Lummer, Nils (Fangmann Energy)

INNOVATIVE SYSTEME ZUR ZEMENTIERUNG VON GEOTHERMIE-, SOWIE VON H2-SPEICHERBOHRUNGEN

Cementing is one of the most critical steps during the drilling process of geothermal and H2-storage wells. In this context, we employ many techniques and technologies well-known in the oil & gas industry. However, weak formations, CO2-containing formation water, and the necessity of an extreme low ce-ment sheath permeability may entail the use of specially customized recipes.

This paper presents our dream team for geothermal projects in the Netherlands. Here, to counteract losses, the use of lightweight slurries is essential. The HOZlite consists of blast-furnace slag cement and contains hollow spheres providing low slurry densities with a high compressive strength after hardening. The HMR+ Blend, on the other hand, is chemically and physically optimized ensuring durability of the resulting sheath, even in the presence of CO2.

Besides geothermal projects, we also employed the HMR+ Blend for cementing a H2-storage well in Ger-many. As proven by extensive lab experiments, the extreme low permeability of its cement sheath against hydrogen, was the main reason for recommending this innovative solution. HMR+based slurries already contain 22% NaCl making this system ideal for salt caverns. The evaluation of the corresponding project confirmed the H2-tightness of hardened HMR+ Blend.

Laboratory and field results impressively revealed the premium properties of these new technologies. With our state-of-the art products we delivered excellent cement jobs for ongoing geothermal and H2-storage projects.

Innovative Systems for Cementing Geothermal and H₂-Storage Wells

Dr. Nils Lummer, Moustafa Hassan, Tudor Precup; Fangmann Energy Services

Cementing is one of the most critical steps during the drilling process of geothermal and H₂-storage wells. In this context, we employ many techniques and technologies well-known in the oil & gas industry. However, weak formations, CO₂-containing formation water, and the necessity of an extreme low cement sheath permeability may entail the use of specially customized recipes.

This paper presents our dream team for geothermal projects in the Netherlands. Here, to counteract losses, the use of lightweight slurries is essential. The HOZlite consists of blast-furnace slag cement and contains hollow spheres providing low slurry densities with a high compressive strength after hardening (see Figure 1).

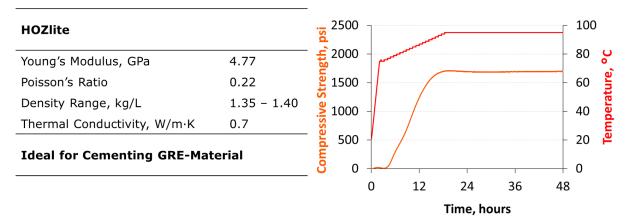


Figure 1: Results of lab testing with HOZlite.

The HMR⁺ Blend, on the other hand, is chemically and physically optimized ensuring durability of the resulting sheath, even in the presence of CO_2 . Figure 2 shows corresponding lab results.

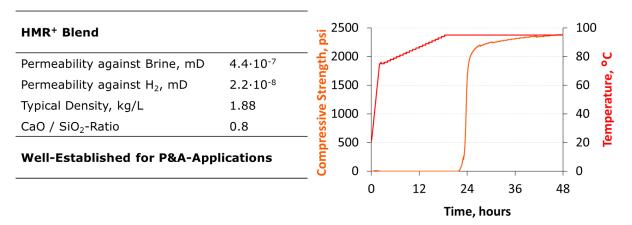


Figure 2: Results of lab testing with HMR⁺ Blend.

75. BHT - FREIBERGER UNIVERSITÄTSFORUM 2024 - Kolloquium 4 "Kraftwerk Erde: aktuelle Entwicklungen und Projekte rund um die (Tiefen-)Geothermie in Deutschland" am 6. und 7. Juni 2024

Recently, we employed the well-established combination of HOZlite (lead @ 1.35 kg/L) and HMR⁺ Blend (tail @ 1.88 kg/L) in the 20", as well as in the 16" casing section with great success. Figures 3 and 4 summarize the equipment on site and the corresponding pumping schedule.

