
MFE²

F
I

MonolithFE2— A monolithic FE2

implementation for Abaqus
Version 1.02a

Nils Lange, Geralf Hütter, Björn Kiefer

July 23, 2021

Contents 2

Contents

1 Description 3
1.1 Features . 3
1.2 Requirements . 4

2 Quick Start Guide 4

3 Examples 6

4 Creating Microscale Models 10
4.1 Within Abaqus/CAE using Plug-In for 2D models 10
4.2 For 3D models with existing equations for periodic boundary conditions 12

4.2.1 Micromechanics Plugin . 12
4.2.2 FoamGUI . 13

5 Postprocessing 13

6 Source Code and Compilation 15
6.1 Installation of the Abaqus Plugins . 15
6.2 Compilation . 15
6.3 Source Code . 16

7 Defining a different Material behavior 19

8 Limitations, Problems and Future Developments 21
8.1 Limitations . 21
8.2 Known Issues . 21
8.3 Software environment . 21

9 Version history 22

Lange, Hütter, Kiefer: MonolithFE2

1 Description 3

1 Description

MonolithFE2is an open-source program for Abaqus, distributed under a CC BY-NC-SA 4.0
license. Details on the implemented theory can be found in [1]. Please refer to this publication
if you use MonolithFE2.

The main idea behind the present FE2 implementation is to use Abaqus Standard for solving
the macro FE problem and a self-written light-weight code for solving the micro problems. The
micro-macro data exchange is performed through the Abaqus UMAT interface. MonolithFE2

employs the UEL interface of Abaqus at the micro-scale. An UEL is shipped with MonolithFE2.
This UEL comprise a certain number of established element types and employs the UMAT
interface for the material law at the micro-scale. Thus, previously developed UELs and UMATs
can be employed directly at the micro-scale and be tested in Abaqus directly independent of
MonolithFE2. By default, an elastic-plastic MISES material routine UMAT in rate formulation is
employed at the microscale. The preprocessing for the micro-scale is done in Abaqus/CAE
with aid of a Python plug-in. The postprocessing of selected microscopic FE problems can
be done by a re-simulation in Abaqus with the actual deformation history of a macroscopic
integration point.

1.1 Features

• monolithic and staggered algorithm

• periodic boundary conditions at micro-scale

• small deformation and large deformation theory

• UMAT interface to Abaqus at macro-scale

• Intel MKL PARDISO solver on the microscale

– for symmetric and unsymmetric (but structurally symmetric) matrices

– parallelizable: Intel MKL PARDISO solver can be run in parallel for each macro-
scopic integration point (limited to a shared memory architecture and not neces-
sarily favorable, since the FE2-method parallizes very well)

• modular concept: UEL, UMAT and UHARD interfaces at micro-scale for easy extensibility

• implemented element types (via UELlib [2]):

– plane stress (nested Newton algorith after Dodds, 1987), plane strain and 3D

– different element types (quadrilateral, triangular, tetrahedral, hexagonal)

– linear and quadratic shape functions with full or reduced integration1

– (rate-independent) elastic-plastic MISES material in rate formulation as micro UMAT
with tabular yield curve (as UHARD)

• Python plug-ins for preprocessing and postprocessing of micro-scale models in Abaqus/-
CAE (meshing, material assignment, convergence parameters etc.)

• 3D Models at the microscale with plane strain/axisymmetric elements at macro-scale

1In contrast to Abaqus, the fully integrated elements use the same quadrature rule for all terms, i.e., no selective
reduced integration.

Lange, Hütter, Kiefer: MonolithFE2

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2 Quick Start Guide 4

• parallelizability: Abaqus can be run in parallel (also over multiple computer nodes)

• binaries for Linux contained

1.2 Requirements

• Abaqus/Standard version 2017 or later

• Intel Fortran version 2017 or later (moved to Intel OneAPI HPC Toolkit) with correctly set
environment variables

• Intel MKL version 2017 or later (in Intel OneAPI Base Toolkit) with correctly set environ-
ment variables

• only under Windows2: Microsoft Visual Studio Community or Enterprise (for the linker)

The program has been developed and tested extensively with Abaqus 2020 and Intel Fortran
2020 under Debian Linux 9 and Intel OneAPI 2021 under Windows 10.

