Data:	ATMOSCL. MA. Nr. 3031 Version: 12.10.2023 📜 Start Year: WiSe 2010
	/ Examination number:
	32012
Module Name:	Climate Change
(English):	Klimawandel
Responsible:	ackisch, Conrad / JProf
Lecturer(s):	ackisch, Conrad / JProf
Institute(s):	Institute of Drilling Engineering and Fluid Mining
Duration:	1 Semester(s)
Competencies:	Students know the components of the climate system with physical and
	chemical principles (energy balance, water cycle, carbon cycle) and
	climate models. They understand significant driving and regulating
	forces of climate change on different temporal and spatial scales in
	order to evaluate historical climate variability and projections of future
	developments that are subject to uncertainty. On this basis, they can
	identify specific challenges, design strategies to mitigate climate change
	and derive options for action to adapt to climate change.
	In the exercise, they learn how to access climate data and model
	projections, interpret and visualise these data and evaluate it using
	statistical methods and indices. They also acquire skills in dealing with
	uncertainties.
Contents:	The lecture is combines general foundations of climate change and
	examples for specific aspects. The lecture spans the range from the
	earth system to current model calculations for the development of the
	climate. Starting from palaeoclimatic developments we work
	towards current trands in the Antropocene and focus on periods of
	change and their drivers. We will analyse non-linear interactions and
	feedbacks on different scales, get to know models and model products,
	deal with uncertainties, and we will shed light on the border areas of
	physical reality and socio-economic decision-making. The lecture series
	underpins and extends this basis with specific examples from certain
	regions and subject areas.
	In the exercise, current climate data and climate projections will be
	analysed. Step by step, we will load, visualise, summarise and interpret
	data. We will apply methods for analysing changes and extremes, as
	well as climatological indices. All analyses will be carried out directly on
	your own computer using Python.
Literature:	IPCC Reports (https://www.ipcc.ch/)
	Wiegandt (Hrsg., 2023) 3 Grad mehr
	Rahmstorf & Schellnhuber (2019) Der Klimawandel - Diagnose,
	Prognose, Therapie
	Krauss (2021) The Physics of Climate Change
Types of Teaching:	S1 (WS): Climate System and Climate Change / Lectures (2 SWS)
	S1 (WS): Climate Data Analysis / Exercises (2 SWS)
Pre-requisites:	Recommendations:
	The lecture attempts to balance the general applicability for all (natural
	science) disciplines with subject-specific depth in environmental system
	sciences - geoecology. For the exercise, the basic handling of data and a
	scripting language such as R/Python must at least be known.
Frequency:	yearly in the winter semester
1 · · · ·	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:

	AP: Own climate data analysis project with report (as preferrably Jupyter notebook)
Credit Points:	5
Grade:	The Grade is generated from the examination result(s) with the following weights (w): AP: Own climate data analysis project with report (as preferrably Jupyter notebook) [w: 1]
Workload:	The workload is 150h. It is the result of 60h attendance and 90h self-studies.