at least measurement locations
d$xy = (s1, . . . , sN )T and the covariable matrix d$g = (g(si)T )i=1,...,N , and param must be of
class param. A semivariogram function expects its parameters and covariables to be identified
by certain keywords, in the above case "range", "sill" and "q" as names of the parameter
elements, and "indicator" and "orientation" as column names for the covariable matrix.
Moreover, the fun and fun.params arguments specify the kernel function and the corresponding
parameters to be used (see Remark 2.2.21).

svfn.elliptical calls the quasi-Monte Carlo integration routine QMC.int.ellipses for ap-
proximating the induced covariogram matrix given by

C(si, sj) =
∫

E
w(si, p)w(sj , p) dp

and then determines the semivariogram matrix using the relation

γ(s, t) = σ2 − C(s, t),

where σ2 = param["sill"]. Note that svfn.elliptical takes a cov argument, we can use it
to get a covariogram matrix.

svfn.elliptical supports ordinary and strong boundaries (see Definition 2.2.25).
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Further semivariogram models are implemented, for example the spherical one or a nugget effect,
as well as some models that are derived from the (abstract) elliptical semivariogram model
svfn.elliptical (see Table 3.6). It is rather easy to implement additional semivariogram
models using the existing functions as templates.

In MoGeS, R functions that implement semivariogram models are converted to objects of class
svfn, which in addition to the function code itself contain information on the set Θ of valid
parameters, and on the stationarity of a model, for example. The summarized output produced
by svfn’s print method gives an overview:

> svfn.elliptical.pwlinear
[...]
Properties: instationary, anisotropic; needs a priori nodes

Parameters:
names semantics minimum maximum

[1,] sill sill 0 Inf
[2,] range range 0 Inf
[3,] q q 0 1
[4,] break break 0 1

g-components needed:
[1] "indicator" "orientation"

These attributes that are assigned to a semivariogram model make its handling much safer.

In geostatistics we sometimes want to add different semivariogram models that for example belong
to subprocesses (see Section 2.2.4). These composed semivariogram models are represented
as objects of class csv and created by the function csv. These objects are basically lists of
“semivariogram component” objects of class svc, which themselves are derived from svfn objects
using the function svc. svc objects are not just copies of svfn objects; they have a higher
degree of “specification” in the sense that fixed values may be assigned to single parameters.
Furthermore, and this is also an important feature, parameter names may be changed using the
param.alias argument of svc. This is sometimes necessary because two svfn objects that are
added may expect parameters of the same alias, say "sill", and in most cases we want them to
be independent of each other. If, in contrast, they should be identical, we just have to assign the
same name to both. This also applies to covariables and the svc’s g.alias argument. (Later
we will see some sample code in which aliasing takes place.)

However, sometimes we do not need a complex semivariogram model but just want to fit a very
simple one. In this case we just use a svfn object without constructing a csv object. This
is possible because these three classes all belong to the more abstract class sv and hence have
essentially the same functionality and are treated indifferently by most functions.

Semivariogram objects can be computed (compute), plotted (plot.sv) and used for simulating
data (random.dataset.sv).

A special object class param was implemented for handling parameters. A param object is a
numeric vector with named elements and a "semantics" attribute that specifies the “meaning”
of each parameter. Names can be arbitrary because they are unaliased before being passed to a
semivariogram object. Semantics may take values such as

"sill" – semivariogram sill
"range" – semivariogram range
"q" – ellipse’s axis ratio (for elliptical semivariograms)
"break" – breaking point (piecewise linear ell. sv.)
"degree" – exponent (Bezier elliptical semivariogram)
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or any other, if a specific semivariogram model (that may be supplied by the user) expects it.
The use of parameter semantics also makes it possible to determine the range of a semivariogram.
An example:

> my.param <- param( c(1,0.3,0.4), sem=c("sill","range","range"),
+ nm=c("MySill","MyRange","AnotherRange") )
> my.fix.param <- param(0.5,"range")
> getrange(my.param)
[1] 0.4
> my.model <- csv( list(ASpherical=svc(svfn.spherical,
+ fix.param=my.fix.param),
+ MySpherical=svc(svfn.spherical,
+ param.alias=setnames(c("MySill","MyRange"),c("sill","range"))) ) )
> getrange(my.model, param=my.param)
[1] 0.5

Furthermore, parameter semantics can be used for checking for validity of supplied values (e. g.,
any "sill" must be non-negative) and for avoiding that parameters of different semantics are
identified. Finally, parameter objects can be unifyed and masked.

The notions of semantics and aliasing are also used by the GIS interface (see Section 3.4).

3.3.4 Fitting Semivariogram Models

Semivariogram parameter estimation is implemented using the mean squared error function (2.15)
and its relative in the presence of trend, the restricted mean squared error (2.21), as target
functions, and the nonlinear Newton-type minimizer nlm included in the R base package. nlm
uses numerical derivatives (unless analytical derivatives are supplied) and allows to set several
options such as step and gradient tolerances. (See nlm in the R documentation for more details
and Section 3.2.5 for a discussion.)

In MoGeS, semivariogram fitting is performed by the function svm:

svm(d, sv, param, fix.param, trend, smp, print.level, iterlim,
steptol, mse.estimate, trials, fun, ...)

Required arguments are a svm.data object (d), a semivariogram model object (sv), and of course
a starting parameter value (param). This may be either a param object or a matrix (with named
columns and a "semantics" attribute), the latter having parameter vectors in each row, which
will be used for performing a series of minimization trials.

Some arguments are passed to nlm in order to control the optimizer, and smp and ... are
additional arguments to sv’s compute method.

svm returns a list of class svm containing the mean squared error minima obtained in each
optimization ("mses" component) and the smallest minimum encountered ("mse" component),
as well as the corresponding parameter estimates ("est.params" component for all, "est.param"
for the best). In addition, the returned svm object stores starting parameter values, the sv object
used and some other information.

A human-readable output of fitting results is generated by svm’s summary method (for an example
see p. 62).

The target function passed to the optimizer is svm.mse. It computes the “classical” or restricted
mean squared error (equations (2.15), (2.21)), depending on its trend argument. In the latter
case, svm.mse makes use of the singular-value decomposition of the matrix F = d$f and applies
(3.6).



CHAPTER 3. GEOSTATISTICS AND GIS 52

Note that the projection matrix P used for computing restricted mean squared errors does not
depend on the semivariogram parameters; the same applies to zzT and, in the “classical” case,
((zi − zj)2)i,j . These matrices are determined in advance by calc.mse.data and passed to
svm.mse in each nlm iteration.

svm.mse checks for validity of the parameters. Validity regions are in general given by the svfn
object (and inherited by derived semivariogram models), but the user may define additional
restrictions when creating a svc object. Outside the validity region Θ, the mean squared error is
multiplied with a factor > 1 that linearly increases with distance from Θ (for details, see penalty
in Appendix A and the source code). However, the current implementation only supports closed
intervals (including infinite ones).

The fitting method described above showed an acceptable performance, but speed should be
improved. Using an elliptical semivariogram model with three free parameters (sill, range, axis
ratio), 200 simulated measurements and 3 000 a priori nodes for integration, it often takes some 10
to 30 minimization steps and one to five minutes of time to estimate parameters. See Section 3.2.5
for a few remarks on improving this performance and some observations.

3.3.5 Semivariogram Approximation

The approximation of semivariograms (and covariograms) of the elliptical class was implemented
in C and made accessible from R by an interface function QMC.int.ellipses. The C routine
QMC int ellipses exp,

extern void __declspec(dllexport) QMC_int_ellipses_exp
(double xy1[], double g1[], double a1[], double q1[], double *lpdN1,
double xy2[], double g2[], double a2[], double q2[], double *lpdN2,
double *lpdIsSymmetric, double *lpdCalcDiagonal,
double *lpdGetExtraInfo, double *lpdForceIntUnion,
double *lpdStrongBoundaries, char **lplpszFunction,
double *lpdFunctionParameters, char **lplpszNormBy,
double *smp_xy, double *smp_N, double *smp_N_total,
double smp_indicator[],
double *smp_frame,
double *smp_rectnum, double *smp_rectsize, double *smp_nrect,
double *smp_rectindexfrom, double *smp_rectindexto,
double *smp_area,
double integral[], double int_lo[], double int_hi[],
double area[], double N_inside[],
double *err)

is an implementation of Algorithm 3.2.32 using a priori nodes, including the modifications sug-
gested in Remark 3.2.33 i) and iii). Some of the arguments are assigned obvious default values
by QMC.int.ellipses (e. g. *lpdCalcDiagonal=0, we know that γ(s, s) = 0), see Section 3.2.3
for a discussion and Appendix A.3 for details of the functions’ arguments.

The C routine QMC int ellipses exp is capable of processing ellipses with different radii and
axis ratios, a feature that is not needed by svfn.elliptical but can be used for implementing
the second semivariogram presented in the soil loss example (Example 2.2.23). For this purpose,
it is also necessary to write a suitable weight function, which can easily be made by adapting
the C function

double qmc_user(double Px, double Py, double Xx, double Xy,
double g, double a, double q, double *lpParams)
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Figure 3.4: 4000 Sobol a priori nodes generated by smp.data and the corresponding decomposi-
tion of the surrounding rectangle (plotted with plot.smp.data).

and using the function name "user" with svfn.elliptical.

QMC.int.ellipses (and its C equivalent) returns a matrix of the approximated integrals∫
Rd

w(si, p)w(tj , p) dp i = 1, . . . , N1, j = 1, . . . , N2,

i. e. a covariogram matrix or vector with ordinary or strong boundaries and, if desired, after
normalization. Additionally, an argument of extra.info=TRUE yields a 95 % confidence interval
based on the assumption of normally distributed errors due to uniformly distributed random
(instead of quasi-random) nodes. These admittedly inappropriate error bounds were chosen
because only the asymptotic order (3.3) of the star discrepancy of the Sobol sequence could be
found in the available literature; a factor that only depends on the problem dimension is unknown.
In any case, the implemented (probabilistic) error bounds overestimate the quasi-Monte Carlo
error bounds at least asymptotically (see Section 3.2.3).

A few remarks should be made about the ways a priori nodes are created and handled. The
smp.data function uses Algorithm 3.2.35 and the C routine generate QMC sampling points -
exp for generating a smp.data object. This is basically a list containing

• nodes p1, . . . , pK ("xy" component),

• if necessary (e. g. in the case of strong boundaries), covariables 1A(p) evaluated at each
node ("g" component),

• a surrounding rectangle F determined by its corners, and disjoint subrectangles F1, . . . , FL

("rect.num" and "rect.size" components),

• indices K1, . . . ,KL such that pKi−1+1, . . . , pKi ∈ Fi

(K0 := 0; "rect.index.from", "rect.index.to"),

• vectors indicating which nodes are within B(s1, . . . , sN ;R) and B∗(s1, . . . , sN ;R) for R =
Rmin, Rmax ("within.disj.min", "within.disj.max", "within.conj.min" components),

• and some other data.