2 Quick Start Guide

0. Install the Python plugins by copying the folder abaqus_plugins to either the current di-
rectory, home directory or Abaqus installation directory. In the next start of Abaqus/CAE
these plugins are available.

• only MS Windows: Copy the files abaqus_6.env and win86_64.env from the sub-
folder src to one of the working/home/installation directory to have the linker
options correctly set (as described in detail in section 6.2).

1. Generate micro-scale model(s) *.FE# (mesh and boundary conditions) as described
in section 4.1, or take existing file from examples/ (section 3) whereby # is the RVE-
Number (a label between 1 and 5) and * is the job name of the macro problem (→ e.g.
“beam_model.FE1”).

2. Generate a macro-scale model for Abaqus, e.g. with Abaqus/CAE, as usual and assign
a user-defined material to the FE2 regions. When using Abaqus/CAE this can be done
using the plugin “Create_FE2_Material”:

2see Intel Forum for detailed instructions on installation

Lange, Hütter, Kiefer: MonolithFE2

https://community.intel.com/t5/Registration-Download-Licensing/How-to-link-ABAQUS-with-Intel-One-API-toolkits-to-run-FORTRAN/m-p/1251168

2 Quick Start Guide 5

Therein, the RVE number refers to # of step 1. The user material can also be specified
directly in the .inp file:

* User Mater ia l , cons tan t s=%NPROPS
%PROP (1) , %PROP (2) , %PROP (3) , . . .
%PROP (9) , %PROP (1 0) , . . .
. . .

* Depvar
9

Therein, %PROP(1) is the number # to be used, whose constitutive parameters are de-
fined by the following entries. At each microscopic integration point the same UMAT is
called, but 2 sets of material routine parameters can be specified. Each micro element
gets a label indicating whether set 1 or set 2 is used, c.f. section 4.1 for details. Then,
%PROP(2) is the integer number of constitutive parameters of set 1 and %PROP(3) is the
number of constitutive parameters of set 2. The subsequent %PROP parameters form a
sequence of lists for the constitutive parameters at the microscopic scale which is passed
to the microscopic material routine. %PROP(4:4+%PROP(2)) are the constitutive param-
eters of set 1 and % PROP(5+%PROP(2):%NPROPS) are the constitutive parameters of set
2. %NPROPS is equal to 3+%PROP(2)+%PROP(3). For instance, the definition

* User Mater ia l , cons tan t s=11
1. , 6 . , 2 . ,60 . , 0.3 , 0.6 , 0 . , 2.
1.5 , 600, 0.3

* Depvar
9

has the following meaning in combination with the elastic-plastic micro-material rou-
tine: The mesh number 1 is being used. Set 1 has 6 constitutive parameters, which are:
E = 60.0MPa, ν = 0.3, Y1 = 0.6MPa, εpl 1 = 0.0, Y2 = 2.0MPa and εpl 2 = 1.5. Set 2
has 2 constitutive parameters, which are: E = 600.0MPa and ν = 0.3. If another UMAT
then the default rate independent Mises plasticity is used, the constitutive parameters
are interpreted by the used UMAT in the order the UMAT expects the properties to be.

Lange, Hütter, Kiefer: MonolithFE2

3 Examples 6

Note: Specifying *Depvar isn’t mandatory since the program only saves the deformation
history (strain resp. displacement gradient) in the solution dependent variables (SDV)
for postprocessing, since in large deformation simulations the displacement gradient
isn’t accessible in the Abaqus Viewer. When the displacement gradient is needed for
postprocessing it’s necessary to request SDVs in the "Field Output Request".

3. Analysis parameters can be set by the plugin “Set FE2 Analysisparameters”. This plugin
creates a configuration file FE2_Analysisparameters.cfg, to be placed in the directory
from which the Abaqus job is started. If no file is supplied, the default parameters will
be used: monolithic algorithm without storing the factorized stiffness matrix, symmetric
stiffnessmatrix.

