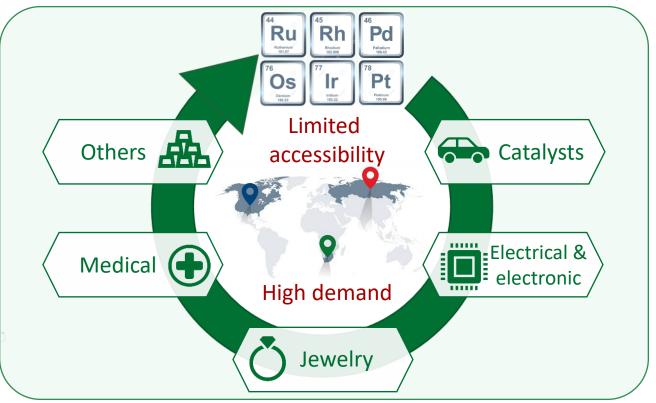
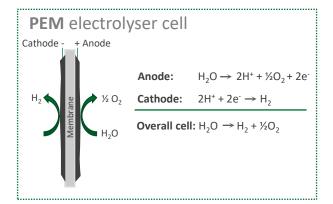
72nd BHT Colloquium

KK5: Sustainability, recycling and secondary metallurgical processes 2

June 09-11



Introduction

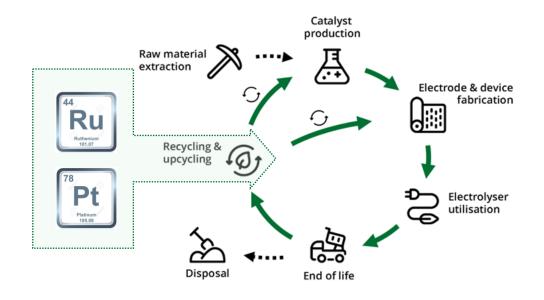


Main objective

Aim: Develop recycling approach for PGM recovery from proton exchange membrane (PEM) electrolysers

Electrode composition

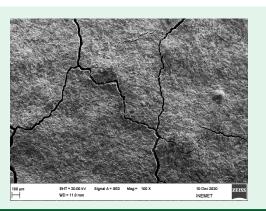
Pt (PtRu alloy NPs) 22%

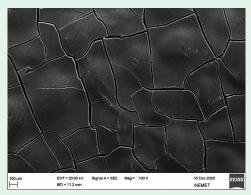

Ru (PtRu alloy NPs) 11%

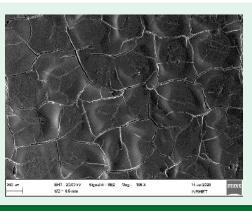
Carbon NPs 11%

Carbon substrate 41%

■ NafionTM 15%

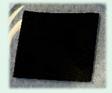



Pre-treatment procedure



Treatment of PtRu-based electrode with the alkyl alcohol

Catalyst layer
PtRu alloy
C NPs
NafionTM



SEM images (× 100): PtRu-based electrode material

C-substrate (new)

C-substrate after treatment

Electrode (100%)

- Ethanol
- Isopropanol
- Ultrasound

Dissolved catalyst layer

(59%)

Dry residue

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 861960

Hydrometallurgical approach

HCI + HNO₃ 88% Ru; 97% Pt

HCl + H₂O₂91% Ru; 100% Pt

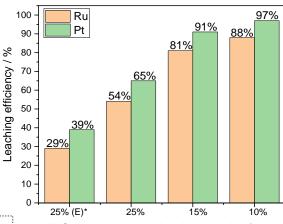
$$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O \quad E^0 = 0.96V$$

$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$
 $E^0 = 1.77V$

$$E^0 = 1.77$$

Leaching efficiency:

$$\frac{c(PGM\ in\ sol.)*V(sol.)}{m(sample)*w(PGM\ content)}*100\%$$



$$Pt^{4+} + 4e^{-} \rightarrow Pt$$
 $E^{0} = 1.15V$
 $[PtCl_{6}]^{2-} + 4e^{-} \rightarrow Pt + 6Cl^{-}$ $E^{0} = 0.74V$
 $[RuCl_{6}]^{2-} + e^{-} \rightarrow [RuCl_{6}]^{3-}$ $E^{0} = 0.83V$

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 861960

Leaching conditions: 12M HCl, 75 °C, 3h

HNO₃ concentration in leaching solution / vol% *E - Electrode

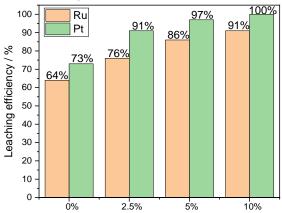
HCl-based leaching system

H₂O₂ content (1-5%, 7.5%, 10%, 20%)

