A4 ..
& A 9 TECHNISCHE UNIVERSITAT
2 >T< % BERGAKADEMIE FREIBERG
A’?El BE?*O The University of Resources. Since 1765.

Faculty of Mechanical, Process and Energy Engineering
Institute for Mechanics and Fluid Dynamics (IMFD)
Chair Applied Mechanics — Solid Mechanics

UELLIB
A library for user-defined elements in Abaqus

Geralf Hutter, Stephan Roth, Rostyslav Skrypnyk

April 19, 2021

Contact:

Geralf Hotter

TU Bergakademie Freiberg

Institute of Mechanics and Fluid Dynamics
Lampadiusstr. 4

09596 Freiberg, Germany
Geralf.Huetter@imfd.tu-freiberg.de

Contents

Contents
[T_Generdl

[2__Installation|
2.1 Files|
[2.2 Exampleelements|

3 Usage| . . . e e

[3 Implementation|

3.1.1 Interfaceto Abaqus|

3.1.2 SEOEG Func’rions|

3.1.3 vadrature Rules|

[3.1.4 B-matrices|
[3.2 Applications|

3.2.1 Elements with Ditterent Shape Function, Quadrature Rules etc.|.
3.2.2 Multi-fieldproblems|

|4 Perspective and Problems|
[4.1 Known problems|

[Version History|

N O O [3O, IO, T &, IF NN SN SN N A WwWW w

~N

Hutter/Roth/Skrypnyk: UELLIB

1 Generadl 3

1 General

The commercial finite element code Abaqus/standard provides the UEL interface to implement
user-defined elements. Implementing different problems as UEL often requires the same in-
gredients like particular shape functions, quadrature rules and mathematical utility routines.
The present library UELIlib provides a library with modular structure for the implementation of
elements via the UEL interface. UELIib distributed under a CC BY-NC-SA 4.0 license. UELIib
has been used by the authors in [1, 2, [3], |4]. Please refer to any of these publications when
using UELIib.

Requirements to the program:

1.

It shall be possible to create elements with different different dimensionality (2D/3D),
material routines, shape functions, and different quadrature rules without modifying the
source code of the actual UEL routine but by changing only the loaded modules.

. It shall be possible to use elements with different shape functions, quadrature rule etc.

in a single simulation.

. The library shall be easily serviceable, i.e. it shall contain as few dublicate information

and subroutines as possible.

. The modular structure shall not influence the runtime speed if possible. For this purpose

the libraries are procedurally programmed and it is envisaged that as much information
on dimensions of arrays are accessible at compile time in order to allow vectorization.

However, in order to achieve the desired flexibility the library implements static polymor-
phism features and modules in FORTRAN 90/95.

The source code has been developed and extensively tested using versions 6.10EF1 and
6.12-3 of ABAQUS with version 11.0 of the Intel Fortran compiler. Later, it was used succes-
fully with Abaqus versions 6.14, 2018 and 2020 and Intel Fortran compiler 2017.

2 Installation

2.1 Files

In folder 1ib/:

* ABQinterface.f90: provides data types of Abaqus variables and explicit interfaces to

Abaqus utility routines

* Math.f90: mathematical utility routines e.g. for inversion of matrices

* UEL_1ib.f£90: shape functions, quadrature rules and B matrices

2.2 Example elements

In folder examples/:

* elastic: standard small displacement element, material routines for isotropic elastic

3D and 2D plane stress and plain strain analysis by Rostyslav Skrypnyk

* empty_element_framework: framework for building new elements

Hutter/Roth/Skrypnyk: UELLIB

https://creativecommons.org/licenses/by-nc-sa/4.0/

3 Implementation 4

2.3 Usage

UELLIB can either be used by including its source files (as listed in section or by linking the
compiled UELLIB to the desired library. Both scenarios are demonstrated with the example el-
ements for which respective Makefiles are provided to build 1ibstandardU in subfolders bin/
of the example elements. They are implemented as make targets buildlibsrc and buildlibbin,
respectively. In the latter case the files of UELLIB have to be compiled first. A further Makefile
ist provided in the root directory for this task to build the object files in folder bin/.