4. Run FE2 simulation by command

abaqus job=XXX user=PATHTODIR/bin/UMATmacro-std.o cpus=%ncpus

under Linux or

abaqus job=XXX user=PATHTODIR/bin/UMATmacro-std.obj cpus=%ncpus

under Windows or create Job in Abaqus/CAE and choose UMATmacro-std.o or UMATmacro-std.obj,
respectively, as User subroutine file. (tested with Abaqus versions 2017, 2018 and
2020)

3 Examples

Name and refer-
ence

micro macro

Lange, Hütter, Kiefer: MonolithFE2

3 Examples 7

homogeneous [3]
homogenous microstructure, 4
rectangular elements

pure shear, pure bending

bimaterial [3]
simple microstructure, 4 rectan-
gular elements, two sets with dif-
ferent constitutive parameters,

pure shear, pure bending

Miehe_Koch_models
composite [1, 3]

-

Miehe_Koch_models
porous_micro
structure _central
[1, 3]

-

Miehe_Koch_models
porous_microstructu
re_excentric [3]

-

open_pored_3D_
foam [3]

-

notched_plate_
shear

plate_with_
hole_tension [3]

Lange, Hütter, Kiefer: MonolithFE2

3 Examples 8

sharp_notched_
beam_2D [1, 3]

2D_foam_filter [4]

3D_beam_3D_
foam_power_law
_hardening [1, 3]

quater_plate_
hole_tension

quarter model at large defor-
mations

porous
single element under uniaxial
tension with strain relief at 6
points at large deformations

porous_cyclic
single element under uniaxial
cyclicloading at large deforma-
tions

Selected examples can be run automatically (in Linux) by the command

Lange, Hütter, Kiefer: MonolithFE2

3 Examples 9

make verify

Further parameters like NCPUS=... or ABACALL=... can be passed, cf. section 6.2.

Lange, Hütter, Kiefer: MonolithFE2

4 Creating Microscale Models 10

4 Creating Microscale Models

General requirements:

• same element type in complete micro-scale model

• congruent meshes at homologous parts of the boundary

4.1 Within Abaqus/CAE using Plug-In for 2D models

• Create a 2D Planar Part with rectangular outer shape. It can include any kind of pores
and may be partioned.

• Mesh the Part (not its Instance!) with either quadrilaterail or triangular elements (Only
meshes with exactly one element type are allowed!). Ensure that the nodes at opposite
boundary faces are congruent.

• If different material properties shall be assigned to a certain region of the micro-
structure, create a respective Set "2".

• Open the Plugin „generate FE2 microscale mesh“. Specify the created Model and Part.
„Job-Name of Macro job“ is the Job name of the macro problem to be solved. A short
description may be added.

Lange, Hütter, Kiefer: MonolithFE2

4 Creating Microscale Models 11

• In the tab „2D“ Tab first click on the mouse courser button and then select the respective
nodes of the edges of the created RVE (use rectangular box selection by holding the left
mouse button pressed, to not miss a node!). Confirm each time with „Done“.

• If some micro problems are to be postprocessed after the FE2 simulation, tick the box
„generate constraints in CAE“.

• If 2 different materials shall be used, continue with the dialogue „Material“. Either select

Lange, Hütter, Kiefer: MonolithFE2

4 Creating Microscale Models 12

all elements with Material label 2 ("pick elements") or specify a Set that contains these
elements. All other elements get material label 1.

• Up to 5 different RVE meshes can be used in one FE2 Analysis. When creating more
then one RVE input file for a macro FE Analysis, make sure to choose different RVE
numbers in the General Settings of the plugin. Clicking "OK" generates a file *.FE# in
the current working directory, where # is the RVE-Number and * is the macro job name.

4.2 For 3D models with existing equations for periodic boundary conditions

4.2.1 Micromechanics Plugin

Following steps are necessary for the usage of the ”Micromechanics Plugin“ [5]:

1. Modelling the microstructure and generating a mesh. Note that the ”Micromechanics
Plugin“ requires the Part to be in the Assembly and the Regions to have a Material as-
signed via a Section. Alternatively a model can be generated using the ”Micromechanics
Plugin“ (FE-RVE →Library). Ensure that the nodes at opposite boundary faces are con-
gruent. Note that this is not necessarily true for all examples of the ”Micromechanics
Plugin“!