See figure 3.4 for an example plot of a priori nodes generated with smp.data.
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smp.data generates only nodes that are within the union of circles B(s1, . . . , sN ; Rmax) of radius
Rmax around the measurement sites d$xy = (s1, . . . , sN ), so the use of a smp.data object is
restricted in two ways:

i) It should not be used together with svm.data objects that are not subsets of the object
that the nodes were generated for.

ii) A smp.data object should not be used for approximating semivariograms with ranges
greater than 2Rmax. This occasionally occurs during minimization when the nlm algorithm
“tries” large steps in the “wrong” direction. However, these approximations based on
inappropriate nodes cause an increase in the mean squared error, so the algorithm is thrown
back into the region of ranges ≤2Rmax.

The quasi-random nodes used by MoGeS belong to a two-dimensional Sobol sequence and are
generated by the C routine sobseq2d exp using an algorithm given by Press et al. (1992) (sobseq
routine). The generator is initialized by sobseq init. R interface functions are sobseq.init,
sobseq2d.

Further C routines for quasi-Monte Carlo integration include those of the form within ellip-
se ... exp, which return a matrix of zeroes and ones indicating which points are within which
ellipse. There also exist R interface functions (see Table 3.3).

The C routines are compiled to the Windows DLL numint.dll and accessed through the R
function .C (see R documentation, help topic ".C"). Some care must be taken when passing
integer arguments to C routines; for safety, they are converted to double precision (but maybe
this is or was just a bug of the R version used at the beginning). The existing C code should also
be improved in order to handle R lists directly instead of passing the components as separate
numerical vectors and matrices, but this requires studying the incompletely documented “deep
R”.

3.3.6 Kriging

Indicator and universal kriging are implemented in a rather simple way using equation (2.12) and
a QR decomposition of the coefficient matrix (or alternatively, a singular-value decomposition).
When predicting the process at several locations based on the same measurements, the coefficient
matrix remains unchanged and therefore has to be inverted only once.

In MoGeS, kriging can be performed by a call to the function

svm.kriging(data, newdata, sv, param, G, method = "qr", tol = 1e-10,
trend = FALSE, ...)

or by using the method

predict.svm(object, data, newdata, ...)

belonging to the object class svm. This predict method is an analogue of predict methods
existing for other statistical objects in R, such as lm or nlm for (generalized) linear models.

The kriging functions return an object of class predict.svm, i. e. a list containing predicted
values ("z" component), kriging variances ("var" component) and confidence intervals at a level
of significance of 95 % ("z.lo", "z.hi" components).
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3.3.7 Exploratory Data Analysis and Visualization

Some functions were written to help visualize and explore geostatistical data, but the collection
is incomplete. An important instrument is the empirical semivariogram given by the moment
estimator

γ̂(h) =
1

2|N(h)|
∑

si,sj∈N(h)

(zi − zj)2,

where N(h) is the set of pairs (si, sj) that have a similar lag h = si− sj ∈ R2 (or h = ‖si− sj‖ ∈
R). This is implemented as

eda.semivariogram.cloud(d, intv = "default", method = "equidistant",
direc = NULL, tol = (1/18) * pi, extra.info = FALSE, trend = FALSE,
mse.data)

The estimators may be based on intervals of the same length (method="equidistant") or of same
number of observations (method="moment"). Furthermore, optionally filtering of pairs of points
of (almost) the same orientation can be performed in order to assess geometric anisotropies (ar-
guments direc and tol). In the presence of trend, the empirical semivariogram svfn.empirical
as given by equation (2.18) has to be fitted.

The R base package functions boxplot and boxplot.stats were adapted to spatial data analysis:
The functions eda.boxplot and eda.boxplot.stats compute box-and-whisker plots using a
projection of two-dimensional coordinates onto a straight line.

Many of the exploratory data analysis functions available within the R distribution may be
applied to geostatistical data. There are also visualization routines available such as contour
and persp for two- and three-dimensional surface representations, but they are restricted to
gridded data. Since visualization is an important instrument for analyzing geostatistical data, the
capabilities of GIS or specialized visualization software should also be used for three-dimensional
plots.

3.4 Implementation of a GIS Interface

Due to the great effort put onto the implementation of a useful geostatistical package for modeling
generic stationarity within R, the GIS interface remains comparatively basic. In spite of this
restriction, it shows how a flexible linkage of a GIS with a data analysis tool can be designed,
and hopefully it is the starting point for further development efforts that aim at covering a wider
range of geostatistical data analysis tasks and supplying an intelligent interface.

The ArcView/MoGeS interface performs geostatistical modeling in four steps:

Export data: Select a set of points and corresponding data from a point theme and its data
base or table (in ArcView terminology) and convert it to a text file format that can be read
by MoGeS.

Specify a semivariogram model: Select semivariogram models, and link covariables with
fields in the theme’s data base. If desired, assign fixed values to parameters or identify
parameters.

Fit the semivariogram model: Choose starting parameter values, and perform the fitting
through a call to the R environment.

Perform kriging: Select measurement and prediction locations, export the corresponding data
and perform kriging by calling the R environment.
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Main scripts
Step 1 - Export Data Step 2 - Model Specification
Step 3 - Semivariogram Fitting Step 4 - Kriging

Auxiliar scripts
CheckVariables DifferentParameterSemantics
DoExportData EnterStartingValues
FixVariables GetSemantics
IdentifyVariables QueryNewAlias
R AssignAlias R AssignParam
R AssignSemivariogramComponent R AssignSemivariogramModel
R ReadSvmData SelectSemivariogramModel
shp2ascii

Table 3.7: AVENUE scripts forming the ArcView/MoGeS interface.

The ArcView/MoGeS interface is a collection of AVENUE scripts that perform these tasks (see
Table 3.7, Appendix A). The code and a sample project can be obtained from the author
(e-mail: ali@proforma.de). It can be executed using commands added to the Theme menu,
which is available when a theme is active. The scripts however do not cover the complete MoGeS
functionality available within R. Nevertheless, the problems mentioned above can be solved more
easily than by hand, since R code is generated and executed automatically, and a user who is
familiar with R will be able to add flexibility by modifying this code or doing additional analyses
using the whole spectrum of R and MoGeS functions.

The AVENUE scripts model parameter vectors, names, aliases and semantics just as MoGeS
does, however as seperated lists rather than object classes or names vectors.

In its current implementation, the ArcView/MoGeS interface strongly depends on the MoGeS
implementation (i. e. its function identifiers, argument names etc.), which makes it very sensible
to small changes in MoGeS. This could be overcome by using a meta-language for geostatistical
modeling that makes for example model specifications independent of the actual implementation
that executes it.

3.4.1 Exporting Geostatistical Data

Before executing the script "Step 1 - Export Data", an ArcView point theme has to be active
and all the data records to be exported must be selected. The user specifies the names of
fields that will be created and filled with projected point coordinates needed by MoGeS for
georeferencing. The exported data must contain all the covariables (e. g. 1D(si), φ(si) in the
case of an elliptical semivariogram on D) needed for modeling. The data will be stored in a text
file of .csv (“comma-separated value”) format that can also be read by many other applications.

3.4.2 Specifying a Semivariogram Model

The script "Step 2 - Model Specification" first initializes a series of global variables that
contain, among other data, identifiers of some semivariogram models implemented within MoGeS
(e. g. svfn.elliptical.pwlinear) and the corresponding parameter and covariable names and
semantics. The user is then asked to select one or more of these semivariograms, and he may
identify parameters. After that, fixed values can be assigned to parameters, if desired. Note
that the supplied scripts only accept valid parameter values (script "CheckVariables"); this
is possible due to the concept of parameter semantics. Finally, a correspondence between the
covariables required by the selected semivariogram model and the field names of the exported

ali@proforma.de
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data base is established by the user (see figure 4.1 on page 59).

The semivariogram specification is stored in global variables and thus can be used in subsequent
executions of the following two steps.

3.4.3 Fitting a Semivariogram Model

Given a semivariogram model, the user can call the Step 3 - Semivariogram Fitting script
to specify starting parameter values and the field that contains the observed values. Then R
code is generated that reads the geostatistical data, specifies the semivariogram model and fits
it. If desired by the user, this code will automatically be executed within R through a call to the
terminal version of R, Rterm.exe (see figure 4.2).3

3.4.4 Performing Kriging

The script Step 4 - Kriging requires the active theme to have a field "Observed". Non-zero
entries indicate that the corresponding record represents a measurement site. For kriging, the
selected records from the theme’s data base are exported again, parameters for the semivariogram
model have to be entered, and if desired, the code is automatically executed by R. In this case, the
generated data is written to a file with the extension .krg that can be loaded into ArcView using
the commands Add Table and Add Event Theme. The field "Z" in the imported data base then
contains the predicted values. These results can be visualized in ArcView as a three-dimensional
Digital Elevation Model (DEM).

3Note that the correct path of Rterm.exe must be specified within the script’s code. Currently the path is set
to Z:/rw1023/bin.



Chapter 4

Application

In this Chapter the geostatistical methods without stationarity assumptions that were presented
in Chapter 2 will be applied to simulated data using the MoGeS routines. We will generate two
datasets, one with linear trend and another one with non-geometric anisotropies, and use the
restricted mean squared error and elliptical semivariograms, respectively, for model fitting.

When testing geostatistical methods, real-world datasets have the crucial disadvantage that in
most cases, one does not have precise knowledge of the stochastic process and its distribution law.
Exploratory Data Analysis and possibly data transformation and selection have to be performed,
and different models must be fitted and compared in order to find one that allows us to make
good predictions.

When testing statistical methods, however, we need datasets with well-known properties, because
we want to see if the analysis techniques yield results that are consistent with our a priori
knowledge. Therefore we will generate data based on a semivariogram model and reasonable
parameter values and covariables and hope that our fitting methods can reproduce them or
perform at least as good as “classical” estimators.

Before analyzing the simulated datasets, an introductory sample session will exemplify the use
of our implementation within ArcView and R.

4.1 A Sample Session

This section shows how the ArcView/MoGeS interface integrates the GIS ArcView with the data
analysis environment R. It is also intended to be an introduction to MoGeS, since the R code
generated automatically by the interface scripts can easily be adapted to other situations and
extended using other R and MoGeS functions.

We use a climatologic–ecologic dataset provided by Prof. Dr. Michael Richter (Erlangen), who
studies climate gradients and erosion processes in the Andes of Southern Ecuador. The part of
the dataset that we will use here basically consists of topographic data and humidity indices at
137 locations within an area of about 120 km× 120 km. These indices represent the approximate
average number of humid months per year and are derived from detailed phytosociologic studies,
since weather stations are very rare and in many cases not representative in this high-mountain
area.

There are climatologic reasons for assuming that there exists a trend that depends on altitude,
slope exposition and distance from the continental watershed that crosses the investigated are in
North–South direction, and anisotropy can also be expected to exist related to the orientation
of valleys.

However, we will not study this challenging dataset in detail. Instead we will limit ourselves
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Figure 4.1: Specifying semivariogram models within ArcView using the ArcView/MoGeS inter-
face.

to fitting just one global semivariogram, an elliptical semivariogram with piecewise linear kernel
function and geometric anisotropy.