If UELLIB shall be used for building a new element, copy one of the content of one folders
of the example elements to another folder and start editing it. The variable UELlibpath in the
copied Makefile has to be set to the directory where UELLIB is located.

3 Implementation

3.1 Structure
3.1.1 Interface to Abaqus

The module ABQINTERFACE in ABQinterface.f90provides an explicit interface to some utility
provided by Abaqus. Another important point is the precision of integer and float variables in
the UEL interface. Abaqus offers only an implicit type declaration over the file ABA_PARAM. INC.
However, implicit type declaration is prone to errors and thus outdated. For this reason private
variables are defined implicitly in ABQINTERFACE. Their "kinds" are picked and provided as
AbgRK and AbglK for explicit type declarations in all following modules and routines.

3.1.2 Shape Functions

The shape functions are provided over the modules ShapeFunc* in UEL_1ib.£90. Each of this
modules contains

* ShapeFunc(chi) which returns the vector (of size NNODES) of values of the shape functions
at a given position chi in the unit domain. chi is a column vector of suitable dimension
NDIM. According to the concept of the libraries, the values NNODES and NDIM are
provided as paremeters and can be used for defining fixed-size arrays.

* ShapeFuncDeriv(chi) returns the values of the derivative of the shape functions w.r.t. the
unit coordinates chi as array of dimension DIMENSION(NNODES,NDIM).

3.1.3 Quadrature Rules

The modules Integr+ * contain the quadrature rules. Their names like Integr2D_Square9GP
indicate that they refer to a plane square unit domain with nine Gauss points. Each of this
modules provides:

* the number of Gauss points NGP

* the dimension of unit domain NDIMGP

* a column vector GPWeight with weights of the Gauss points

* a matrix GPPos(NGP,NDIMGP) containing the positions of the points in the unit domain

All these values are defined as parameters and are thus available at compile time.

Hutter/Roth/Skrypnyk: UELLIB

3 Implementation 5

3.1.4 B-matrices

The modules BMatrices* contain functions to derive the B-matrices for different szenarios
* BMatTensSym for symmetric tensors in Voigt notation like e.g. the strain tensor
* BMatTensUnsym for unsymmetric tensors in Voigt notation like e.g. the deformation

by default the B-matrices are computed from the inverse of Jacobian of the isoparametric
mapping and from the derivative matrix of the shape functions w.r.t. the unit coordinates.
Alternative versions of the function with suffix _SFG are available indicating that the B-matrices
are computed from the already computed gradient of the shape functions w.r.t. the physical
coordinates. This option may save computational time in multi-field problems if the same
shape functions are used for the different fields.

3.2 Applications
3.2.1 Elements with Different Shape Function, Quadrature Rules etc.

If only a single element shall be developed the aforementioned modules can just be loaded in
the UEL routine. However, one main goal of the present library is to allow to develop elements
with different shape function, quadrature rules, dimensions etc. with a single source code,
i.e. without the necessity of maintaining different almost identical source codes for similar
elements. If they shall be used in a single simulation (or compiled into a single universal
shared library) this can be achieved via modules as demonstrated in the examples:

MODULE CXU2D4PlaneStrain
USE ShapeFunc2D_Square_Lin
USE BMatrices2DPlaneStrain
USE Integr2D_Square4GP
USE UMAT1
IMPLICIT NONE
PUBLIC : : UEL
CONTAINS
INCLUDE "UelCXU.f90"
END MODULE

Then the file UelCXU.£90 contains the actual UEL that makes use of the generally named
routines and variables defined in the modules as described in section (like ShapeFunc(chi),
NNODES etc.). Several of such modules with different combinations of shape function, quadra-
ture rules, dimensions efc. can be created. This means that the actual element routine from
UelCXU.£90 is compiled individually for each combination allowing the respective optimza-
tions since information like the size of the arrays are available at compile time. Finally, the
modules with different element routines are managed by the "global" UEL routine provided to
Abaqus. This routine loads the modules and calls the respective module element routine de-
pending on the JTYPE parameter. The latter contains the number of the user element defined
in the Abaqus input file, e.g. a definition *USER ELEMENT, TYPE=U2001, ... would correspond
to JTYPE=2001.