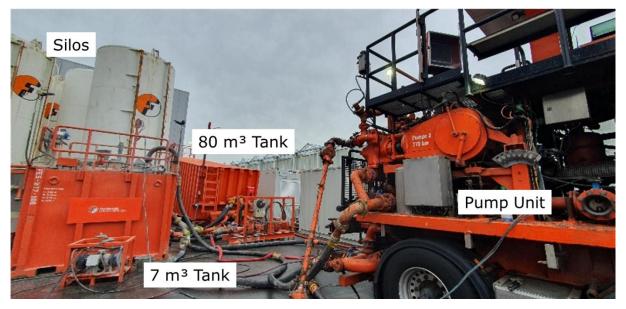


Figure 3: Equipment on site.

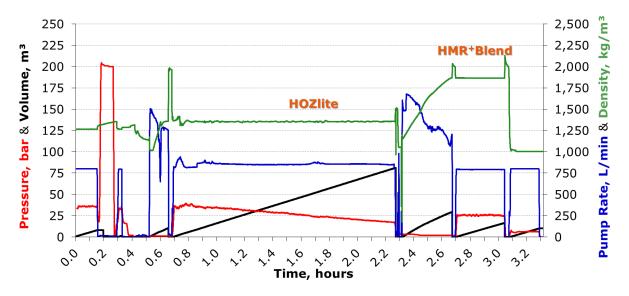


Figure 4: Pumping schedule for cementing the 16'' casing section.

Besides geothermal projects, we also employed the HMR⁺ Blend for cementing a H₂-storage well in Germany. As proven by extensive lab experiments, the extreme low permeability of its cement sheath against hydrogen, was the main reason for recommending this innovative solution. HMR⁺-based slurries already contain 22% NaCl making this system ideal for salt caverns. The evaluation of the corresponding project confirmed the H₂-tightness of hardened HMR⁺ Blend.

Laboratory and field results impressively revealed the premium properties of these new technologies. With our state-of-the art products we delivered excellent cement jobs for ongoing geothermal and H_2 -storage projects. For a short summary, please see Figure 5.

HMR+ Blend

- Chemically and physically optimized blast furnace slag cement-based system
- Ideal for H₂-storage wells and CCS-projects

✓ HOZlite

- Light-weight slurries (1.30 1.40 kg/L) for cementing weak formations
- Optimized heat transfer with a thermal conductivity of 0.7 W/m·K
- In-house blending and quality control of well-established recipes for premium cement quality

Figure 5: Summary of paper entitled "Innovative Systems for Cementing Geothermal and H₂-Storage Wells".

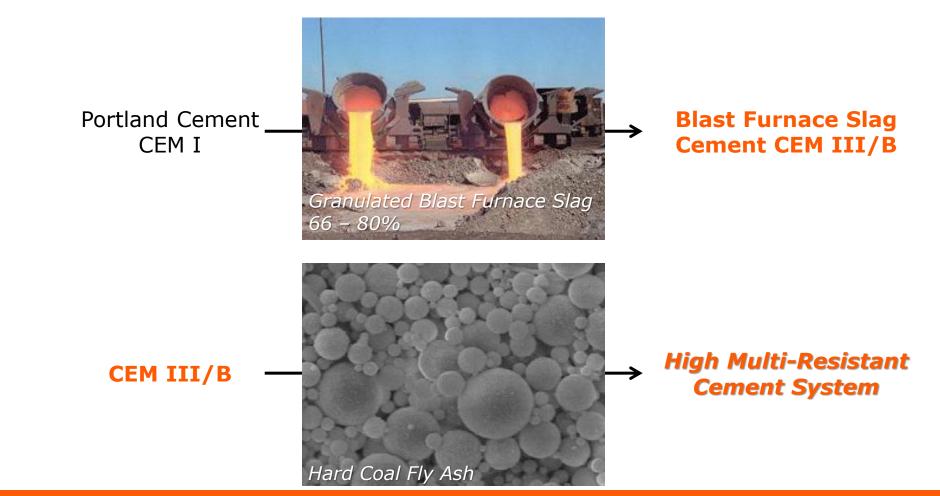
Dr. Nils Recalde Lummer Business Development