The data needed can be accessed from the ArcView project file geostat.apr, where it is included
as a point theme called Humid.sph and the corresponding table. After selecting all the theme’s
points and activating the theme, the data can be exported using the command GS * Export Data
in the Themes menu, which runs the script Step 0 - Export Data. Then, the semivariogram
is determined by executing the GS * Model Specification command (see figure 4.1). The
observed values are stored in the table’s Humo field, and the presumed (constant) direction of
anisotropy in orientation1.
The next step, GS * Semivariogram Fitting, generates the following R code stored in a .R file
(some comments were added by hand in order to make the following lines self-explaining):

library("mva")

source("numint.r")

source("fit.r")

source("eda.r")

source("ell.r")

###### read geostatistical data

d <- read.svm.data( file="z:/scripts/humid.csv",

xnames="x", ynames="y", znames="Humo", gnames=c("orientation") )

n <- nrow(d$xy)

###### specify a semivariogram model

# we have one fixed parameter:

fpa <- param( c(0.9),

nm = c("break.elliptical.pwlinear.global"),

sem = c("break") )

# parameter aliases:

pa.al <- setnames( c("sill.elliptical.pwlinear.global",

"range.elliptical.pwlinear.global","q.elliptical.pwlinear.global",

"break.elliptical.pwlinear.global"),

c("sill","range","q","break") )

# covariable aliases:

g.al <- setnames( c("orientation.elliptical.pwlinear.global"),

c("orientation") )

# we have just one ‘svc’ semivariogram object:

svc1 <- svc( svfn.elliptical.pwlinear.global, fix.param=fpa,

param.alias=pa.al, g.alias=g.al )

# and this is our composed ‘csv’ semivariogram object:

sv <- csv( list( svc1 = svc1 ) )

1In a more sophisticated model, directions of anisotropy are determined using a Digital Elevation Model.
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Figure 4.2: Semivariogram fitting within ArcView using the ArcView/MoGeS interface.

###### fit the semivariogram model:

# starting ‘param’eter object:

start <- param( c(5,10000,0.7),

nm = c("sill.elliptical.pwlinear.global","range.elliptical.pwlinear.global",

"q.elliptical.pwlinear.global"),

sem = c("sill","range","q") ) # semantics!

# generate nodes for quasi-monte carlo integration (if necessary):

smp <- NULL

if (needs.smp.data(sv)) # ‘sv’ knows if it needs a ‘smp.data’ object with

# a priori nodes, even if ‘sv’ is rather complex!

# the ‘Rmax’ argument must be sufficiently large!

# 5000 a priori nodes should be sufficient in most cases

smp <- smp.data(d, Rmax=1.7*max(getrange(sv,start))/2, N=5000)

# finally we can fit the model:

svmfit <- svm(sv,d=d,param=start,smp=smp,trend=FALSE)

# and print a summary of the results:

print(summary(svmfit))

The code is interpreted by the terminal version of R, Rterm.exe, which is executed within a
DOS window (see figure 4.2). For this purpose, the following batch file is generated:

z:\rw1023\bin\Rterm --no-restore --no-save <z:\scripts\humid.r

pause

Instead of executing humid.r automatically, the user might prefer to edit the code or execute it
step by step in order to observe the results more in detail.

Kriging within ArcView works in a very similar way as fitting semivariogram models, and in fact
great part of the R code generated is the same since it is only concerned with reading the data
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a)

c)

b)

A1 A1

A2

Figure 4.3: The situation of the simulated dataset with local anisotropy: Two independent
subprocesses on A1 and A2 are considered (left). The curves represent the paths for which
semivariograms are shown in figure 4.4. The sketch at the right visualizes the directions of local
anisotropy.

or semivariogram specification. This is why this technique is not treated here.

4.2 A Simulated Dataset in Complex Geology

In the first simulated dataset, we consider a Gaussian process Z on D = [0, 1]2 made up of
two independent subprocesses Z1 on A1 and Z2 on A2 with location-dependent directions of
anisotropy φ(s) (see Figure 4.3 for illustration). We select a constant mean m = 5 and elliptical
semivariograms with a piecewise linear kernel function and parameters θT

1 = (σ2
1, a1, q1, b) =

(1, 0.2, 0.6, 0.6) on A1 and θT
2 = (0.8, 0.1, 0.4, 0.95) on A2, and on A2, we also add a nugget effect

with parameter σ2
nug(2) = 0.4. The directions of anisotropy on A1 and A2 are defined by two

different polynomials and visualized in Figure 4.3.

A geologic setting that hosts such a process could for example be the following: Suppose that Z
represents some soil property that essentially depends on the underlying rock. On A2, geologically
young river sediments with strong anisotropy down-stream and high local irregularity host the
subprocess Z2 with analogous properties (q2 = 0.4, small range, nugget effect). On A1, things
are smoother (a1 = 2a2, no nugget effect), but oblique sediment layers with folding structures
originate an anisotropy (q = 0.6).

A total of n = 259 locations was generated, 170 of which are uniformly distributed over A1,
and the remaining 89 are uniformly distributed over A2, the density being higher in A2. Then
realizations of Z at these points were simulated using random.dataset and a smp.data object
of 10 000 a priori nodes in order to guarantee a precise semivariogram approximation and hence
a simulation that corresponds to the assumed semivariogram.

During semivariogram fitting, a set of 4 000 a priori nodes was used for quasi-Monte Carlo
integration. Kriging was performed on a 60 × 60 grid using 10 000 nodes. The computation of
all the kriging predictions presented below took about a quarter of an hour in total, and each
minimization trial a few minutes, depending on the number of iterations needed.

For comparison with more sophisticated models, we fit global models with and without anisotropy,
first of all the spherical semivariogram model using four different starting values. After about
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Figure 4.4: Left: Empirical semivariogram and the fitted spherical semivariogram with sill 1.90
and range 0.04.
Right: The fitted “true” semivariogram model, evaluated along the three paths shown in Fig-
ure 4.3: a) following the local direction of anisotropy in A1; b) orthogonal to anisotropy in A1;
c) following anisotropy in A2.

one minute of computation on a Pentium II processor, we see that all trials succeeded and give
us the same estimates (if we consider four digits), namely a sill of 1.90 and a range of 0.39. See
Figure 4.4 for a comparison with the empirical semivariogram.

Maybe we can fit a model with geometric anisotropy. Fitting an elliptical semivariogram with a
piecewise linear kernel function (with b = 0.7) and fixed direction of anisotropy does not yield
consistent results for any choice of direction: Sometimes the minimization is not successful, and
when it is, then for different starting values and the same assumed direction of anisotropy it
converges to different local minima, the mean squared errors however being similar to the one
obtained for the spherical semivariogram (32.08).

Turning to semivariogram models with location-dependent anisotropy, we first study a global
piecewise linear elliptical semivariogram with breaking point parameter b = 0.95 and the known
covariable function φ. Different starting values all yield the same sill estimate 1.90, which is
identical to the one estimated with the isotropic spherical semivariogram. However, mse possesses
local minima, the estimate q in most cases being smaller than 0.5 and the range between 0.05
and 0.1, depending on q.

Finally we fit the “true” semivariogram model. Due to the high number of parameters, it has
to be expected that the minimization of mse will take several steps, fixing some parameters at
each step. Using 10 more or less reasonable random starting values, (the summary method of)
svm yields the following output:

[...]

Semivariogram Parameters (successful trials only):

BestEst. Min. Max

Sill1 1.69628 1.69628 1.69873

Range1 0.12574 0.12574 0.14814

Q1 0.32596 0.32596 0.66534

Break1 0.30757 0.30757 0.50781

Sill2 2.28308 2.28308 2.29611

Range2 0.03163 0.03163 0.05523

Q2 0.47124 0.30095 0.47124

Break2 0.75462 0.45890 0.75462

Nugget2 0.03184 0.02252 0.03184

Mean Squared Error (successful trials only):

Min. Mean Max.

mse 31.91 31.91 31.91
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Summary of Minimization Trials:

Mean Sq.Err. Rel.MSE Rel.Param.Err. Iterations Code Best? Success?

1 31.91 1e-04 3.809 50 4 No

2 31.91 0e+00 0.000 18 2 the Yes

3 31.91 1e-04 1.366 50 4 No

4 31.90 -2e-04 0.891 50 4 No

5 31.92 5e-04 7.077 24 3 No

6 31.91 0e+00 1.185 50 4 No

7 31.91 1e-04 1.932 50 4 No

8 31.91 1e-04 1.075 50 4 No

9 31.91 0e+00 2.231 50 4 No

10 31.91 1e-04 1.048 36 2 a Yes

Starting parameter values:

Sill1 Range1 Q1 Break1 Sill2 Range2 Q2 Break2 Nugget2

[1,] 2.3062 0.15460 0.73792 0.87640 1.2719 0.28017 0.99181 0.84202 0.176962

[2,] 1.2994 0.41529 0.48463 0.31665 1.7898 0.25864 0.58908 0.87567 0.031211

[3,] 2.5496 0.44579 0.58845 0.74267 1.2101 0.22834 0.97514 0.17047 0.188768

[4,] 1.3855 0.44847 0.73521 0.15957 1.2863 0.24004 0.78422 0.64345 0.025581

[5,] 1.6079 0.17843 0.52848 0.79948 1.6496 0.21495 0.52997 0.72069 0.323776

[6,] 1.9198 0.43815 0.61657 0.65926 1.0294 0.26836 0.61341 0.47269 0.198433

[7,] 1.6782 0.43172 0.97461 0.48536 1.3657 0.19899 0.60631 0.16365 0.049348

[8,] 2.9886 0.16557 0.96897 0.33380 1.3533 0.10782 0.80740 0.26245 0.418369

[9,] 2.8188 0.15083 0.54031 0.57293 2.3126 0.30179 0.50593 0.64969 0.081212

[10,] 2.8444 0.18056 0.97890 0.53258 2.2426 0.19923 0.42710 0.49036 0.387770

Best Estimated Semivariogram Parameters:

Sill1 Range1 Q1 Break1 Sill2 Range2 Q2 Break2 Nugget2

1.69628 0.12574 0.32596 0.30757 2.28308 0.03163 0.47124 0.75462 0.03184

The algorithm is succesful in only two trials, in the others the iteration limit was exceeded.
Taking a closer look at the returned svm structure, it turns out that mse values are almost
identical, so we should take into account all the 10 results:

> svmfit$est.params

Sill1 Range1 Q1 Break1 Sill2 Range2 Q2 Break2 Nugget2

[1,] 1.7084 0.13339 0.49602 0.92623 2.2264 8.3669e-02 0.53306 0.99993 0.153043

[2,] 1.6963 0.12574 0.32596 0.30757 2.2831 3.1634e-02 0.47123 0.75461 0.031835

[3,] 1.7001 0.14427 0.46613 0.72243 2.2808 6.5185e-02 0.72437 0.16815 0.031367

[4,] 1.6980 0.16443 0.35430 0.15722 2.2853 5.9807e-02 0.57974 0.99876 0.025966

[5,] 1.7220 0.11499 0.41886 0.73533 2.1539 1.6977e-06 0.34056 0.69226 0.257136

[6,] 1.6957 0.15124 0.28647 0.66746 2.2881 6.0859e-02 0.77588 0.67157 0.023066

[7,] 1.7010 0.16101 0.39077 0.43989 2.2744 9.2756e-02 0.47411 0.15869 0.048858

[8,] 1.6970 0.11949 0.63302 0.32897 2.2891 6.4243e-02 0.66837 0.26322 0.016305

[9,] 1.6989 0.12505 0.32679 0.57723 2.2641 1.0216e-01 0.31080 0.83476 0.069886

[10,] 1.6987 0.14814 0.66534 0.50781 2.2961 5.5225e-02 0.30095 0.45889 0.022517

The estimated sill parameters σ2
1, σ2

2 are practically identical, the range parameters are close
together, and the axes ratios are “clustered”, but not yet consistent. For the next step, we only
fix the sill parameters to σ2

1 = 1.70 and σ2
2 = 2.27, and the break parameters (which in any case

are not of great effect) both to 0.7. We use two interesting starting parameter values that are
motivated by the last results, and we obtain:

[...]