2. Create a Job and give it exactly(!) the same name of the model created before.

3. Create the periodic boundary conditions in the ”Micromechanics Plugin“ under FE-RVE
→Loading by choosing the correct model and job and confirm with ”OK“.

4. Create the Abaqus-Inputscript by right-clicking on the Job and then on ”Write Input“.

5. Now start the ”Generate-FE2-Inputfile“ Plugin and fill out the ”General“ dialogue.

6. In the ”3D“ dialogue choose ”Micromechanics Plugin“.

7. Optionally fill out the ”Material“ dialogue, then confirm with ”OK“.

Lange, Hütter, Kiefer: MonolithFE2

5 Postprocessing 13

4.2.2 FoamGUI

When the periodic boundary conditions are created for 3D foams using the ”FoamGUI“ [6]
code, then they are included in the Abaqus-Inputscript as:

* Equat ion
. . .
1
master−l abe l |1|−1|s lave−l abe l |1|1| re fe rence −node|1|−1
1
master−l abe l |2|−1|s lave−l abe l |2|1| re fe rence −node|2|−1

. . .

Following steps are necessary to create a Inputfile for MonolithFEsqr:

1. Import the Inputfile by right-clicking on Models and choosing ”Import...“. The equations
are now imported as constraints and have the names ’Eqn-1’-’Eqn-%n’

2. Now open the ”Generate-FE2-Inputfile“ Plugin and fill out the ”General“ dialogue.

3. In the ”3D“ dialogue choose ”FoamGUI“.

4. Optionally fill out the ”Material“ dialogue, then confirm with ”OK“.

5 Postprocessing

The postprocessing for the macro problem can be done as usual in Abaqus/Viewer. For
the micro problems no conventional postprocessing is available at the moment. Instead the
load history of selected macroscopic integration points can be extracted and then resimulated
directly in Abaqus. The process is described only for 2D models. Generally this procedure is
also applicable for 3D models, but the created amplitudes must be assigned manually.

Lange, Hütter, Kiefer: MonolithFE2

5 Postprocessing 14

0. Before starting the FE2 simulation select SDV as field output in the macro model. There
the displacement gradient (resp. strain) will be saved. Without having the SDVs as field
output no postprocessing can be done in large displacement analysis.

1. Open the created micro model. If the box „generate constraints in CAE“ in the „Gen-
erate FE2 microscale mesh“ Plugin as described in chapter 4.1 wasn’t ticked in the first
call, redo the process, now with ticked box. This creates constraints between nodes on
opposite boundary’s, boundary conditions, amplitudes and a step.

2. Modify the steps settings as needed.

3. Create a Material definition (or 2 depending on the model) (either a User Material
[using the same micro UMAT as used in the FE2 simulation], or a Abaqus intern Material
model). Create a section (or 2) and assign them to the respective regions.

4. Now load the odb-file resulting from the FE2 simulation.

5. Open the Plugin ”Generate FE2 Postprocessing Data“. Fill out the dialogue. The therein
mentioned micro model is the model from point 1 and should still be open. Clicking
on ”OK“ creates amplitudes for the strain resp. displacement gradient in the micro CAE
model.

6. Now create a job for the micro model and submit it.

7. Do the postprocessing as usually with the Abaqus/Viewer.

8. Repeat steps 5 to 7 for all macro integration points to be postprocessed.

Lange, Hütter, Kiefer: MonolithFE2

6 Source Code and Compilation 15

6 Source Code and Compilation

6.1 Installation of the Abaqus Plugins

The folder abaqus_plugins has to be copied either to the current directory, home directory or
Abaqus installation directory. In the next start of Abaqus/CAE these Plugins are available.

6.2 Compilation

The code is compiled under Linux by command
make ABACALL=abqXXX MATERIAL=...

or by
compile.bat

under Winodws. These commands create the object files UMATmacro-std.o and UMATmacro-std.obj
which can be used as described in section 2.