Phone: +49 4471 980 0825 Mobile: +49 151 4142 5882 Email: <u>nlummer@fangmanngroup.com</u>

Fangmann Energy Services

Competence | Flexibility | Reliability

Innovative Systems for Cementing Geothermal and H₂-Storage Wells


Dr. Nils Lummer, Moustafa Hassan, Tudor Precup

75. BHT – Freiberger Universitätsforum Freiberg, June 06, 2024

High Multi-Resistant System HMR-Cement

Fly ash enhances the stability of blast furnace slag cement

High Multi-Resistant System HMR-Cement

Stable against aggressive formation water [EEK (1 / 2016) 16-22]

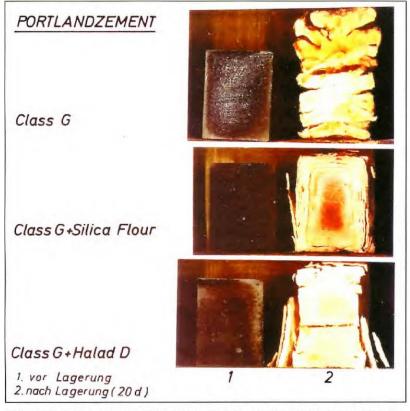


Abb. 4 In Salzwasser erhärteter Zementstein aus Portlandzement Class G mit Additiven, vor und nach Lagerung in Magnesium haltiger Lauge (synthetische Mölln-Lauge, s. Anhang)

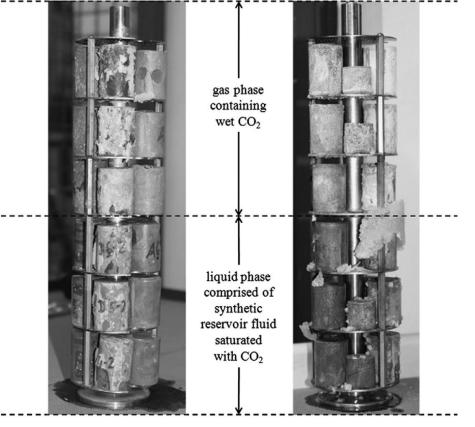
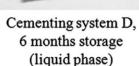

HMR	- ZEM	ENT	
1	2	1	2
HOZ: EFA Füller	65:35	80:20	+ B05
1. vor Lagerung 2.nach Lagerung (20 d	1)		

Abb. 5 In Salzwasser erhärteter Zementstein aus Hochofenzement + EFA-Füller, HMR-Zement, vor und nach Lagerung in Magnesium haltiger Lauge (synthetische Mölln-Lauge, s. Anhang)

High Multi-Resistant System HMR-Cement

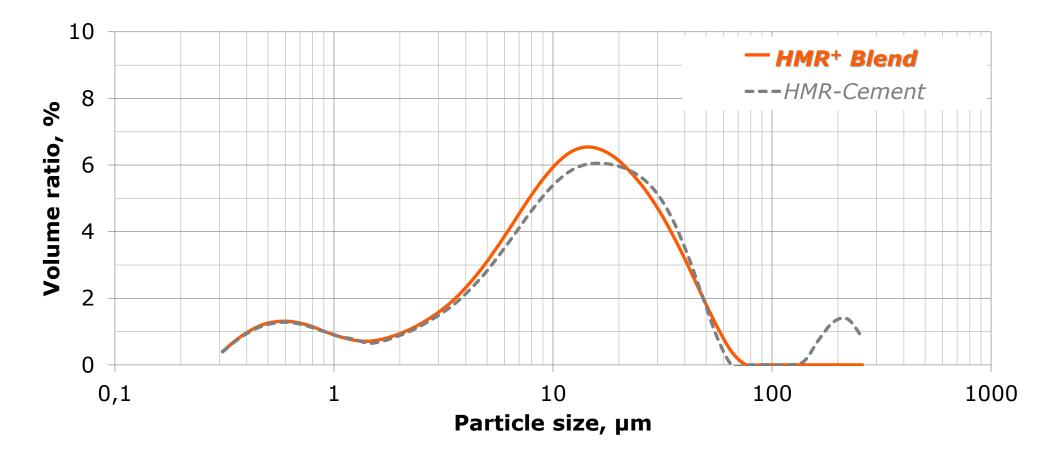
Stable against CO₂ [CCR (45 / 2013) 45-54]