Semivariogram Parameters (successful trials only):

BestEst. Min. Max

Range1 0.12765 0.12742 0.12765

Q1 0.55030 0.55030 0.56086

Range2 0.12376 0.12376 0.12376

Q2 0.33691 0.33691 0.33691

nugget 0.06222 0.06221 0.06222
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Mean Squared Error (successful trials only):

Min. Mean Max.

mse 31.91 31.91 31.91

Summary of Minimization Trials:

Mean Sq.Err. Rel.MSE Rel.Param.Err. Iterations Code Best? Success?

1 31.91 0 0.01919 41 2 a Yes

2 31.91 0 0.00000 37 2 the Yes

Starting parameter values:

Range1 Q1 Range2 Q2 nugget

[1,] 0.1 0.5 0.1 0.5 0.03

[2,] 0.2 0.9 0.1 0.5 0.20

Best Estimated Semivariogram Parameters:

Range1 Q1 Range2 Q2 nugget

0.12765 0.55030 0.12376 0.33691 0.06222

Both trials yield practically the same result, we accept the parameter estimate suggested by svm.

See figure 4.4 for some sample plots of the fitted semivariogram along the paths shown in fig-
ure 4.3. Semivariogram plots along paths are a special feature of the plot.sv method; in this
example, however, a special function had to be written for tracing the anisotropy.

Note that the plots in figure 4.4 are representative in the sense that any semivariogram evaluation
along anisotropy direction within the are A1 will look like graph a), and any plot orthogonal to
anisotropy in A1 will look like plot b), etc. This is due to the generic stationarity property of
elliptical semivariograms.

Comparing fitted and true parameters,

σ2
1 a1 q1 b1 σ2

2 a2 q2 b2 σ2
nug(2)

fitted 1.70 0.13 0.55 (0.70) 2.27 0.12 0.34 (0.70) 0.06
true 1.00 0.20 0.60 0.95 0.8 0.10 0.40 0.95 0.40

we observe that the fitted nugget effect almost vanishes, the sill parameters were overestimated,
axes ratios were estimated quite well, and the range in the smoother area A1 was underestimated.
Overestimation of the sill may be caused by an additional randomness due to integration errors.

Our next aim is to compare kriging predictions obtained with different fitted models. We use
the following semivariograms:

• the true semivariogram,

• the fitted semivariogram consisting of piecewise linear elliptical semivariograms on A1 and
A2 plus a nugget effect on A2,

• the fitted spherical semivariogram with sill 1.90 and range 0.39, and

• a spherical semivariogram with sill 1.90 the (more reasonable) range 0.13 taken from the
fitted semivariogram with local anisotropy.

Kriging results are shown in Figure 4.5. It can clearly be seen that both predictions based on
spherical semivariograms do not reflect the strong anisotropies present in our dataset, whereas
the fitted model with anisotropies leads to predictions that are very close to those obtained with
the true semivariogram.
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Figure 4.5: Kriging surfaces using the true semivariogram (top left), using the fitted generically
stationary model (top right), using a fitted spherical semivariogram (sill 1.90, range 0.039; bottom
right), and using a spherical semivariogram with sill 1.90 and range 0.13 (bottom left).
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4.3 A Simulated Dataset with Trend

We wish to test if the techniques for modeling in the presence of trend as presented in Section 2.6
perform well. Therefore we will simulate a dataset, compare different semivariogram parameter
estimates with the “true” parameters, and compare kriging results with those obtained for the
“true” trend surface.

Let Y be a stationary Gaussian process on D = [0, 1]2 with a spherical semivariogram with
parameter θT = (σ2, a) = (1, 0.3). We define a function f : D → R4 by

f1(s) = 1,

f2(s) = s(1),

f3(s) = 1 if s(2) > s(1), otherwise 0,

f4(s) = 1B2((0.5,0.5),0.2)(s),

where s = (s(1), s(2))T ∈ D. We put β = (0, 4, 1, 2)T and define a process Z on D by

Zs = βTf(s) + Ys

for all s ∈ D.

We consider n = 100 uniformly distributed points t1, . . . , tn ∈ D and simulate a realization
z = (z1, . . . , zn)T of Z(n) = (Zt1 , . . . , Ztn)T using the random.dataset function.

We will apply the following methods for fitting the spherical semivariogram model and for kriging:

i) We know the “true” parameters β and θ. Use them as reference values and for universal
kriging.

ii) Estimate θ by θ̂ using the restricted mean squared error, and use θ̂ for universal kriging.
Estimate β by β̂ with a generalized linear model.

iii) Apply the method presented (but not recommended) in Section 2.6.1: Estimate β by β̃
in a linear model with uncorrelated errors. Fit the spherical semivariogram model to the
residuals and get a parameter estimator θ̃. Do ordinary kriging with the residuals and the
fitted semivariogram, and add predictions of the linear model.

Let Z∗
p , Ẑp and Z̃p, respectively, denote the kriging predictors for Zp corresponding to these three

cases.

In how far will parameter estimates for θ and β differ from the true values and from each other?
And are there relevant differences between the kriging predictions that we will obtain, especially
with respect to the first method?

Using the MoGeS package, we obtain the following results:

estimate for βT estimate for θT

(1) “True” parameters (0.00, 4.00, 1.00, 2.00) (1.00, 0.30)
(2) Fitting with the rmse (−0.04, 4.17, 0.85, 1.72) (1.22, 0.21)
(3) Fitting the residuals (−0.85, 4.97, 1.50, 1.57) (0.98,0.19)

First of all, we notice that methods (2) and (3) yield significantly different trend parameters and
also different sill parameters. These estimates differ from the true parameters β, θ.

At a first glance, there seems to be little difference between the kriging predictions plotted in
figure 4.6. The plots of differences of predictors, Ẑp−Z∗

p , Z̃p−Z∗
p (figure 4.7), show however that

the errors in the estimation of trend parameters have a very clear effect on prediction errors.
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Figure 4.6: Kriging surfaces for the predictors Z∗
p (top left), Z̃p (top right) and Ẑp (left bottom),

and the kriging variance surface corresponding to Ẑp.
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Figure 4.7: Differences between kriging predictors: Ẑp − Z∗
p (left) and Z̃p − Z∗

p (right).

In this example the sill estimated with the restricted mean squared error is higher than the true
sill and the one estimated based upon the residuals. In contrast, the author often observed that
rmse yields smaller sills than mse when dealing with simulated processes with constant trend.

In this example, the results obtained with the semivariogram fitted in presence of trend using the
restricted mean squared error function are slightly closer to the predictions Z∗

p that are based
upon complete knowledge of the parameters. We cannot generalize this observation, but it makes
us confident that estimations based on the restricted mean squared error work at least as good
as semivariogram fitting to residuals with all its contradictory assumptions.



Chapter 5

Conclusions

The construction method presented in this work has shown to be a powerful instrument for
incorporating knowledge of local geology as stored in a GIS into semivariogram models. Many
situations of local anisotropy can be modeled using the class of elliptical semivariograms, which
was studied in detail. Using the code provided in this work, such models were successfully
fitted, and in an example situation it could be seen that the corresponding kriging results are
also consistent with our knowledge of local anisotropy of the process, in contrast to isotropic or
geometrically anisotropic semivariograms.

In the stationary case, the constructed covariograms are convolutions of weight functions. This
facilitates the application of methods from Fourier analysis in future studies of induced covari-
ograms.

Moreover, a method of semivariogram fitting in the presence of trend was presented, which is
based on mean squared errors in a projected linear space. The practical results obtained make
us confident that this method deserves further study.

The combination of R and AVENUE code generated for this work forms a flexible framework for
geostatistical modeling using elliptical and other semivariograms within tightly coupled ArcView
GIS and R data analysis environments.

Our study of the class of elliptical semivariogram models and of induced semivariogram models
in general motivated the introduction of the concept of generic stationarity. This concept reflects
our belief in the existence of natural laws that determine a process’ distribution law depending
on local geology. The less knowledge of local geology is necessary to determine the distribution
law, “the more stationary” is the process. Thus, generic stationarity becomes a means for
stationarizing instationarity conditional on local geology.

69



Appendix A

Documentation of Source Code

This appendix contains a documentation of R, C and AVENUE source code generated during
this work. The description of R functions and objects follows the format that is commonly used
in the R online help files, including information about usage, arguments, returned value and
details. Sometimes various methods of the same object class are described in a single entry, or
equivalent methods of different object classes are bundled.

All code described below was developed independently by the author, with the following excep-
tions: The C routine sobseq for the generation of Sobolev sequences was taken from Press et
al. (1992), and the R function eda.boxplot for directional boxplots is based on the code of the
standard R function boxplot.default.

Source code and binaries can be obtained from the author (e-mail: ali@proforma.de).

See also Section 3.3 for an overview of all object classes and functions.

