QAK,qO .
« TECHNISCHE UNIVERSITAT
% BERGAKADEMIE FREIBERG

The University of Resources. Since 1765.

MonolithFE2 — A monolithic FE2
implementation for Abaqus
Version 3.0

Nils Lange, Geralf Hiitter, Bjorn Kiefer

April 12, 2024

Contents

Contents

|1 Description|

[2__Quick Start Guide|
[2.1 Running Your First FE? Simulation|
2.2 General proceeding|

|4 Creating Microscale Models|
4.1 Within Abaqus/CAE using Plug-In| .

4.2 For models with existing equations in

CAE . o

4.3 Set up the model by directly creating an inputfile for MonolithFE?|

|5 Postprocessing]

6 Hyper ROM Method|

{7 Source Code and Compilation|
[7.1 Compilation|.
[7.2 Plugin for Abaqus/CAE[.
(.3 Source Codel.

Co|

Limitations, Problems and Future Developments|

=

Version history|

10
10
12

16

17

20
20
21
21

24
24
25
25
25

26

Lange, Hiitter, Kiefer: MonolithFE?2

1 Description 3

1 Description

MonolithFE?is an open-source program for Abaqus, distributed under a CC BY-NC-SA 4.0
license. Details on the implemented theory can be found in [I]. Please refer to this publication
if you use MonolithFEZ.

The main idea behind the present FE? implementation is to use Abaqus Standard for
solving the macro FE problem and a self-written light-weight code for solving the micro prob-
lems. The micro-macro data exchange is performed through the Abaqus UMAT interface.
MonolithFE? employs the UEL interface of Abaqus at the micro-scale. An UEL is shipped
with MonolithFE?, but other UEL implementations can be simply compiled into MonolithFE?2.
This UEL comprise a certain number of established element types and employs the UMAT in-
terface for the material law at the micro-scale. Thus, previously developed UELs and UMATSs
can be employed directly at the micro-scale and be tested in Abaqus directly independent
of MonolithFE2. By default, an elastic-plastic MISES material routine UMAT in rate for-
mulation is employed at the microscale. The preprocessing for the micro-scale can be done
in Abaqus/CAE with aid of a Python plug-in, which creates an Abaqus like keyword style
inputfile, which could also be created directly following the rules given in this documentary.
The postprocessing of selected microscopic FE problems can be done by a re-simulation in
Abaqus with the actual deformation history of a macroscopic integration point.

To gain further speedup, Reduced Order Modeling (ROM) with element wise hyper integra-
tion using an improved ECM [§] algorithm can be used. To use the hyper reduced ROM
method a tool to simulate and evaluate training data is provided (the necessary driver Rou-
tine UMAT _Driver is provided as a separate project). This method can be used together
with the staggered or monolithic approach.

All beginnings are difficult. Even though the program and all of its components
were implemented carefully and user friendly, it is still a code from academia. A
short familiarization with the program might be needed, to understand how all
parts are joined together. We strongly adviced to start with section “First
Success”, to get your first FE? model running in Abaqus and to discover that
working with MonolithFE? is not complicated.

1.1 Features

e monolithic and staggered algorithm

e general linear constraints at micro-scale, periodic boundary conditions can be set up
using the provided Abaqus Plugin

e small deformation and large deformation theory
e UMAT interface to Abaqus at macro-scale

e Intel MKL PARDISO solver on the microscale (full simulation)
— for symmetric and unsymmetric (but structurally symmetric) matrices

— reordering the equations to minimize the wavefront only once at the beginning of
a simulation

e INTEL MKL LAPACK solver on the microscale (ROM simulation)

e modular concept: UEL, UMAT and UHARD interfaces at micro-scale for easy extensi-
bility

Lange, Hiitter, Kiefer: MonolithFE?2

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

1 Description

e implemented element types (via UELIib [3]):