1 month storage in CO_2


6 months storage in CO₂

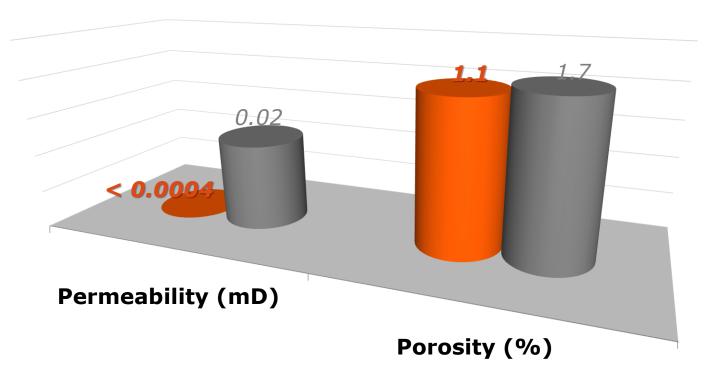
Cementing	Permeability (mD)									
system	Reference sample	1 month CO ₂ Liquid phase	1 month CO ₂ Gas phase	6 months CO ₂ Liquid phase	6 months CO ₂ Gas phase					
А	< 0.0001	0.0083	0.0025	< 0.0001	0.089					
В	< 0.0001	< 0.0001	< 0.0001	0.0002	0.0016					
С	< 0.0001	0.0125	0.109	0.288	0.0061					
D	< 0.0001	< 0.0001	0.307	0.554	1.54					

Cementing system C, 6 months storage (liquid phase)

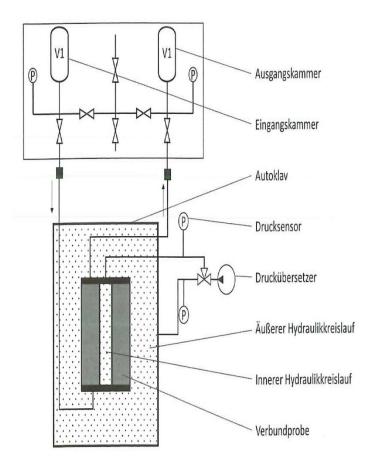


Cementing system D, 6 months storage (gas phase)

Lummer, Hassan, and Precup: Innovative Systems for Cementing Geothermal and H₂-Storage Wells