A.1 Geostatistical Data: the svm.data Object Class

A.1.1 Basic Methods

#

# svm.data - Basic functions.

#

# Description:

#

# Function to construct, coerce and check for ‘svm.data’ objects.

#

# Usage:

#

# as.svm.data(x,...)

# as.svm.data.list(d,name="noname",descr=NULL,id=NULL,

# xyname=DEFAULT.XYNAME, xnames=DEFAULT.XNAMES, ynames=DEFAULT.YNAMES,

# znames=DEFAULT.ZNAMES, fnames=DEFAULT.FNAMES, gnames=DEFAULT.GNAMES)

# as.svm.data.svm.data(x)

# is.svm.data(x)

#

# Arguments:

#

# x, d: an object to be coerced or checked

#

# name, descr: A name and description to be given to the ‘svm.data’ object.

#

# xyname etc.: Names of columns or list components corresponding to the

# ‘xy’, ‘z’, ‘f’ and ‘g’ components of an ‘svm.data’ object.

#

70

ali@proforma.de


APPENDIX A. DOCUMENTATION OF SOURCE CODE 71

# Details:

#

# ‘svm.data’ objects are lists with the following components:

#

# ‘xy’: An (n,2)-matrix: point coordinates of the measurement sites.

# ‘z’: An (n,1)-matrix or n-vector: corresponding measured values.

# ‘f’: An (n,.)-matrix giving variable values for the linear trend model.

# ‘g’: An (n,.)-matrix giving local information needed by the semivariogram

# function. (This may be, e.g., 0/1-values indicating if a

# point is contained within a polygon, or orientations of the

# reflief. (See, e.g., ‘svfn.elliptical’.)

# others: Any other kind of data, such as names of the measurement sites etc.

#

# ‘svm.data’ objects have the following attributes:

#

# "name": A character string (max. one line) describing the ‘svm.data’

# object briefly.

# "description": A more detailed description, possibly including formatting

# characters.

# "ID" A (hopefully unique) numeric identifier of the ‘svm.data’ object

# used before integrating for checking if an ‘smp.data’ object

# fits to the ‘svm.data’. (See ‘QMC.int.ellipses’.)

#

# The components ‘xy’, ‘z’, ‘f’ and ‘g’ must have the same length (if vectors)

# or number of rows (if matrices).

#

#

# Read and write svm.data objects.

#

# Description:

#

# Read and write svm.data objects from/to a file of "csv" or other format.

#

# Usage:

#

# read.svm.data(file, file.format="csv",...)

# write.svm.data(d,file)

#

# Arguments:

#

# d: an ‘svm.data’ object (or a data.frame) to be written

#

# file: file name

#

# file.format: string specifying the output file format;

# either "csv", "csv2" or "table"

#

# ...: further parameters to read.csv, read.csv2 or read.table

#

# Details:

#

# These functions were created for reading and writing data exported from

# a GIS or to be imported into a GIS.

#

# In the current implementation, read.svm.data is not the inverse function

# of write.svm.data in the sense that successive reading and writing

# operations will not reproduce the original *variable names*. This is due

# to the fact that files are read and written as data.frame structures,

# but ‘svm.data’ objects are lists; its components ‘f’ and ‘g’ ---the

# covariables for trend and generic stationarity specification--- may

# have columns of the same name but different data, so when writing the

# object, unique column names have to be created for the data.frame.

#
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# See also:

#

# read.csv, read.csv2, read.table, save, load

#

A.1.2 Simulation

#

# generate.grid

#

# Description:

#

# generate a regularly spaced grid of points on a rectangle

#

# Arguments:

#

# kx, ky number of grid points in x and y direction, respectively

# xmin, xmax, ymin, ymax define a rectangle in R^2

#

# Usage:

#

# generate.grid(kx,ky,xmin=0,xmax=1,ymin=0,ymax=1)

#

# Value:

#

# A (kx*ky,2)-matrix containing kx*ky points regularly distributed over the

# given rectangle (default rectangle: [0,1]^2).

#

#

# generate.random.points

#

# Description:

#

# generate random points uniformly distributed over a rectangle

#

# Usage:

#

# generate.random.points(n,xmin=0,xmax=1,ymin=0,ymax=1)

#

# Arguments:

#

# n number of points to be generated

# xmin, xmax, ymin, ymax a rectangle in R^2 (default: [0,1]^2)

#

# Value:

#

# An (n,2)-matrix containing n points uniformly distributed over the

# (interior of the) given rectangle.

#

# Details:

#

# Uses the R (pseudo-) random number generator. By default, this is

# the Marsaglia multiply-with-carry generator. See ‘RNGkind’.

#

#

# Generate Random Datasets

#

# Description:

#
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# Generate (pseudo-) random datasets corresponding to random fields