Required additional packages:

• UELlib [2]

• UEL large deformation

The location of these packages is given in the Makefile and compile.bat and can be set
by make UELlibDIR=... etc or modifying compile.bat. In the same way, the command
to call Abaqus can be set by make ABACALL=.... Alternatively, the files can be made ac-
cessible either directly in folder src/ (linked or copied) or the respective directories are
added to the include path with option -I of line compile_fortran in the environment file
(lnx86_64.env/win86_64.env loaded from abaqus_v6.env). With MATERIAL=directory a
user defined material behavior can be specified. The directory coincides with the name of
the folder containing the necessary source files to be placed in the materialroutines folder
of uel-large-deformation. For further details look into chapter 7. When MATERIAL is omitted
the standard value is Mises.

Further requirements:

• Linux: Compiler options in the environment file lnx86_64.env loaded from abaqus_v6.env
(as set in present package) in line compile_fortran

– -mkl=cluster: include MKL

– -heap-arrays: Create large arrays in heap instead of stack to avoid stack overflow

– -nostandard-realloc-lhs: Turned out to be necessary to avoid certain runtime
errors.

– The Fortran preprocessor FPP must be switched off by deleting the option -fpp.
The reason is that the present code is written in free-form Fortran whereas other
included files may be written in fixed form. The present implementation employs
the compiler directives !DEC$ FREEFORM and !DEC$ NOFREEFORM to switch between
both settings. However, this compiler directive is incompatible with FPP.

• Windows: Changes in the environment file win86_64.env loaded from abaqus_v6.env
(as set in present package)

Lange, Hütter, Kiefer: MonolithFE2

6 Source Code and Compilation 16

– additional options to compile_fortran: \heap-arrays, \nostandard-realloc-lhs,
\names:lowercase (problem of Abaqus2020 with OneAPI), \I"%MKLROOT%\include"

– additional option to link_sl: mkl_rt.lib

• The program adapts free-form versions of the required interface definitions from SMAAspUser*.hdr.
It may be necessary to check whether these definitions have been changed in other ver-
sion of Abaqus.

• The UEL has to provide an additional subroutine GET_n_STATEV_elem, which returns the
number of state variables which have to be reserved by MonolithFE2for each element
(NSVARS in the head of UEL), cf. attached file UEL.f.

6.3 Source Code

The structure of the components of MonolithFE2is illustrated in Fig. 1. It may be added that
the file *.FE*, created by the Python plug-in, represents the node-to-element connectivity in
form of lists and the connection between the entries of the stiffness matrices of the micro-UELs
and the global stiffness matrix in Compressed Sparse Row (CSR) for the solver. The following
table explains selected Fortran routines.

Lange, Hütter, Kiefer: MonolithFE2

6 Source Code and Compilation 17

filename routine description
UMATmacro.f UMAT actual macro-UMAT interface to be called

from Abaqus at each macro-GP; includes all
needed source files; gets all pointers to the
needed data; calls the main program (stag-
gered/monolithic) to get macro STRESS and
macro DDSDDE; extrapolates micro displace-
ments in staggered case

FE2MODULE.f main_program_staggered actual main program for the staggered algo-
rithm, which calls all needed routines (assem-
ble, solve...) in the right order

FE2MODULE.f main_program_monolithic main program for monolithic algorithm
FE2MODULE.f enforce_constraint enforces constraints for the periodic boundary

conditions
FE2MODULE.f update_displacements when the increment of the displacements in the

Newton-Rhapson algorithm was computed,
this routine updates the displacements

FE2MODULE.f assemble this routine calls the micro element routine
for each micro element and assembles the
stiffness matrices, the residual and the macro
STRESS

FE2MODULE.f static_condensation this routine computes the macro stiffness ma-
trix DDSDDE and macro stress STRESS

Solver.f initialize Create memory for solving sparse systems of
equations with the MKL PARDISO solver and
get a pointer to that memory