HCl concentration (2M, 3M, 4M, 8M, 12M)

Additives (NaCl, CuCl₂, AlCl₃)

+ RECYCALYSE -


HCI-based leaching system

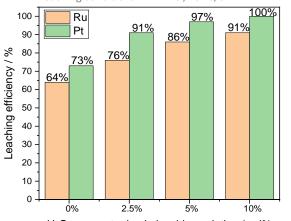
H₂O₂ content (1-5%, 7.5%, **10%**, 20%)

HCl concentration (2M, 3M, 4M, 8M, 12M)

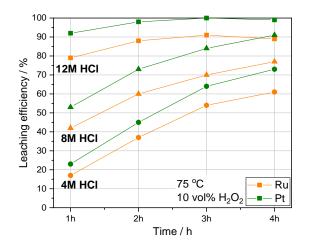
Additives (NaCl, CuCl₂, AlCl₃)

Leaching conditions: 12M HCl, 75 °C, 3h

 $\rm H_2O_2$ concentration in leaching solution / vol%

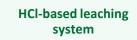

HCI-based leaching system

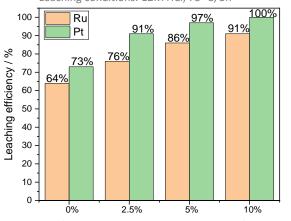
H₂O₂ content (1-5%, 7.5%, **10%**, 20%)

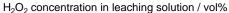

HCl concentration (2M, 3M, 4M, 8M, 12M)

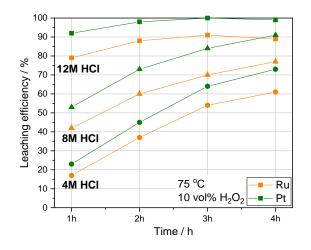
Additives (NaCl, CuCl₂, AlCl₃)

H₂O₂ concentration in leaching solution / vol%





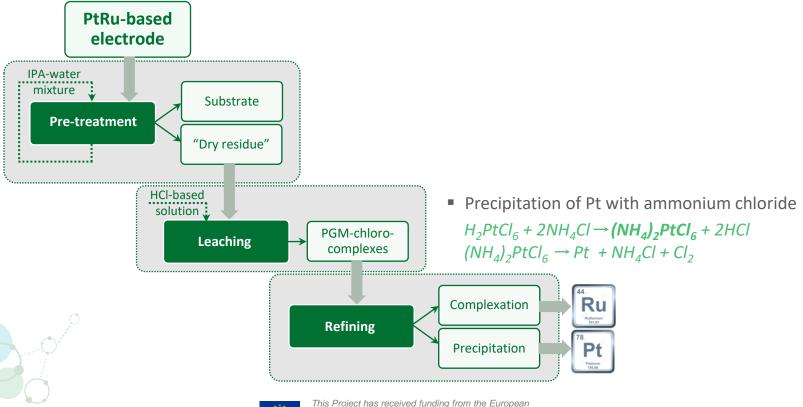

H₂O₂ content (1-5%, 7.5%, **10%**, 20%)


HCl concentration (2M, 3M, 4M, 8M, 12M)

Additives (NaCl, CuCl₂, **AlCl₃**)

AICI ₃	CuCl ₂	NaCl	Total Cl ⁻	Ru, %	Pt, %
0.5M	-	-	5.2M	72	81
-	0.75M	-	5.2M	56	67
-	-	1.5M	5.2M	73	82
-	1.5M	-	6.7M	79	90
1.5M	-	-	8.1M	84	96

Leaching conditions: 4M HCl, 75 °C, 5 vol% H₂O₂



Recycling strategy

Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 861960

- Effective **separation of the catalytic layer** by treating the electrode with isopropanol-water mixture.
- The influence of reagents concentration to optimize the leaching system was investigated.
- The use of chlorides lowers the required HCl concentration and the acidity of the leaching solution.
- Selective precipitation of Pt with the efficiency above 90 %.
- Recycling scheme for PGM recovery from spent electrodes has been proposed.

- Test multimetallic catalysts (e.g. Pt/Ru/Ir).
- Further investigation of the PGM separation from the leach solution.
- Reuse of obtained PGM complexes to manufacture the electrocatalyst.

Thank you for your attention! Questions?

Speaker: Lesia Sandig-Predzymirska

TU Bergakademie Freiberg

Institute for Nonferrous Metallurgy and Purest Materials

Leipziger St. 34, Freiberg 09599

Tel.: +49373139-2027

E-Mail: Lesia.Sandig-Predzymirska@inemet.tu-freiberg.de