# with a given covariance structure and mean or trend.

#

# Usage:

#

# ramdom.dataset(x,...)

# random.dataset.matrix(x,d,type="semivariogram",method="cholesky",

# mean=0,trend=FALSE)

# ramdom.dataset.sv(x,d,method="cholesky",mean=0,trend=FALSE,smp=NULL,...)

# random.dataset.svm.data(x,sv,...)

# random.dataset.default(x,sv,smp=NULL,

# create.xy=(ifelse("xy" %in% names(d),"no","unif")),...)

#

# Arguments:

#

# x: A semivariogram object, ‘svm.data’ object, list or NULL,

# depending on the method to be used. (See Details.)

#

# d: A ‘svm.data’ object, list or NULL. (See details.)

#

# type: Character string indicating the kind of matrix passed to

# ‘random.dataset.matrix’. Either "semivariogram", "variogram",

# "covariance" or "covariogram".

#

# method: Determines the method of matrix decomposition for transfor-

# ming random numbers. Either "chol" or "svd". (See ‘chol’

# and ‘svd’).

#

# mean: If ‘trend=FALSE’, a stationary trend to be added to the

# random data. If ‘trend=TRUE’, coefficients of a determi-

# nistic linear trend to be added to the random data.

#

# trend: If TRUE, a linear trend ‘mean %*% d$f’ is added to the

# random data. If FALSE, a stationary mean value ‘mean’ is

# added.

#

# smp: A ‘smp.data’ object, an integer or NULL. If ‘smp’ is an

# integer, an appropriate ‘smp.data’ object with ‘smp’ samp-

# ling points is created for evaluating the co-/semivariogram

# function.

#

# create.xy: Indicates whether to generate measurement sites (‘xy’

# component) and, if yes, the method for doing this. Either

# "no", "unif" or "grid". The default value is "no", if ‘x’

# already has an ‘xy’ component, and ‘unif’ otherwise.

#

# Value:

#

# A ‘svm.data’ object with randomly generated measurements (‘z’ component)

# and possibly generated randomly or regularly distributed measurement

# sites (‘xy’ component).

#

# Details:

#

# Uses a Cholesky or singular-value decomposition of the covariance matrix

# in order to transform independent N(0,1)-distributed random numbers,

# and adds a linear trend or constant mean.

#
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A.2 Semivariogram and Parameter Object Classes

A.2.1 param Object Class

#

# ‘param’eter objects - Basic functions.

#

# Description:

#

# Creating, coercing to and checking for ‘param’eter objects,

# and some other basic functions for ‘param’eter objects.

#

# Usage:

#

# as.param(x,...)

# as.param.param(x)

# param(x,sem=NULL,nm=sem)

# as.param.vector(x)

# as.param.matrix(x)

# is.param(x)

# print.param(x,...)

# as.vector.param(x,mode="any")

# as.character.param(x)

# alias(x,al)

# unalias(x,al)

# setnames(x,nm)

#

# Arguments:

#

# sem: Parameter semantics. If NULL, the first ‘length(x)’ elements

# of ‘DEFAULT.PARAM.SEMANTICS’ are used.

#

# nm: Parameter names. (Defaults to ‘sem’.)

#

# Details:

#

# ‘param’ creates a ‘param’ object with values from a vector ‘x’, semantics

# ‘sem’ and parameter names ‘nm’, ignoring a possibly existing names

# attribute of ‘x’.

# ‘as.param.vector’, in contrast, interprets

# the "names" attribute of the vector ‘x’ as parameter names and semantics.

#

# ‘as.character.param’ creates a character vector of the form

# ‘‘c("sill=1","range=2.7")’’.

#

#

#

# fixparam

#

# Description:

#

# Overwrite parameter values with fixed parameter values.

#

# Usage:

#

# fixparam(x,...)

# fixparam.param(param,fix=NULL,na.ok=FALSE)

# fixparam.vector(param,fix,na.ok=FALSE)

#

# Arguments:

#

# param: a ‘param’eter object or (hopefully named) vector
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#

# fix: a ‘param’eter object or vector that will override elements

# of ‘param’

#

# na.ok: if TRUE, NA values in the result are ignored, otherwise a

# warning will be displayed

#

# Value:

#

# A ‘param’eter object or vector. See Details.

#

# Details:

#

# If ‘param’ is a ‘param’eter object or named vector, ‘fixparam’ unifies

# ‘param’ and ‘fix’ overwriting values in ‘param’ by those corresponding to

# the same component name in ‘fix’.

#

# If ‘param’ is a vector without names attribute, ‘fix’ must be of the same

# length, and non-NA values in ‘fix’ overwrite the value at the

# corresponding place in ‘param’.

#

#

# checkparam - Check for parameter validity.

#

# Usage:

#

# checkparam(x,...)

# checkparam.param(x,p.min,p.max)

# checkparam.svfn(x,param)

# checkparam.svc(x,param)

# checkparam.csv(x,param)

#

# Arguments:

#

# p.min,

# p.max: ‘param’ objects or named vectors specifying lower and

# upper boundary of the (closed) intervals of valid parameters.

# param: a ‘param’ object

#

# Value:

#

# A named logical vector of length ‘length(x)’. Components are ‘TRUE’ if

# they correspond to valid parameters, otherwise ‘FALSE’.

#

# Details:

#

# Note that $[p.min,p.max]$ is considered a *closed* interval, i.e.

# both ‘param’ = ‘p.min’ and ‘param’ = ‘p.max’ are valid parameter values.

#

# ‘p.min’ and ‘p.max’ may contain infinite values (Inf,-Inf).

#

#

# Correct parameters

#

# Description:

#

# Correct parameters according to given intervals.

#

# Usage:

#
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# correctparam <- function(x,...) UseMethod("correctparam")

# correctparam.svc(x,param,...)

# correctparam.svfn <- function(x,param,...)

# correctparam.param(param,param.min=attr(x,"param.min"),param.max=attr(x,"param.max"),...)

# correctparam.param <- function(param,param.min=rep(0,length(param)),

# param.max=rep(Inf,length(param)),warn=TRUE,...)

# svc.actualparam(svc, param, correction=TRUE, fix.param=NULL,

# check.length=TRUE, ...)

#

# Value:

#

# A ’param’ object that is valid with respect to the restrictions

# due to a semivariogram object’s definition or ‘param.min/.max’

# arguments.

#

A.2.2 sv and Related Object Classes

#

# Semivariogram objects

#

# Description:

#

# Methods for creating, coercing and printing ‘svfn’ objects.

#

# Usage:

#

# svfn(x,name,descr=NULL, p.min=rep(0,p.num),p.max=rep(Inf,p.num),p.sem,

# p.names=p.sem, g.names=NULL, needs.smp.data=FALSE, sg.names=NULL,

# stationary=FALSE, isotropic=FALSE,...)

# as.svfn(x,...) {

# as.svfn.function(x,...)

# print.svfn(x,partial=FALSE,short=FALSE,...)

#

# Arguments:

#

# x: a function or a ‘svfn’ object

#

# name, descr: character strings giving a natural-language characterization

# of the represented semivariogram model

#

# p.min, p.max: vectors that specify the valid parameter range; may be named

#

# p.sem: a character vector specifying the semantics of each parameter

#

# p.names: a character vector specifying the name of each parameter

#

# g.names: a character vector specifying the names of ‘g’ components

# (covariables)

#

# needs.smp.data: TRUE, if the function ‘x’ needs a priori nodes (an ‘smp’

# argument) for evaluation

#

# sg.names: the names of covariables that have to be evaluated at the

# a priori nodes (‘g’ components of an ‘smp.data’ object)

#

# stationary,

# isotropic: specify whether the semivariogram model is stationary or

# isotropic (for any choice of parameters)

#

# partial: if TRUE, information on covariables is not printed

#

# short: if TRUE, the output is more compact

#
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# Value:

#

# A ‘svfn’ object.

#

# Details:

#

# ‘sv’ objects inherits from the class ‘sv’.

#

# Typical parameter semantics are ‘‘sill’’, ‘‘range’’, ‘‘q’’ (axis ratio),

# and ‘‘degree’’ (degree of smoothness). Others should only be introduced

# if they have nothing to do with the mentioned semantics. (For example,

# ‘svfn.elliptical.pwlinear’ specifies a ‘break’ semantics for the breaking

# point of the integrand.)

#

# See also:

#

# sv, svc, csv, param

#

#

# ‘svc’ objects

#

# Description:

#

# Create, print and compute semivariogram models.

#

# Usage:

#

# is.svc(x)

# svc(svfn,nm=name(svfn),descr=description(svfn),

# param.alias,fix.param,param.min,param.max,g.alias,arglist)

# print.svc(x,short=FALSE,...)

# compute.svc(x,d,ref=NULL,param,...)

#

# Arguments:

#

# svfn: a ‘svfn’ object

#

# nm, descr: string describing the object to be created

#

# param.alias: a named character vector specifying the parameter aliases

# (i.e. substitutes for the original names) to be used

# by the resulting ‘svc’ object; the ‘names’ attribute

# establishes a correspondance to the original parameter names.

#

# fix.param: a ‘param’eter object specifying the parameter values that

# shall be constant

#

# param.min,

# param.max: maximum and minimum parameter values for restricting the

# minimization domain (usually not necessary)

#

# g.alias: named character vector specifying the aliases for ‘g’

# components (covariables)

#

# arglist: list of arguments to be passed to the semivariogram function

# in every call

#

# Value:

#

# ‘svc’ returns an object of class ‘svc’.

# ‘compute.svc’ returns a covariance or semivariogram matrix

# (see ‘compute for details)

#



APPENDIX A. DOCUMENTATION OF SOURCE CODE 78

# Details:

#

# See also:

#

# ‘svfn’, ‘csv’, ‘compute’, ‘param’

#

#

# ‘csv’ complex semivariogram object

#

# Description:

#

# Create, coerce to and print ‘csv’ objects

#

# Usage:

#

# csv(svclist,name=NULL,descr=NULL)

# is.csv(x)

# print.csv(x,short=TRUE,...)

# as.csv(x,...)

# as.csv.svc(x,...)

# as.csv.svfn(x,...)

# csv.insert(x,svc,newname,newdescr)

# csv.delete(x,which,newname,newdescr)

# compute.csv(x,d,ref=NULL,...)

#

# Value:

#

# A ‘csv’ object.

# ‘compute.csv’: a semivariogram or covariogram matrix.

#

# Details:

#

# A ‘csv’ object is a list of ‘svc’ objects and has a name and

# (natural-language) description.

#

# See also:

#

# ‘svfn’, ‘svc’, ‘sv’, ‘compute’

#

#

# Evaluate (semivariogram) objects.

#

# Descriptions:

#

# Functions for evaluating all kinds of semivariogram objects.

#

# Usage:

#

# compute(x,...)

# compute.svfn(x,param,fix.param,...)

# compute.svc(x,d,ref=NULL,param,...)

# compute.csv(x,d,ref=NULL,...)

#

# Arguments:

#

# x: A semivariogram object.

# param: An appropriate ‘param’eter object.

# fix.param: A ‘param’eter object for fixing parameter.

# d: An ‘svm.data’ object.

# ref: An optional ‘svm.data’ for forming pairs of points.
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# ...: Further arguments to the semivariogram function.

#

# Value:

#

# The semivariogram ‘x’ with parameters (param,fix.param) evaluated

# at the pairs of points (d$xy[i,], ref$xy[j,]).

#

# Details:

#

# Note that some of the components of ‘...’ may not be optional.

# (E.g. ‘param’ in the case of ‘compute.csv’ or ‘smp’ if

# ‘needs.smp.data(x)’ is TRUE.)

#

#

# penalty - Penalize parameter values out of range.

#

# Description:

#

# Penalize parameter values that are out of range for a given parameter

# range or semivariogram object.

#

# Usage:

#

# penalty(x,...)

# penalty.svfn(x,param,...)

# penalty.svc(x,param,...)

# penalty.csv(x,param,...)

# penalty.param(x,p.min,p.max,incl=NULL,fac=1)

#

# Arguments:

#

# x: a semivariogram object giving an interval of valid parameters

# or a ‘param’eter object to be checked.

#

# param: a ‘param’eter object to be checked.

#

# incl, fac: specify how strong shall be penalized parameters out range;

# don’t change them yet; for details, see source code

#

# ...: optional ‘incl’ and ‘fac’ arguments to be passed through to

# ‘penalty.param’

#

# Value:

#

# 1, if ‘param’ is a valid set of paramters, otherwise a factor

# greater than 1 increasing monotonically as the distance from

# the valid area increases.

#

#

# Description:

#

# Extract attributes from semivariogram objects

#

# Usage:

#

# is.isotropic(x,...)

# is.stationary(x,...)

# semantics(x)

# description(x)

# name(x)

#
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# See also:

#

# svm.data, getrange

#

A.2.3 Special svfn Objects

#

# Elliptical semivariograms

#

# Description:

#

# Functions and objects representing the elliptical semivariogram class

#

# Usage:

#

# svfn.elliptical(d, ref=NULL, param, fix.param=NULL, smp, fun, fun.params,

# global, strong.boundaries, extra.info, cov,arglist=NULL,...)

# svfn.elliptical.bezier(param,...)

# svfn.elliptical.linear(param,...)

# svfn.elliptical.pwlinear(param,...)

# svfn.elliptical.pwlinear.global(param,...)

# svfn.elliptical.vargeometric(d,ref=NULL,param,...)

# svfn.elliptical.geometric(param,orientation,arglist=NULL,...)

#

# Value:

#

# If ‘extra.info = FALSE’, an approximated semivariogram (or covariance)

# matrix.

# Otherwise, a list with the components G, G.lo and G.hi representing

# the approximate semivariogram (or covariance) values and error bounds

# intervals (see ‘QMC.int.ellipses’ for details).

#

# Details:

#

# ‘svfn.[var]geometric’ are semivariogram models with geometrical anisotropy,

# the direction of anisotropy being modeled as parameter (svfn.var...) or as

# constant.

#

# See also:

#

# QMC.int.ellipses, smp.data, param, svm.data, svfn

#

#

# Nugget effect

#

# Description:

#

# Global or local nugget effect semivariogram function and objects.

#

# Usage:

#

# svfn.nugget.template(d, ref=NULL, param, global, cov, extra.info, arglist, ...)

# svfn.nugget.global(...)

# svfn.nugget(...)

#

# Details:

#

# The local version ‘svfn.nugget’ requires the ‘svm.data’ object ‘d’ to contain

# an ‘‘indicator’’ covariable within ‘d$g’.

#

# ‘param’ must be a ‘param’ object with one element with name ‘‘nugget’’ and

# semantics ‘‘sill’’.
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#

# ‘svfn.nugget.template’ is not a ‘svfn’ object.

#

#

# Spherical semivariogram model.

#

# Usage:

#

# svfn.spherical(d, param, ref=NULL,cov=FALSE,extra.info=FALSE,arglist,...)

# svfn.spherical.iso.internal(h,param,data=NULL)

#

#

# Empirical semivariogram as a step function.

#

# svfn.empirical(d, ref=NULL, param, arglist, cov=FALSE, breaks,

# extra.info=FALSE, ...)

#

A.3 Quasi-Monte Carlo Integration and the Nodes Object Class

A.3.1 smp.data Object Class

R Code

#

# Generate quasi-random numbers

#

# Description:

#

# Generate a (one- or two-dimensional) finite sequence

# of Sobolev quasi-random numbers.

#

# Usage:

#

# sobseq.init()

# sobseq2d(n,fr=rbind(c(0,0),c(1,1)))

#

# Arguments:

#

# n: number of points to be generated

#

# fr: a frame rectangle (1st row=bottom left)

#

# Details:

#

# C routines are called, including the code provided by

# Press et al. (1992).

#

# References:

#

# Press et al. (1992): Numerical Recipes in C. Cambridge Univ. Press.

#

#

# ‘smp.data’ - Using sampling point objects

#

# Description:

#

# Methods for creating, checking for, printing and
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# plotting ‘smp.data’ objects.

#

# Usage:

#

# smp.data(pt,Rmin=NULL,Rmax,N,fr=NULL)

# is.smp.data(x)

# print.smp.data(x,...)

# plot.smp.data(smp,pts,add=F,rect.col="red",pts.col="blue",...)

#

# Arguments:

#

# x, smp: ‘smp.data’ objects

#

# pt: (n,2)-matrix of point coordinates or ‘svm.data’ object

# (See Details.)

#

# Rmin,Rmax: minimum and maximum radius of circles to be considered

#

# N: number of sampling points to be created

#

# fr: frame rectangle that shall contain all the sampling

# points to be created

#

# pts: additional points to be drawn (optional)

#

# add: if TRUE (default), the plot will be added to an

# existing one, otherwise a new plot will be startet

#

# rect.col: color for plotting the subrectangles of the frame rectangle

# (See Details.)

#

# pts.col: color for drawing ‘pts’

#

# ... additional arguments to ‘plot’ / ‘points’

#

# Details:

#

# ‘smp.data’ creates ‘N’ Sobol a priori nodes and returns a ‘smp.data’

# object.

#

# ‘print.smp.data’ currently just prints the ‘smp.data’ summary.

#

# See also:

#

# summary.smp.data, QMC.int.ellipses

#

#

# ‘summary.smp.data’ - Summarize sampling point objects

#

# Usage:

#

# is.summary.smp.data(x)

# print.summary.smp.data(x,...)

# summary.smp.data(object)

#

# See also:

#

# smp.data

C Code

/*
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’generate_QMC_sampling_points_ext’ generates a set of Sobol quasi-random

points within a given rectangle ’frame’ AND within (open) circles

of radius R[1] around points given by ’pts’. Some additional information

about the created points is also passed as a result.

This ’not so obvious’ approach has the aim of minimizing the number of

oracle calls that have to be made for each sampling point before

numerical integration.

pts Centres of circles, stored as (x1,...,xn,y1,...,yn)

Npts Number of points (xi,yi) stored in ’pts’

R[2] Minimum and maximum radius of circles to be considered;

Nsmp Number of sampling points to be generated

frame[4] A reasonably large rectangle (ALL the circles of maximum

radius should be ENTIRELY inside this rectangle!)

The coordinates have to be stored as

(xmin,xmax,ymin,ymax).

RectNum[2], The ’frame’ rectangle will be divided into RectNum[1] x

RectSize[2] RectNum[0] rectangles of hight ’RectSize[0]’ and width

’RectSize[1]’, each >= 2*R[1].

res_xy The generated sampling points, stored as

(x1,y1,x2,y2,...,xn,yn) [!!].

res_WithinConjMin, These fields of length ’Nsmp’ indicate whether a

res_WithinDisjMin, sampling point is (a) inside the union of circles of

res_WithinDisjMax minimum radium, (b) inside the dissection of circles

of minimum radius, or (c) inside the dissection of circles

of maximum radius, respectively. Especially the latter

information is helpful for optimizing the numerical

integration.

res_Area The (estimated) total area occupied by the union of all

the circles of maximum radius.

res_RectIndex The starting index of sampling points inside a given

rectangle (cf. ’RectNum’ parameter).