Solver.f factor factor the matrix
Solver.f solve solve system for given right hand sides
Solver.f finish free solver storage
Solver.f get_permutation_matrix get a permutation vector for a given matrix

structure
Solver.f interpret_error interpret a possible PARDISO error
SMAAspUser
Arrays
Fortran.f

SMA*Array*CreateFortan*
SMA*Array*AccessFortan*
SMA*Array*DeleteFortan*

Abaqus provides routines called "allocatable
arrays" to create threadsafe data and access
them via pointers. These routines output cray
pointers, which aren’t FORTRAN Standard and
can’t be used in user derived types. Therefore
these routines act as a interface to the Abaqus
allocatable arrays and output FORTRAN Stan-
dard conform pointers.

manage_
data.f

UEXTERNALDB Abaqus interface UEXTERNALDB is called from
Abaqus at the start/end of a analysis and
start/end of a timestep. It’s used to manage
the mesh and state variable data at the correct
point of the analysis

manage_
data.f

readdata at the analysis begin the micro mesh & analysis
parameters are read and stored

Lange, Hütter, Kiefer: MonolithFE2

6 Source Code and Compilation 18

manage_
data.f

manage_STATEV_data at the end of a time step the state variables of
all macro GPs are written to: t→t-1, t+1→t; at
the start of a time step the data is initialized; at
the end of the analysis the allocated disk space
is freed

type_macro_
GP_DATA.f

allocate_data
get_pointer
deallocate_data

in this module a user derived FORTRAN type
is declared which encapsulates all the macro
GP state date (micro displacements, state vari-
ables of the micro GPs, ...)

type_meshp
arameters.f

read_data
get_pointer
deallocate_data

In this module a user derived FORTRAN type is
declared which encapsulates all the data for
defining the microscopic mesh (coordinates,
element to node connection, etc.) plus the
program-flow/convergence parameters. The
create* routine reads the data from disk, the
get_pointer* routine accesses the data and the
deallocate* routine frees the allocated memory

type_analy
sispara
meters.f

read_data
get_pointer
deallocate_data

In this module a user derived FORTRAN type is
declared which encapsulates all the data for
defining analysis parameters, for example if
the monolithic or staggered algorithm shall be
used, if symmetric matrix storage shall be used
etc.

utility_
transform_
stress_
stiffness.f

Get_abaqus_stress_stiffness return STRESS and DDSDDE in the format
Abaqus expects it.

utility_
transform_
stress_
stiffness.f

nomina2 The 1st Piola Kirchhoff stress is transformed to
Cauchy stress (also the material tangent: nom-
inal tangent → DDSDDE).

Lange, Hütter, Kiefer: MonolithFE2

7 Defining a different Material behavior 19

7 Defining a different Material behavior

Defining the material behavior is similar to Abaqus. A material routine has to be written
using the UMAT interface as declared in the Abaqus Manual [7]. The UMAT has to be named
precisely ”UMAT.f“. The routine has to be written for 3D, plane strain or axisymmetric defor-
mation states. The plane stress case is handled internally. The file UMAT.f can also contain
various SUBROUTINES or FUNTIONS but no MODULES. Preferred is FORTRAN 90 free form code.
When the UMAT is written in FORTRAN 77 fixed form style compiler directives have to be
included before and after the subroutine as shown below:

!DEC$ NOFREEFORM

SUBROUTINE UMAT(...)

...user coding to define UMAT...

...all variables are defined just as in the Abaqus/Standard UMAT interface
and have the same type and dimension...

END SUBROUTINE UMAT

!DEC$ FREEFORM

The number of state variables required by the UMAT has to be specified in the Routine
GetNSTATV. Name this routine precisely ”GetNSTATV.f“.

FUNCTION GetNSTATV(NTENS,NDI,PROPS)

INTEGER(KIND=AbqIK):: GetNSTATV
INTEGER(KIND=AbqIK), INTENT(IN):: NTENS,NDI
REAL(KIND=AbqRK),INTENT(IN):: PROPS(:)

...user coding to define GetNSTATV. If NTENS==3 (plane stress) add +1 to that
value since the plane stress algorithm needs one internal state variable too...