— linear and quadratic shape functions with full or reduced integrationE]

e Python plugin for preprocessing and postprocessing of micro-scale models in Abaqus/-
CAE (meshing, material assignment, convergence parameters, hyper ROM training)

e ROM projection and hyper integration (ROM also without hyper integration possible)

e Training data creation and evaluation through Python plugin to get the ROM modes
an hyper elements and their corresponding element multiplication factors

e 3D Models at the microscale with plane strain/axisymmetric elements at macro-scale

e parallelizability: Abaqus can be run in parallel (also over multiple computer nodes)

e binaries for Linux contained

e combination of element formulations:

plane stress (nested Newton algorith after Dodds, 1987), plane strain and 3D

different element types (quadrilateral, triangular, tetrahedral, hexagonal)

(rate-independent) elastic-plastic MISES material in rate formulation as micro UMAT
with tabular yield curve (as UHARD) as standard material routine, other simple
hyperelastic routines provided

micro | macro — | plane stress | plane strain | axisymmetric | 3D
plane strain (V) XE33=0|(v)X33=0 X X
plane stress v v X X
3D X v v v

e For further developments: In principle suited for generalized continua FE? simulations
— requires a suitable UEL on the micro- and/or macroscale, generation of the necessary
constraints and a “generalized UMAT” on the macroscale which interprets the in- and
outputs of the MonolithFE? kernel differently than in the moment for the mechanical

case

1.2 Requirements

e Abaqus/Standard version 2017 or later

e Intel Fortran version 2017 or later (moved to Intel OneAPI HPC Toolkit) with correctly

set environment variables

o Intel MKL version 2017 or later (in Intel OneAPI Base Toolkit) with correctly set

environment variables

e only under Windowsﬂ Microsoft Visual Studio Community or Enterprise (for the linker)

The program has been developed and tested extensively with Abaqus 2022 and Intel Fortran
2021 under Debian Linux 10 as well as under Windows 10/11 with Intel OneAPI 2021 and
Microsoft Visual Studio Community 2019.

In contrast to Abaqus, the fully integrated elements use the same quadrature rule for all terms, i.e., no

selective reduced integration.
2gee Intel Forum for detailed instructions on installation

Lange, Hiitter, Kiefer: MonolithFE?2

https://community.intel.com/t5/Registration-Download-Licensing/How-to-link-ABAQUS-with-Intel-One-API-toolkits-to-run-FORTRAN/m-p/1251168

2 Quick Start Guide

2 Quick Start Guide

2.1 Running Your First FE2 Simulation

1. In Abaqus/CAE, open sharp_notched_beam_2D.cae from folder
examples/sharp_notched_beam_2D

Open Database

Directory: & sharp_notched_beam_2v A ad e ek s 2

sharp_notched_beam_2D.cae

&

File Name: | sharp_notched_beam_2D.cae 0K

File Filter: | Model Database (*.cae) ™ Read Cancel

2. Set the "‘User Subroutine File"” of Job_1 to
YOURPATH\MonolithFE2\bin\MonolithFE2_Mises.
YOURPATH/MonolithFE2/bin/MonolithFE2_Mises.o (Linux).

2 EdtJob X

obj (Windows) or

Model | Resuts | Name: Job 1

£ Mocel Darabaq Modet Macro

=142 Models (3)
| @ Macro Description: |

. ® Mire [

! ~A Annotation Preprocessor Printout
1% Analysis [Print an echo of theinput data
& '! Jabs (1) [Print contact constraint data
[Print model definition data

%ﬂ Adaptivit
Bl Co-sxec [Print history data

BY Optimizd s ran directory: =¥
=r

Analyss product: Abaqus/Standard

User subroutine file: S

[\MorolithFE2\bint MonolithFEZ_Mises.obj

Resilts Format

® DB O SiM O Both

| Cancet

3. Wait until the simulation is finished.

4. You are done. Open Job_1.0db and look through your macroscopic results. Congratu-
lations, you have finished succesfully your first FE2-simulation.

Lange, Hiitter, Kiefer: MonolithFE?2

2 Quick Start Guide 6

e If you want to visualize the microscale results, you need to install the CAE-plugin
(cf. in section and use proceed as described in section |5{ using the micro-model
named Micro_Abaqus_Material, or continue with the next sections to find out,
how to set up your own examples and how to adapt MonolithFE? to your own
needs..

If you want to use the command line instead of Abaqus/CAE, open it

1.