Note that these indices are 1-based, i.e. the first sampling

point is referred to as 1, not as 0 as usual in C.

This is a (RectNum[0] x RectNum[1])-matrix stored by rows.

res_dFrameArea

res_Ntotal

Note:

The minimum radius R[0] has merely ’statistical’ relevance, i.e.,

it will be used for counting how many sampling points are within a

circle of minimum radius and thus knowing a ’worst case’ precision

for extremely small radius.

*/

extern void __declspec(dllexport) sobseq_init_exp();

extern void __declspec(dllexport) sobseq_exp(double *m, double x[]);

extern void __declspec(dllexport) sobseq2d_exp(double *m, double frame[], double x[]);

A.3.2 QMC.int.ellipses and Related Functions

R Code

#

# QMC.int.ellipses - Quasi Monte Carlo integration of weight functions

# on dissections of ellipses

#

# Usage:

#

# QMC.int.ellipses <- function(x,gx,ax,qx,
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# y=NULL,gy=NULL,ay=NULL,qy=NULL,

# symmetric=is.null(y), diagonal=FALSE, fun="one", norm="none",

# smp, so.names=NULL, extra.info=FALSE, fun.params=NULL,

# strong.boundaries=FALSE, force.intunion=FALSE, ...)

#

# Arguments:

#

# x centers of ellipses (2-vector or n-by-2-matrix)

# gx orientation of the longer axis of ellipses (in [0,pi[)

# ax longer axis of ellipses around ’x’

# qx axis ratio

#

# y,gy,ay,qy same as x etc. - ellipses to dissect with

# see also ’symmetric’

#

# symmetric if TRUE, ’y’,’gy’,’ay’,’qy’ will be set to be equal to

# ’x’ etc.

#

# diagonal only applies when ’symmetric’ is TRUE:

# if ’diagonal’ is FALSE (default), do not integrate on the

# dissection of an ellipse with itself (the diagonal of

# a semivariogram is 0, these computations would be redundant)

#

# fun weight function to be integrated in $\int fun(x,p)fun(y,p)dp$

# possible values are

# "one" fun(x,.) = 1 on the ellipse around x, 0 otherwise

# "linear" fun(x,.) decreases linearly towards the boundary

# "pwlinear" fun(x,.) = 1 up to a distance of f.params*radius

# from the center, then decreases linearly

# "bezier" Bezier function

#

# norm normalization to be applied:

# "none" no normalization

# "ellipse" divide by the square roots of the ellipses’ areas

# "integral" divide by the square roots of $\int fun^2(s,p)dp$

# (s=‘x[i,]’,‘y[j,]’)

#

# smp smp.data object providing an APPROPRIATE set of sampling

# points. The MC.int.ellipses does NOT check if these sampling

# points cover the ellipses (or their dissections) completely!

#

# so.names if "strong boundaries" are used, specifies which of the

# columns of smp$g indicates if a sampling point lies inside

# the area the semivariogram is defined on

#

# extra.info if TRUE, confidence intervals for the estimated integral

# are provided, based on the assumption that the sampling

# points are RANDOMLY uniformly distributed; i.e. the "true"

# confidence intervals can be expected to be much smaller

#

# fun.params additional parameters to the passed to the function ’fun’

#

# strong.boundaries if TRUE, the integrand is multiplied with,

# (smp$g[,so.names]==1) i.e. integrated only INSIDE the

# parameter set of the process.

# This forces ’filter.dissection’ to be FALSE.

#

# force.intunion (see code)

#

# Details:

#

# Calls the C function ‘QMC_int_ellipses_exp’.

#

# See also:

#
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# smp.data, sobseq2d, .C

#

C Code

extern void __declspec(dllexport) QMC_int_ellipses_exp

(double xy1[], double g1[], double a1[], double q1[], double *lpdN1,

double xy2[], double g2[], double a2[], double q2[], double *lpdN2,

double *lpdIsSymmetric, double *lpdCalcDiagonal,

double *lpdGetExtraInfo, double *lpdForceIntUnion, double *lpdStrongBoundaries,

char **lplpszFunction, double *lpdFunctionParameters, char **lplpszNormBy,

double *smp_xy, double *smp_N, double *smp_N_total,

double smp_indicator[],

double *smp_frame,

double *smp_rectnum, double *smp_rectsize, double *smp_nrect,

double *smp_rectindexfrom, double *smp_rectindexto,

double *smp_area,

double integral[], double int_lo[], double int_hi[],

double area[], double N_inside[],

double *err)

extern void __declspec(dllexport) within_ellipse_exp(double res[],

double pt[],

double y[], double g[], double a[], double q[],

double *npt, double *nell);

extern void __declspec(dllexport) within_ellipse_smp_exp(double *res,

const double *smp_xy, const double *N_smp, const double *smp_frame,

const double *smp_rectnum, const double *smp_rectsize,

const double *smp_rectindexfrom, const double *smp_rectindexto,

const double y[], const double g[], const double a[], const double q[],

const double *nell);

extern void __declspec(dllexport) QMC_GetSMPRectangles_exp(

double *lpdRectanglesX, double *lpdRectanglesY,

const double *smp_xy, const double *N_smp, const double *smp_frame,

const double *smp_rectnum, const double *smp_rectsize,

const double *smp_rectindexfrom, const double *smp_rectindexto,

const double *pt, const double *a);

A.4 Semivariogram Fitting and the Mean Squared Error

A.4.1 svm.mse

#

# Compute the (restricted) mean squared error

#

# svm.mse <- function(param,fix.param=NULL,

# d,sv,trend=FALSE,smp=NULL,

# param.names=NULL,param.semantics=NULL,

# fix.param.names=NULL,fix.param.semantics=NULL,

# mse.data=NULL, extra.info=FALSE, cov=FALSE, ...)

# calc.mse.data <- function(d,trend)

#

A.4.2 svm Object Class

#

# ‘svm’ - fitted semivariogram model

#
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# Usage:

#

# svm(d,sv,param,fix.param=NULL,trend=FALSE,smp=NULL,

# print.level=0,iterlim=50,steptol=1e-5,mse.estimate=1,

# trials=NULL,fun=NULL,extra.info=FALSE,...)

# print.svm(x, digits = max(3,getOption("digits")-3),...)

# summary.svm(object)

# print.summary.svm(x, digits = max(3,getOption("digits")-3),...)

#

A.5 Kriging

#

# Kriging

#

# Description:

#

# Perform ordinary or universal kriging.

#

# Usage:

#

# svm.kriging(data,newdata,sv,param,G,method="qr",tol=1e-10,trend=FALSE,...)

# predict.svm(object,data,newdata,...)

#

# Arguments:

#

# object: ‘svm’ object returned by a call to ‘svm’

#

# data: ‘svm.data’ object of observed data

#

# newdata: ‘svm.data’ object of locations and covariables for prediction

#

# sv: a semivariogram object

#

# param: semivariogram ‘param’eter object

#

# G: semivariogram matrix: ‘sv’ evaluated at ‘data’ (optional)

#

# method: method for solving the kriging equations; "qr" (default) or "svd"

#

# tol: tolerance for determining whether a matrix is singular

# (default: 1e-10)

#

# trend: if FALSE, ordinary kriging is performed, otherwise universal

# kriging

#

# ...: further arguments to the semivariogram object (and to

# ‘svm.kriging’, when calling ‘predict.svm’)

#

# Value:

#

# A ‘predict.svm’ object containing the predicted values, confidence

# intervals, kriging variances and much more data; see details.

#

#

# Details:

#

# In contrast to ‘svm,kriging’, ‘predict.svm’ extracts the semivariogram

# model and the estimated ‘param’eter object from the ‘svm’ object ‘object’

# and calls ‘svm.kriging’.

#

# ‘tol’: If ‘method="qr"’, ‘tol’ is passed to ‘solve.qr’; otherwise it is

# checked if the condition of the coefficient matrix with respect to the
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# spectral norm is greater than 1/tol.

#

# The returned ‘predict.svm’ object is a list of the following components:

#

# z: values predicted at the locarions given in newdata$xy

#

# z.lo, z.hi: Confidence intervals for ‘z’ at a level of 95%

#

# var: kriging variances

#

# z.coef: estimated coefficients of the observed data Z(t_1),...Z(t_n) for

# each predicted location; a (HUGE!) (n,k)-matrix, where

# k=nrow(newdata$xy).

#

# f.coef: remaining coefficients from the kriging equations

#

#

# See also:

#

# svm, solve.qr, svd

#

A.6 Empirical Semivariograms and Exploratory
Data Analysis

#

# eda

#

# Description:

#

# Exploratory Data Analysis for geostatistical data

#

# Usage:

#

# as.direction(direc)

# eda.plot.aoi(d,param,ellipse=FALSE,range=FALSE, add=FALSE, pch="+", ...)

# eda.plot.positive.correlations(d, G, sill, add=FALSE,

# draw.points=TRUE, pch="+", ...)

# eda.plot.positive.correlations2(d, rg, add=FALSE, draw.points=TRUE, pch="+", ...)

# eda.boxplot(z, notch = FALSE, varwidth = FALSE, notch.frac = 0.5,

# boxwex = 0.8, border = par("fg"), col = NULL, log = "", pars = NULL, ...)

# eda.boxplot.stats(d,direc,breaks=10,rel.breaks=TRUE,names=NULL,range=1.5,

# indicatorfn=NULL,...)

# eda.filter.pairs(xy, maxdist=NULL, direc=NULL, tol=NULL)

# eda.semivariogram.cloud(d, intv="default", method="equidistant",

# direc=NULL, tol=(1/18)*pi, extra.info=FALSE, trend=FALSE, mse.data)

# eda.pairs(d,labels=NULL,indicatorfn=NULL,...)

# eda.pairs2(d,labels=NULL,indicatorfn=NULL,...)

# eda.plot.semivariogram(G, pts, ref=1, ref.name=NULL, G.lo=NULL, G.hi=NULL,

# G.mc.lo=NULL, G.mc.hi=NULL, max.dist=NULL, max.value=NULL, xlab=NULL,

# ylab=NULL, title=NULL, labels=NULL, add=FALSE, is.ref.center=FALSE,

# draw.points=TRUE, cov=FALSE, pch=par("pch"), lwd=par("lwd"),

# col=par("col"), lty=c("solid","dashed","dotted"))

#

# Details:

#

# ‘as.direc’ computes the orientation (an angle) of 2-dim. vectors.

#

# ‘eda.plot.aoi’ plots the ‘‘areas of influence’’ of the locations, i.e. circles

# (or ellipses) of radius equal to the range (or half the range) of a semi-

# variogram.

#

# ‘eda.plot.positive.correlations’ draws lines between points that have
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# positive correlations, given a stationary semivariogram matrix C and its sill.