Physically optimized particle size distribution


Low permeability and porosity results in high multi-resistance

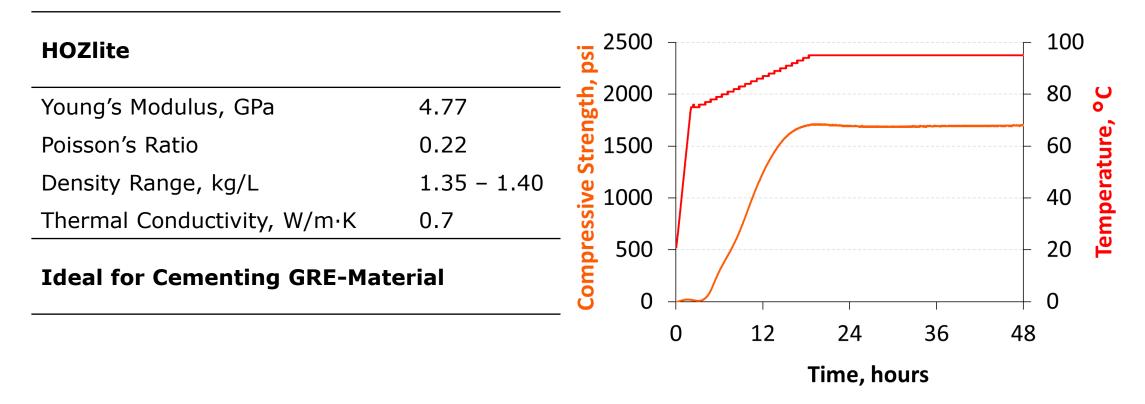
■ HMR⁺ Blend ■ HMR-Cement

Low permeability, even against H₂ [EEK (5 / 2020) 17-21]

Kern	Тур	Teufe [m]	Permeabilität [m²]
HY_S3	Salz	843	< 10 ⁻²³
HY_S7	Salz	1.114	< 10 ⁻²³
HY_S9	Salz	1.006	< 10 ⁻²³
HY_Z3	Zement		2,2.10-23
HY_Z4	Zement		< 10 ⁻²³

EEK: "Erfolgreicher Dichtheitstest in EWE-H₂-Kaverne in Rüdersdorf"

BHT, Freiberg, 2024

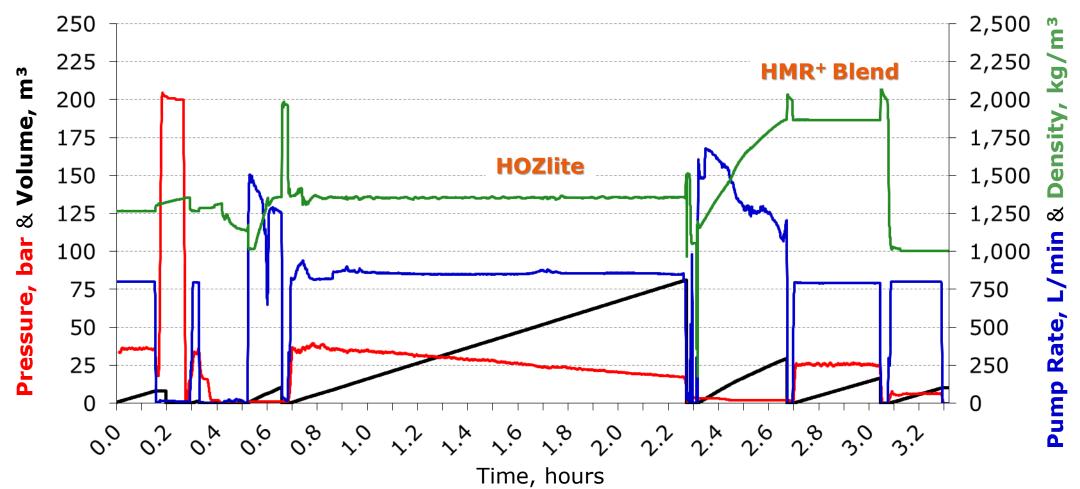


Lab results

HMR ⁺ Blend							10	0
Permeability against Brine, mD	4.4·10 ⁻⁷	- 4 2000		and a start of the			80	С о
Permeability against H_2 , mD	2.2·10 ⁻⁸	5 1500					60	ure,
Typical Density, kg/L	1.88						40	erat
CaO / SiO ₂ -Ratio	0.8	SS 1000						du
Well-Established for P&A-App	olications			 I		 I	20 0	Ч
			0	12	24	36	48	
					Time, ho	ours		

Lab results

Equipment on site



Pumping schedule

Step	Volume, m³	Density, kg/L	Pump Rate, L/min
Pressure test			
Pump spacer	1.5	1.25	800
Mix & pump lead slurry	80.0	1.35	800
Mix & pump tail slurry	16.0	1.88	800
Displace with water	10.0	1.00	800