END FUNCTION

Write a routine to check if the material parameters are reasonable and name it precisely
”CheckMaterialParameters.f“. Use the STDB_ABQERR function to stop the simulation and re-
port errors to the inputfile [7]. If you do not want to check the parameters just return using
the FORTRAN statement RETURN.

SUBROUTINE CheckMaterialParameters(PROPS)

REAL(KIND=AbqRK),INTENT(IN):: PROPS(:)

Lange, Hütter, Kiefer: MonolithFE2

7 Defining a different Material behavior 20

...
! Check the properties

if (...) then
CALL STDB_ABQERR(-3, "CheckMaterialParameters reports: ... ", 0, 0.0, " ")
else if (...) then
...
end if

END SUBROUTINE CheckMaterialParameters

Put all 3 files into a directory with a reasonable name inside of the materialroutines folder
of uel-large-deformation. When the program is compiled as described in section 6.2 specify
MATERIAL= with the name of the just created directory.

Lange, Hütter, Kiefer: MonolithFE2

8 Limitations, Problems and Future Developments 21

8 Limitations, Problems and Future Developments

8.1 Limitations

• maximum 2 sets of constitutive parameters per micro mesh definition

• maximum 5 different micro mesh definitions per macorscopic simulation

• single element type per micro mesh definition

• single micro-material routine (UMAT) per simulation (PROPS may be used to switch
between different encapsulated material routines); MonolithFE2 has been successfully
tested with the UMAT_creep material routine (requires to make the UMAT accessible for
compilation, as shown in chapter 7)

• Python plug-in „generate FE2 Inputfile“supports 3D micromeshes only if constraints al-
ready generated in Abaqus ”equations“ (Micromechanics Plugin or FoamGUI)

• purely mechanical problems (no "multiphysics")

• distributed-memory computations ("multi-node") may not work with the monolithic-stored
stiffness matrix factorization algorithm in some cases (first tests yield no problem yet)

8.2 Known Issues

• sometimes convergence problems, specifically:

– large deformation analysis

– plane stress (especially in large deformation analysis)

8.3 Software environment

• The file ABA_PARAM.INC is not found by Abaqus by default under Linux, but put "artifi-
cially" to folder src/. Its contained must be checked under different OS and computer
architectures.

• Integer kind specifications in SMAAspUserArraysFortran.f are fixed (adopted from
SMAAspUserSubroutines.hdr of Abaqus) and may be specific to OS and computer
architecture as well.

Lange, Hütter, Kiefer: MonolithFE2

9 Version history 22

9 Version history

date description
2020-07-29 final version of diploma thesis of N. Lange [3]
2020-12-17 Material in rate formulation; large deformations; all elements of

UELlib added; in Plugin "Generate FE2 Inputfile" plane strain/plane
stress/3D stress selectable; general applicable plane stress algorithm in
UXMATMises.f added; stiffnessmatrix factorization indefinite/positiv defi-
nite selectable

2021-02-03 switched from MKL DSS solver to MKL PARDISO solver due to an existing
memory leak when using the DSS solver, added a postprocessing for micro
problems

2021-04-20 version 1.0 published
2021-05-06 v1.01 with binaries for Windows
2021-07-20 v1.02, Inputfile adopts *Keyword style of Abaqus, number of node dof’s

named generally to be compatible with generalized continua, material
routines can now be integrated more easily without changing the UEL.f
file

2021-07-23 v1.02a, bug removed; added: automatic verification run auf examples
within Makefile

References

[1] N. LANGE, G. HÜTTER, B. KIEFER: An efficient monolithic solution scheme for FE2 prob-
lems, Computer Methods in Applied Mechanics and Engineering 382 (2021), 113886,
Preprint: arxiv.org/2101.01802.

[2] G. HÜTTER, S. ROTH, R. SKRYPNYK: UELlib – A library for user-defined elements in
Abaqus, Technical Report, TU Bergakademie Freiberg, Institute of Mechanics and Fluid
Dynamics.

[3] N. LANGE: Implementation of a monolithic FE2 program (in German), diploma thesis,
TU Bergakademie Freiberg, 2020.