SUBROUTINE UEL (... Parameters according to Abaqus UEL interface...)
USE CXU2D4PlaneStrain, ONLY: UEL1 => UEL
USE CXU3D20, ONLY: UEL2 => UEL

I Type declarations

Hutter/Roth/Skrypnyk: UELLIB

4 Perspective and Problems 6

SELECT CASE(JTYPE)
CASE (2001)
CALL UEL1(Parameters)
CASE (2002)
CALL UEL2(Parameters)
END SELECT
END SUBROUTINE

Note that the local renaming operator => is used here to distinguish the originally equally
named module element routines. It may be remarked here that the interface of the module
element routines has not inevitably to coincide with the Abaqus UEL interface. For instance
module element routines may use assumed-shape arrays or may drop some irrelevant pa-
rameters.

3.2.2 Multi-field problems

Using the possibilities of Fortran 90/95 also multi-field problems may be implemented easily.
For this purpose the shape function modules are loaded several times and the needed sub-
routines are renamed correspondingly. For instance for a coupled temperature-displacement
element with quadratic shape functions for the displacements and linear ones for the temper-
ature the frame could look like this:

MODULE CXUT2D8M1
USE ShapeFunc2D_Square Quad,&
ONLY: ShapeFuncDispl => ShapeFunc, &
ShapeFunDerivcDispl => ShapeFuncDeriv, &
NNODESDISPL=>NNODES, NDIM
USE BMatrices2DPlaneStrain ,&
ONLY: BmatStrain => BMatTensSym, NDI, NSHR, NTENS
USE ShapeFunc2D_Square_Lin , &
ONLY: ShapeFuncTemp => ShapeFunc, &
ShapeFunDeriveTemp => ShapeFuncDeriv, NNODESTEMP=>NNODES
USE BMatricesScalar, ONLY: BmatTemp => BMatScal
IMPLICIT NONE
PUBLIC : : UEL
CONTAINS
INCLUDE "UelCXUT.f90"
END MODULE

Now the actual element routine in Ue1CXUT. £90 can use the loaded routines like ShapeFuncDispl
and ShapeFuncTemp which may be although identical if the same modules are loaded for tem-
perature and displacement.

4 Perspective and Problems

4.1 Known problems

* For an unknown reason the UEL interface of Abaqus reserves arrays of different sizes
for the generalized vectors of displacements and internal forces, namely U(NDOFEL)
and DIMENSION RHS(MLVARX,NRHS) with NDOFEL not being equal to MLVARX (actually,
the latter is larger). If the implementation is done in Fortran 77 with all vector and ma-
trix operations implemented via DO loops one does not need to care about this matter.

Hutter/Roth/Skrypnyk: UELLIB

5 Version History 7

However, if use of vector and matrix capabilities of Fortran 90/95 shall be made allow-
ing a vectorization for an improved performance one has to take care. We recommend
to introduce an additional array of suitable DIMENSION RHS TEMP(NDOFEL,NRHS) and
finally copy the respective entries to the original array RHS as it is done in the provided
example.

* The provided subroutines should support complete parallelization since they do not
use critical features like COMMON blocks, module variables or variables with SAVE
attribute. However, at least under the tested environments the compiler options used
by default by Abaqus do not permit parallelization. The compiler options are stored
in the file "ABQDIR/site/abaqus_v6.env". It has to be copied to the job directory.
Within this file, the line compile_fortran="... -auto ..." has to be changed to
compile_fortran="... -openmp ...". With this modification the computations can
be run completely in parallel, i.e. for computing the element matrices and solving the
final system of equations.

* Abaqus versions 2016 and later employ the compiler option —fpp by default. However,
the Intel Fortran preprocessor fpp does not recognize the compiler directive IDEC$ FREEFORM
which switches to free-form Fortran. In order to overcome this problem, either the switch
—fpp has to be removed in the line compile_fortran="..." of the Abaqus environment
abaqus_v6.env or the compiler option —free has to be set therein explicitly.