Pumping schedule

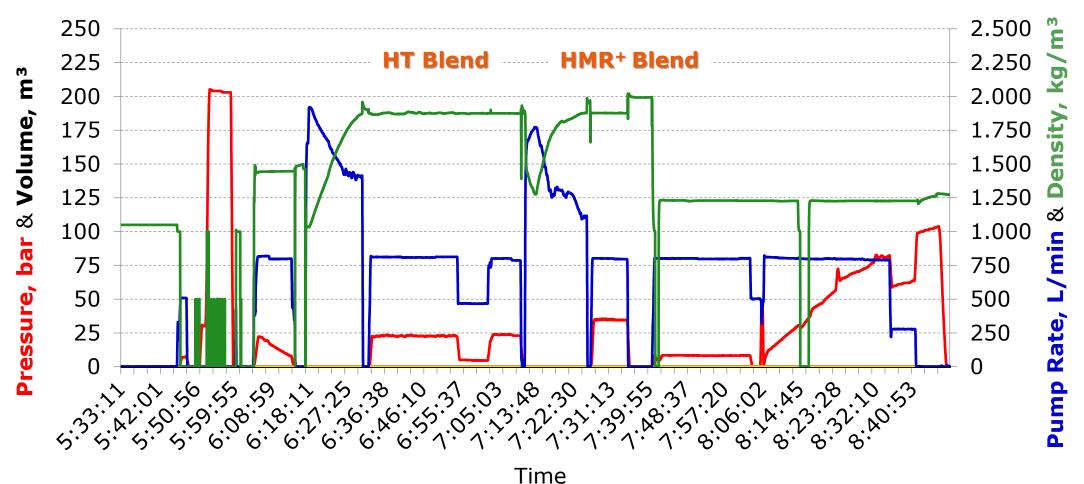
BHT, Freiberg, 2024

Lab results

1,87 kg/ltr		Zement 1	MF 58,1%	•				0 ann an t-	R1B1	Rhec	logy
per mt Cement		Code	Name	pro :	1,0 m ³		LOT	Comments	-	T1 22 °C	T2 80 °C
600,1	lt	FRWA	Fresh water	56	7,55	lt	CLP Labor		3 rpm	4	14
1,0	lt	CAF_902	Antifoam	0	,95	lt			6 rpm	4	19
23,93	kg	CSL_944	Salt	22	2,63	kg			30 rpm	7,5	43,5
4,00	kg	CRE_120	Retarder	3	,78	kg	RT390195-2C		60 rpm	10,5	53,5
									100 rpm	15,5	59,
									200 rpm	27	70,
									300 rpm	40	79
									600 rpm	81	98
									10min Gel	******	
									TT	POD 389 min	70 BC 417 min
									FL	***************************************	
1350,00	kg	HT Blend	Cement	1	,28	ton	CLP Labor		FF		
1057,3	ltr	Yield		•					CS		