#

# ‘eda.boxplot’ draws a spatial boxplot using the ‘eda.boxplot.stats’ function

# instead of the original ‘boxplot.stats’. ‘eda.boxplot’ is practically the

# same code as the R function ‘boxplot’.

#

# ‘eda.boxplot.stats’ is a spatial adaption of ‘boxplot.stats’. It projects

# the coordinates on a line in the specified direction.

#

# ‘eda.filter.pairs’ selects pairs of points oriented in more or less the

# same direction.

#

# ‘eda.semivariogram.cloud’ plots empirical semivariograms using the moment

# method.

#

# ‘eda.pairs’ and ‘eda.pairs2’ are adapted to ‘scm.data’ objects and do the

# same as ‘pairs’ and (nicer:) ‘pairs2’ (code from help(pairs)).

#

# ‘eda.plot.semivariogram’: prefer ‘plot.sv’ instead.

#

A.7 Miscellaneous Code

#

# mask

#

# Description:

#

# Generic function for extracting parts of objects

#

# Usage:

#

# mask(x,...)

# mask.vector(x,m)

# mask.param(x,m)

# mask.svm.data(x,m)

#

# Arguments:

#

# x: An object from which to extract.

#

# m: A vector that specifies the elements to be extracted;

# must be of one of the many possible forms than can be used

# to select elements of vectors or lists, e.g. a logical vector

# of the same length as ‘x’ indicating which elements of ‘x’ to

# extract, or a numeric vector giving the indices of elements

# to be extracted.

#

# Value:

#

# An object of the same class as ‘x’.

#

#

# unify

#

# Description:

#

# A generic function for unifying object.

#

# Usage:

#
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# unify(x,...)

# unify.list(x,y)

# unify.vector(x,y,to.matrix=FALSE,name=NULL)

# unify.matrix(x,y,chk=TRUE)

# unify.param(x,y)

# unify.svm.data(x,y,chk=TRUE)

#

# Arguments:

#

# x,y: Objects to be unified. ‘y’ will be joint to ‘x’.

# See Details for the object types allowed for ‘y’.

#

# to.matrix: logical. If ‘TRUE’, the unified vector is converted to

# an one-column matrix with column name ‘name’, otherwise

# (the default) not.

#

# name: character. See ‘to.matrix’.

#

# chk: logical. ‘unify.matrix’: If ‘TRUE’ (the default) and

# both ‘x’ and ‘y’ have column names, only columns with

# the same names are unified.

# ‘unify.svm.data’: ‘chk’ is applied to matrix components

# in the same way as ‘unify.matrix’ does.

#

# Value:

#

# An object of the same type as ‘x’.

#

# Details:

#

# ‘unify’ does not perform a commutative operation.

#

# ‘unify.matrix’ acts columnwise.

#

# Possible combinations of object types:

# ‘x’ ‘y’

# list list

# matrix matrix, (vector)

# vector vector, (matrix)

# param param, vector

# csv csv

#

#

# getrange

#

# Description:

#

# Generic function that determines semivariogram ranges.

#

# Usage:

#

# getrange(x,...)

# getrange.param(x)

# getrange.vector(x)

# getrange.svfn(x,param,fix.param)

# getrange.svc(x,param)

# getrange.csv(x,param)

#

# Arguments:

#

# x: Object that contains information on the range.

# Must be a ‘param’ object, a named vector, NULL

# or a semivariogram object.
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# param,

# fix.param: Parameter objects.

#

# Value:

#

# The presumed range of a variogram feeded with the parameter

# vector ‘x’.

#

# Details:

#

# If no information could be obtained (i.e. no

# element with name or semantics ‘range’ was found), ‘NA’

# is the result.

#

#

# Check if points are contained by ellipses

#

# Description:

#

# Check if points given by different types of objects

# are within given (open) ellipses.

#

# Usage:

#

# within.ellipse(x,...)

# within.ellipse.matrix(x,y,g,a,q)

# within.ellipse.smp.data(x,y,g,a,q)

# within.ellipse.svm.data(x,y,g,a,q)

#

# Arguments:

#

# x: an object from which to take the points

#

# y: (k,2)-matrix (or 2-vector) specifying the centers of

# ellipses

#

# g: orientations of the ellipses’ longer axes (k-vector

# of values in [0,pi[)

#

# a: longer axis radius (k-vector)

#

# q: axis ratios (k-vector)

#

# Value:

#

# A logical matrix of n rows and k columns, the (i,j)th entry

# being TRUE if pt[i,] (or whatever may be the i-th point

# coordinate) contained in the open ellipse around y[j,]

# with radius a[i] along g[i] and q[i]*a[i] along g[i]+pi/2.

#

# Details:

#

# C routines are called.

#

#

# Compute the norm or condition number of a matrix or vector

#

# Usage:

#

# norm(x,...)
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# norm.vector(x,norm=2)

# norm.matrix(x,norm=Inf,symmetric=FALSE)

# cond(x,norm=Inf,symmetric=FALSE)

#

# Arguments:

#

# x a quadratic matrix or vector

#

# norm a number specifying the norm (for vectors, values >0 and <=Inf

# are allowed; for matrices, 1,2 and Inf only)

#

# symmetric TRUE, if the matrix is symmetric (this will not be checked!)

#

A.8 GIS Interface

’

’ Step 1 - Export Data

’

’ Export data from the active theme to a text file to be read by

’ MoGeS / R.

’ This script is just an interface to DoExportData.

’

’

’ Step 2 - Model Specification

’

’ Select global and local semivariograms.

’ Identify variables (i.e. parameters or covariables).

’ Assign fixed values to parameters.

’ Specify the columns in a theme’s table that contain the covariables.

’

’

’ Step 3 - Semivariogram Fitting

’

’ Fit the specified semivariogram to the selected data using MoGeS within R:

’

’ Generate R code that prepares and performs the fitting.

’ Generate a batch file for running R with the generated R file.

’ (DEPENDS ON THE ACTUAL PATH OF THE R TERMINAL PROGRAMM rterm.exe!!!!)

’ Run the batch file.

’

’ Small modifications of the code are necessary if the outpur of R shall be written

’ to a .res-file. Currently the results are just displayed in the DOS shell’s window.

’

’ NOTE: THE MoGeS R ROUTINES MUST BE IN THE SAME DIRECTORY AS THE EXPORTED

’ DATA IN ORDER TO BE ACCESSIBLE TO R!!!

’

’

’ Step 4 - Kriging

’

’ Perform kriging at given locations and using given covariable and parameter values.

’

’ Steps:

’ (1) Export the observed data and kriging locations and data.

’ The observed records must be identified by a numeric field

’ with the alias "observed"; values <>0 indicate that the record

’ contains an observed value. Kriging is performed based on these

’ observed values and at all (selected) points in the point shape.

’ (2) Generate R code.

’ (3) Run the R code.
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’ (4) After running this script, the user can add a table <filename.krg> into

’ his project and create an "event theme" that contains the kriging results

’ in the table’s ’Z’ field.

’

’ Visualization in R is not yet available; for R’s ‘contour’ and ‘persp’ (3D)

’ functions, gridded data is needed. It is a bit complicated to generate the

’ grid outside (or inside) ArcView, specify the covariables within ArcView and

’ then do kriging... this is too much for just one script, the user will have to

’ do that on his own...

’

’ NOTE that all records that shall be exported must be SELECTED!!!

’

’

’ CheckVariables

’

’ Check for validity of ‘‘variables’’, i.e. parameters or covariables.

’

’

’ Arguments:

’

’ (1) aliases: list of strings specifying the aliases of selected parameters

’ (2) values: list of numbers: the values corresponding to these aliases

’ (3) names: list of strings indicating the (original, i.e. unaliased and

’ unreduced) variable names

’ (4) semantics: same, but semantics

’ (5) vartype: either "parameter" or "covariable"

’ (6) dlgtitle: string: a title to be used for dialogs

’

’ Returns:

’

’ a list of two components:

’ (1) TRUE if all values were valid

’ (2) a list of elements of the form { AnAlias, AValue }, where Analias

’ is an element of argument (1) and AValue is the corresponding

’ (possibly corrected) value for the AnAlias variable

’

’ Details:

’

’ CheckVariables makes use of the parameter or covariable semantics in order

’ to check for validity.

’

’ If there are invalid values, a dialog will tell the user the valid range

’ of parameter or covariable values.

’

’

’ DifferentParameterSemantics

’

’ Finds out whether selected parameters are of the same semantics.

’ Returns a boolean value.

’

’

’ DoExportData

’

’ Export data from the active point theme to a text file to be read by R.

’

’ Point coordinates are projected and stored in columns with names specified

’ by the user. Furthermore, the user is asked which column contains the measurements

’ (unless the data is used for kriging).

’ The first and only argument to DoExportData indicates whether the data will

’ be used for kriging (TRUE) or not (FALSE).

’
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’

’ EnterStartingValues

’

’ Enter starting parameter values to be used for model fitting.

’ Validity will be checked (CheckVariables)

’

’ Arguments:

’

’ (1) list of strings: aliases of the selected parameters

’ (2) list of strings: original parameter names (before fixing

’ values, identifying parameters etc.) of the selected semivariogram

’ models

’ (3) list of strings: semantics corresponding to these names

’

’ Returns a list with elements of the form { AnAlias, AValue }, where AnAlias is an

’ alias string and AValue a valid parameter value corresponding to the

’ parameter called AnAlias.

’

’

’ FixVariables

’

’ Assign fixed values to semivariogram parameters or covariables.

’

’ Arguments:

’

’ (1) aliases

’ (2) names: unreduced list of variable names of the selected model

’ (3) semantics: same for parameter semantics

’ (4) vartype: either "parameter" or "covariable"

’

’ Returns:

’

’ (1) unfixed aliases: remaining aliases from argument (1) that were not fixed

’ (2) fixed aliases: list of components of the form { AnAlias, AValue }

’ (3) has fixed variables: boolean

’

’ Details:

’

’ User is asked which variables shall be fixed, and to enter the corresponding

’ values variable by variable.

’

’

’ GetSemantics

’

’ Returns the semantics string corresponding to a parameter or

’ covariable alias.

’

’

’ IdentifyVariables

’

’ Asks the user if any variables (parameters or covariables) shall be

’ identified, and if so, the user has to enter a common alias for

’ both variables.

’

’

’ QueryNewAlias

’

’ Ask for a new variable alias; called by IdentifyVariables.

’
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’

’ R_AssignAlias

’ R_AssignParam

’ R_AssignSemivariogramComponent

’ R_AssignSemivariogramModel

’ R_ReadSvmData

’

’ Write R code to a given LineFile, defining an alias variable,

’ a ‘param’eter object, a ‘svc’ object or a ‘svfn’ object,

’ or reading a ‘svm.data’ object from a file.

’

’

’ SelectSemivariogramModel

’

’ Display a dialog box for multiple semivariogram selection.

’ Reuturns lists containing the selected semivariogram indices, parameter

’ names, semantics and aliases, and covariable names, semantics and aliases.

’

’ Note that the returned aliases are not the same as the names, because

’ the semivariogram model’s name has to be added to the parameter and covariable

’ names in order to get unique aliases.

’

’ This script is called by the "Step 2 - Model Specification" script.

’

’

’ shp2ascii

’

’ Convert any shape file to an ASCII file, resolving polygon and

’ line themes to point themes if necessary.

’ Point coordinates are projected and added as columns to the

’ theme’s table.

’ Output file can be read by R; if conversion to a point shape

’ has to be made, the temporary point shape file can be used by

’ the ArcView/MoGeS interface.

’
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