* The B-matrices for unsymmetric tensors are not verified yet.

4.2 Future developments:

* second derivatives of shape functions as necessary e.g. for Euler-Bernoulli beam ele-
ments or Kirchhoff plate elements

* B-matrices for higher order tensors
* tilities for surface loads for implementing DLOAD routine with UELIib

* performance improvements
— usage of libraries like Intel MKL or LAPACK for mathematical utility routines

— hard coded derivatives of shape functions with respect to unit coordinates to im-
prove the performance

— inline compilation of smaller utility routines

* testing and verification with other compilers and under MS Windows

5 Version History

Date SVN/GIT | editor | remarks
version
2014/05/06 | 1 GH framework with interfaces of routines only

Hutter/Roth/Skrypnyk: UELLIB

References 8

Date SVN/GIT | editor | remarks
version
2014/05/06 | 3 GH first working version with example element by R. Skryp-
nyk
2014/05/07 | 5 GH added: Gauss point numbering as in Abaqus, sep-

arated B-matrices based on shape function gradient;
modifications: changed naming of some modules and

routines

2014/05/08 | 6 GH elimination of minor bugs

2014/06/24 | 8 GH added: shape functions and integration scheme for lin-
ear triangle element + example

2014/10/27 | 9 GH added: shape functions and integration scheme for
tetrahedra by RS

2015/04/22 | 10 GH added: quadratic shape functions for triangle element

incl. integration schemes and shape functions and inte-
gration schemes for line elements by S. Roth

2015/10/23 | 18 GH added: Makefiles for compiling UELLIB and the pro-
vided example elements (requiring some restructuring
of the folders of the latter)

2015/10/26 | 19 GH changed: Use of Abaqus utility routine STDB_ABQERR))
for reporting errors in submitted material parameters for
example element instead of WRITE()

2015/11/06 | 24 GH Makefile now builds single object file UEL_lib-std.o,
which contains all modules, in folder /bin

2015/12/04 | 27 GH added some direct integration rules for quadrilateron
(5,7,8 point) and hexahedron (14 points)

2017/02/17 | 31 GH removed: bug when calling inverse () without optional

argument det; added: generic interface inverse which
can be called also as function

2017/10/23 | 33 SR B-matrices for axi- and spheri-symmetric elements

2018/02/07 | 35 GH added: "SFG" variant of B-matrices for axi-symmetric
elements; few minor modifications and optimisations

2018/03/06 | 04dd530 | GH added: interface to PreFactor to be accessible as function
or subroutine, the latter providing the derivative w. r. 1.
radius for large displacement analyses

2018/06/27 GH added to documentation: hint regarding compiler op-
tions for Abaqus 2016 and later

References

[1] S. ROTH, G. HUTTER, M. KUNA: Simulation of fatigue crack growth with a cyclic cohesive
zone model, International Journal of Fracture, 188 (2014), 23-45.

[2] G. HUTTER, R. SKRYPNYK: Micromorphic Homogenisation of a Porous Medium: Appli-
cation to Size Effects and Quasi-Brittle Damage, Proceedings of Applied Mathematics
and Mechanics 16 (2016), 347-348.

[38] G. HUTTER: Micromorphic homogenisation and its application to a model of ductile
damage, Proceedings of Applied Mathematics and Mechanics 17 (2017), 599-600.

Hutter/Roth/Skrypnyk: UELLIB

References 9

[4] N. LANGE, G. HUTTER, B. KIEFER: An efficient monolithic solution scheme for FE? prob-
lems, arxiv.org/2101.01802.

Hutter/Roth/Skrypnyk: UELLIB

https://arxiv.org/abs/2101.01802

	General
	Installation
	Files
	Example elements
	Usage

	Implementation
	Structure
	Interface to Abaqus
	Shape Functions
	Quadrature Rules
	B-matrices

	Applications
	Elements with Different Shape Function, Quadrature Rules etc.
	Multi-field problems

	Perspective and Problems
	Known problems
	Future developments:

	Version History