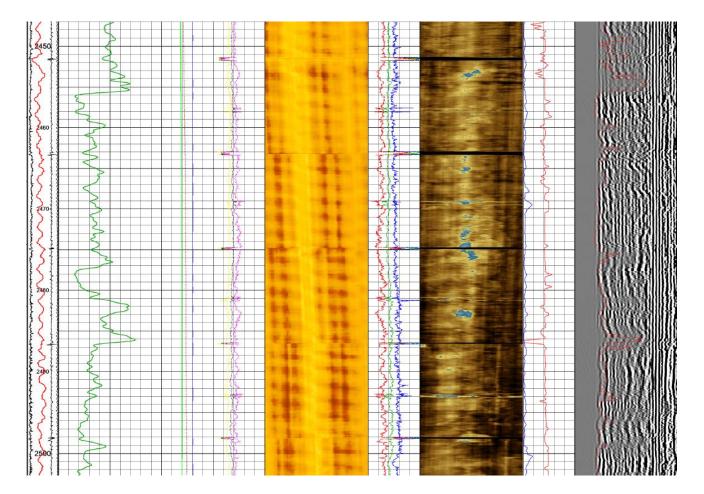
Lab results

1,87 kg/ltr		Zement 2	MF 54,5%	•	•		LOT	0		R1B1	Rhec	logy
per mt Cement		Code	Name	pro 1	1,0 m ³		LOT	Com	ments		T1 22 °C	T2 85 °C
588,3	lt	FRWA	Fresh water	49	1,40	lt	CLP Labor			3 rpm	3	18,5
1,0	lt	CAF_902	Antifoam	0	,84	lt				6 rpm	4	23
129,04	kg	CSL_944	Salt	10	7,78	kg				30 rpm	18	50,5
3,00	kg	CDI_290	Dispersant	2	,51	kg				60 rpm	39	73,5
4,00	kg	CRE_120	Retarder	3	,34	kg	RT390195-2C			100 rpm	70	97
										200 rpm	149	143
										300 rpm	225,5	189,5
										600 rpm		
										10min Gel	14,9 lb/100f2	
					***********					TT	POD 321 min	70 BC 334 min
										FL		
1515,15	kg	HMR+	Cement	1	,27	ton	CLP Labor			FF	***************************************	
1197,2	ltr	Yield								CS		

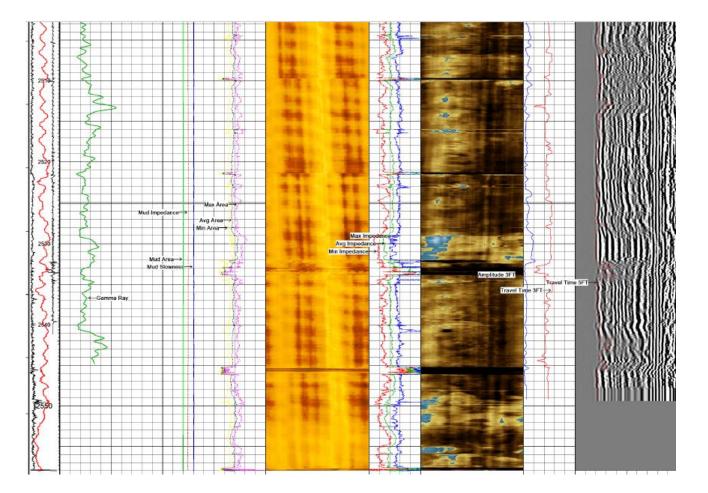


Pumping schedule

Step	Volume, m³	Density, kg/L	Pump Rate, L/min
Pressure test			
Pump spacer	7.5	1.40	900
Mix & pump lead slurry	27.6	1.87	800
Mix & pump tail slurry	6.7	1.87	800
Displace with mud	44.8	1.22	800


Pumping schedule

BHT, Freiberg, 2024



Evaluation of hardened HMR⁺ Blend via logging

Evaluation of hardened HMR⁺ Blend via logging

Innovative Systems for Cementing Geothermal and H₂-Storage Wells

Summary

HMR+ Blend

- Chemically and physically optimized blast furnace slag cement-based system
- Recommendable for P&A and CCS-projects

✓ HOZlite

- Light-weight slurries (1.30 1.40 kg/L) for cementing weak formations
- Optimized heat transfer with a thermal conductivity of 0.7 W/m·K
- In-house blending and quality control of well-established recipes for premium cement quality

Ready for Service

For clarification, please contact me directly

Dr. Nils Recalde Lummer Business Development

Phone: +49 4471 980 0825 Mobile: +49 151 4142 5882 Email: <u>nlummer@fangmanngroup.com</u>

Ready for Service

For clarification, please contact me directly

Dr. Nils Recalde Lummer Business Development

Phone: +49 4471 980 0825 Mobile: +49 151 4142 5882 Email: <u>nlummer@fangmanngroup.com</u>

