
A user element for small and finite
deformation for Abaqus

Nils Lange, Geralf Hütter

July 19, 2021

1 Description
The present package provides the implementation of elements for the UEL interface of Abaqus. The
package is distributed under a CC BY-NC-SA 4.0 license. It is published together with MonolithFE2.
Please refer to [1] when using the package or any of its contents.

Features

• small deformations and finite deformations in Updated Lagrange formulation

• UMAT interface (equivalent to Abaqus) for user defined material behavior

• elastic-Mises-plastic material routine in rate formulation supplied

• plane stress, plane strain, axisymmetric and 3D-stress conditions

• Hardening Abaqus interface UHARD supported when Mises UMAT is being used

• UHARD for multilinear hardening supplied

• 3D, plane strain, plane stress and axisymmetric elements

Requirements

• UELlib (ABQinterface.f90, Math.f90, UEL_lib.f90 loaded in UEL.f)

2 Usage
Same usage as standard UELlib elements. In the Inputfile, specify the UEL as:

*USER ELEMENT, IPROPERTIES=0, PROPERTIES=%nPROPS, TYPE=elementtype, NODES=%nNODES,
COORDINATES=%nCOORDS, VARIABLES=%nSVARS

1, 2, 3 **or 1, 2 if 2D Elements are being used

Where nPROPS is the number of Properties, which are supplied for the UMAT.

1

https://creativecommons.org/licenses/by-nc-sa/4.0/

The hypoelastic-Mises-plastic UMAT, which calls the UHARD for multilinear Hardening expects the
Properties in the following order:

*UEL PROPERTY
%E, %ν, %Y1, %εpl1 , %Y2, %εpl2 ,...

Where E and ν are the elastic constants, Yi is the yield stress and εpl
i the plastic strain. Only 8

properties per line are allowed.

The simulation is started with:

abqXXXX interactive job=Jobname user=bin/UEL-std

The program has to be precompiled with running

make ABACALL=abqXXX MATERIAL=XXXX (Linux)

.\compile.bat (Windows, a prompt asks for the Material Model)

Note: The directive "!DEC$ FREEFORM" tells the Intel Fortran Compiler that the code is writ-
ten in free-form Fortran. Recent version of Abaqus since 6.14 switch on the preprocessor by the option
"-fpp" by default which is incompatible with the aforementioned compiler directive. For using the code
with such recent versions, the option "-fpp" has to be removed in the Abaqus environment file or,
alternatively, the compiler option "-free" has to be set.

3 Examples
Two Examples are provided. In the first example “Hex_uni_tension” and “Hex_uni_tension_UEL”,
a 1mm×1mm×1mm one element cube is exposed to uniaxial tension without expansion prevention in
the other two directions using finite kinematics with ū1(t) = 0.1mm · t. A elastic plastic material with
E = 100MPa, ν = 0.3, Y1 = 1.0MPa, εpl

1 = 0.0, Y2 = 2.0MPa and εpl
2 = 1.0 is being used. The

resulting (true) cauchy stress σ11 is being compered with the Abaqus C3D8 implementation. Since only
nodal UEL values are accessible in the Abaqus postprocessing, the stress is being calculated as:

σ = J−1PFT (1)

σUEL
11 =

1 + u1

(1 + u1) · (1 + u2) · (1 + u3)
· RFtotal

Anominal
(2)

0.00 0.20 0.40 0.60 0.80 1.00

0.00

0.20

0.40

0.60

0.80

1.00

S:S11 Abq C3D8

S:S11 UEL 2004

2

In the second example “Hex_uni_tension_rotation” and “Hex_uni_tension_rotation_UEL” the same
cube (with elastic materialbehavior) is exposed to uniaxial tension with expansion prevention and then
rotated 360◦ around the z-axis. The deformation gradient is:

F =

1.0 + 0.1s−1 · t 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 0.0s 6 t 6 1.0s

F =

1.1 cos(s−1 π
2 t) − sin(s−1 π

2 t) 0.0
1.1 sin(s−1 π

2 t) cos(s−1 π
2 t) 0.0

0.0 0.0 1.0

 1.0s < t 6 4.0s

(3)

For comparison the reaction force of node 1 (X = 0) is plotted using the Abaqus C3D8 and UEL 2004
Element.

0.0 1.0 2.0 3.0 4.0 5.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0 RF:RF3 PI: UEL 2004

RF:RF1 PI: UEL 2004

RF:RF2 PI: UEL 2004

RF:RF1 PI: Abq C3D8

RF:RF2 PI: Abq C3D8

RF:RF3 PI: Abq C3D8

4 Theory
For large deformations, the update Lagrange method is deployed. The element coordinates of the
current configuration are computed as:

xe = Xe + ue (4)

The B-matrix is a function of the current element coordinates:

Be = Be (xe) (5)

The rate of deformation is calculated by the central difference formula after Hughes and Winget [2]:

∆D = sym

(
∂∆u

∂xt+∆t/2

)
(6)

with:
xt+∆t/2 =

1

2
· (xt + xt+∆t) (7)

Written with B-Matrix:
∆Dα = Bα

t+∆t/2
· ∆u (8)

The stresses are rotated and updated as:

σt+∆t = ∆R · σt · ∆RT + ∆σ(∆D) (9)

where ∆σ is to be defined by the UMAT as a function of ∆D. The rotation increment is calculated as:

∆R = (I − 1

2
∆W)−1 · (I +

1

2
∆W) (10)

3

with

∆W = asym

(
∂∆u

∂xt+∆t/2

)
(11)

The vector of the internal forces is now calculated as:

fe
int

=

nα∑
α=1

wα · det(Jα
t+∆t

) ·BαT
t+∆t

· σαt+∆t (12)

The element stiffness matrix is computed as:

Ke =

nα∑
α=1

wα · det(Jα
t+∆t

) ·BαT
t+∆t

· Cα ·Bα
t+∆t

(13)

The plane stress algorithm is a nested Newton algorithm after Dodds (see for details [3] p.362). It’s
worth mentioning, that a “monolithic” algorithm (as described in [3] p.367) could be computationally
more efficient, but requires to “know” state variables from the last global Newton-Raphson loop, which
is provided neither by the UMAT nor the UEL interface. A possible solution would be the use of
optional FORTRAN 90 style arguments, so that values of the current NR increment could be provided
by MonolithFE2, while still being compatible with Abaqus. The nested Newton algorithm although
being robust and efficient is sometimes leading to convergence problems at the global FE level.

5 Defining a different Material behavior
Defining the material behavior is similar to Abaqus. A material routine has to be written using the
UMAT interface as declared in the Abaqus Manual [4]. The UMAT has to be named precisely “UMAT.f”.
The routine has to be written for 3D, plane strain or axisymmetric deformation states. The plane stress
case is handled internally. The file UMAT.f can also contain various SUBROUTINES or FUNTIONS but
no MODULES. Preferred is FORTRAN 90 free form code. When the UMAT is written in FORTRAN 77
fixed form style compiler directives have to be included before and after the subroutine as shown below:

!DEC$ NOFREEFORM

SUBROUTINE UMAT(...)

...user coding to define UMAT...

...all variables are defined just as in the Abaqus/Standard UMAT interface and have
the same type and dimension...

END SUBROUTINE UMAT

!DEC$ FREEFORM

4

The number of state variables required by the UMAT has to be specified in the Routine GetNSTATV.
Name this routine precisely “GetNSTATV.f”.

FUNCTION GetNSTATV(NTENS,NDI,PROPS)

INTEGER(KIND=AbqIK):: GetNSTATV
INTEGER(KIND=AbqIK), INTENT(IN):: NTENS,NDI
REAL(KIND=AbqRK),INTENT(IN):: PROPS(:)

...user coding to define GetNSTATV. If NTENS==3 (plane stress) add +1 to that value
since the plane stress algorithm needs one internal state variable too...

END FUNCTION

Write a routine to check if the material parameters are reasonable and name it precisely “CheckMate-
rialParameters.f”. Use the STDB_ABQERR function to stop the simulation and report errors to the
inputfile [4]. If you do not want to check the parameters just return using the FORTRAN statement
RETURN.

SUBROUTINE CheckMaterialParameters(PROPS)

REAL(KIND=AbqRK),INTENT(IN):: PROPS(:)
...
! Check the properties

if (...) then
CALL STDB_ABQERR(-3, "CheckMaterialParameters reports: ... ", 0, 0.0, " ")
else if (...) then
...
end if

END SUBROUTINE CheckMaterialParameters

Put all 3 files into a directory with a reasonable name inside of the materialroutines folder. When
the program is compiled as described in section 2 specify MATERIAL= with the name of the just created
directory.

6 Version history

date description
2020-11-26 return correct PNEWDT; call UMAT in UXMAT FORTRAN 90 style; deliver iden-

tity matrix to UMAT as deformation gradient in small deformation simulations as
done in Abaqus; deliver the correct GP COORDS to UMAT; return the symmetric
Part of AMATRX; in UXMATMISES a algorithm for plane stress is added, which
can be used for arbitrary UMATs

2020-12-10 Newton Algorithm in UMATMises.f corrected; handover of STATEVs from UMAT
to UHARD corrected; geometrical stiffness in finite deformation UelCXU.f95 added

2021-03-10 major revision of the geometrical stiffness matrix
2021-19-07 material routines are now to be put into folder ’materialroutines’ and compiled

with make MATERIAL=..., example materialroutines added

5

References
[1] N. Lange, G. Hütter, B. Kiefer: An efficient monolithic solution scheme for FE2 problems,

arxiv.org/2101.01802.

[2] T.J.R. Hughes, J. Winget : Finite Rotation Effects in Numerical Integration of Rate Con-
stitutive Equations Arising in Large Deformation Analysis, International Journal for Numerical
Methods in Engineering, vol. 15, pp. 1862–1867, 1980.

[3] EA de Souza Neto, D Perić, DRJ Own: Computational methods for plasticity, theory and
applications, John Wiley Sons Ltd, 2008.

[4] ABAQUS/Standard User’s Manual, Version 6.9, Michael Smith, Dassault Systèmes Simulia Corp,
2009

6

https://arxiv.org/abs/2101.01802

	Description
	Usage
	Examples
	Theory
	Defining a different Material behavior
	Version history