[4] G. HÜTTER, C. SETTGAST, N. LANGE, M. ABENDROTH, B. KIEFER: A hybrid approach
for the multi-scale simulation of irreversible material behavior incorporating neural
networks, Proc. Appl. Math. Mech. 20 (2020), e202000248.

[5] R. MCLENDON: Micromechanics Plugin for Abaqus,
https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon,
2017.

[6] M. ABENDROTH, E. WERZNE, C. SETTGAST, S. RAY: An Approach Toward Numerical
Investigation of the Mechanical Behavior of Ceramic Foams during Metal Melt Filtration
Processes, Adv. Eng. Mater. 19 (2017), 1700080. DOI:10.1002/adem.201700080

[7] ABAQUS/Standard User’s Manual, Version 6.9, Michael Smith, Dassault Systèmes
Simulia Corp, 2009

Lange, Hütter, Kiefer: MonolithFE2

https://arxiv.org/abs/2101.01802
https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon
https://doi.org/10.1002/adem.201700080

References 23

m
ec

h
a
n
ic

a
l
m

o
d
el

Pr
ep

ro
ce

ss
in

g
:

C
re

a
tio

n
 o

f
th

e

m
a
cr

o
sc

o
p
ic

 m
o
d
el

'U
E
XT

E
R
N

A
LD

B
'

're
a
d
d
a
ta

'
'm

a
n
a
g
e_

ST
A
TE

V
_d

a
ta

'

'U
M

A
T'

 (
F
E
¹)

'm
a
in

_p
ro

g
ra

m
'

st
a
g
g
er

ed
/m

o
n
o
lit

h
ic

'a
ss

em
b
le

'
's
ta

tic
_c

o
n
d
en

sa
tio

n
'

%
N

_%
Jo

b
n
a
m

e_
m

ic
ro

m
es

h
.F

E

Po
st

p
ro

ce
ss

in
g

ca
ll

o
f
th

e
p
lu

g
in

'G
en

er
a
te

 F
E
²-

In
p
u
tf
ile

'
'U

E
L'

le
g
en

d
:

R
V
E
-P

re
p
ro

ce
ss

in
g

F
E
¹

C
o
m

p
o
n
en

ts

F
E
²

C
o
m

p
o
n
en

ts

d
a
ta

 m
a
n
a
g
em

en
t

m
a
cr

o
sc

o
p
ic

 i
n
te

g
ra

tio
n
 p

o
in

t

D
ef

in
iti

o
n
 o

f
th

e
R
V
E

'e
n
fo

rc
e_

co
n
st

ra
in

t'

F
E
-d

is
cr

et
iz

a
tio

n
/

 m
es

h
in

g

'U
M

A
T(

F
E
²)

'

PA
R
D

IS
O

 s
o
lv

er

In
te

l
 M

K
L

PA
R
D

IS
O

 s
o
lv

er

In
te

l
M

K
L

M
ic

ro
st

ru
ct

u
re

 e
xa

m
in

a
tio

n

su
b
m

is
si

o
n
 o

f
 t
h
e

a
n
a
ly

si
s

'u
p
d
a
te

_d
is

p
la

ce
m

en
ts

'

b
eg

in
n
in

g
/e

n
d
 o

f
a
n
a
ly

si
s,

 b
eg

in
n
in

g
/e

n
d
 t
im

e
st

ep
in

te
g
ra

tio
n
 p

o
in

t
en

d
 o

f
si

m
u
la

tio
n
/c

o
n
ve

rg
en

ce

F

Fig. 1: Structure of MonolithFE2

Lange, Hütter, Kiefer: MonolithFE2

	Description
	Features
	Requirements

	Quick Start Guide
	Examples
	Creating Microscale Models
	Within Abaqus/CAE using Plug-In for 2D models
	For 3D models with existing equations for periodic boundary conditions
	Micromechanics Plugin
	FoamGUI

	Postprocessing
	Source Code and Compilation
	Installation of the Abaqus Plugins
	Compilation
	Source Code

	Defining a different Material behavior
	Limitations, Problems and Future Developments
	Limitations
	Known Issues
	Software environment

	Version history