Change to

cd MonolithFE2/examples/sharp_notched_beam_2D

. Run the simulation

abgXXXX interactive job=Job_1 user=../../bin/MonolithFE2_Mises.obj cpus=4

(wherein XXXX referes to your version number, e.g. abq2023)

. Wait until it is finished and visualize the results as described above.

2.2 General proceeding

0.

Install the Python plugins by copying the folder abaqus_plugins to either the cur-
rent directory, home directory or Abaqus installation directory. In the next start of
Abaqus/CAE these plugins are available.

e only MS Windows: Copy the files abaqus_6.env and win86_64.env from the sub-
folder src to one of the working/home/installation directory to have the linker
options correctly set (as described in detail in section .

. Generate micro-scale model(s) *.FE# (inputfile with mesh, material definition, bound-

ary conditions etc.) as described in section or take existing file from examples/
(section [3) whereby # is the RVE-Number (a label, in one macro simulation the label
must be named from 1,2 ... n-1,n when more then 1 RVE definition is used, other-
wise always set the label to 1) and * is the job name of the macro problem (— e.g.
“beam model. FE1”).

. Generate a macro-scale model for Abaqus, e.g. with Abaqus/CAE, as usual and assign a

user-defined material to the FE? regions. Therein, the only constant refers to the label
of the RVE as described in step 1. The user material can also be specified directly in
the .inp file:

x*User Material , constants=1
%RVElabel

x*Depvar

6

Note: Specifying *Depvar isn’t mandatory since the program only saves the deformation
history (macroscopic strain resp. left stretch) in the solution dependent variables (SDV)
for postprocessing, since in large deformation simulations the displacement gradient isn’t
accessible in the Abaqus Viewer. When the macro stretch is needed for postprocessing
it’s necessary to request SDVs in the "Field Output Request".

Lange, Hiitter, Kiefer: MonolithFE?2

3 Examples

3. Analysis parameters can be set by the Abaqus plugin “MonolithFE2”.

This plugin

creates a configuration file FE2_Analysisparameters.cfg, to be placed in the directory
from which the Abaqus job is started. If no file is supplied, the default parameters will

be used: monolithic algorithm without storing the factorized stiffness matrix, symmetric
stiffnessmatrix.

mq—zm_ Help 7
Tpolboxes

ot 00
A Hodeler (Show/Hide)

Create woen conposite material
Hicromechanics Plugin

Tools

fAbout. Plug-ins...

MonolithFE2 Toolbox

This Plugin bundles all necsszary tools to control MonolithFE2

- Choose the current step:

€ Generate a Inputscript for HonolithFE2

@ Set fnalusisparansters to control the Simulation
 Extract postprocessing data for a restnulation
 Generate Training data for RON simulations

" Evaluate the training simlations

| solver settings:

MonolithFE2 Toolbox

solution schema: [staggered 3

I~ staggered control parameters:

‘convergence criterion for the ratio of largest residual to largest nonzero force
parameter: |1E-06

maximum number of iterations

parameter: |0

| monalithic control parameters:

storing the stiffness matrix factorization For the next iteration (true is faster, but
needs significantly more memory when nat in RON mode)

parameters |true 3

assumption about the stiffness matrix definiteness
paransters |indef inite

assumption about the stiffress matrix symetry
parmeter [z 3]

solution method:

paransters |full a

. L3 I:n:nl.

4. Run FE? simulation by command

o Cancel

abaqus job=XXX user=PATHTODIR/bin/MonolithFE2_Mises.o cpus=lncpus

under Linux or

abaqus job=XXX user=PATHTODIR/bin/MonolithFE2_Mises.obj cpus=Wkncpus

under Windows or create Job in Abaqus/CAE and choose MonolithFE2_Mises.o or
MonolithFE2_Mises.obj, respectively, as User subroutine file (tested with Abaqus ver-
sions 2017, 2018, 2020 and 2022). If a different material routine than the standard
delivered Mises routine is used, first compile MonolithFE2 with it as described in sec-

tion [T 11

3 Examples

The following examples are shipped:

ence

Name and refer-

micro

macro

homogeneous [4]

homogenous microstructure,
rectangular elements

4

pure shear, pure bending

shear [I]

notched plate

Lange, Hiitter, Kiefer: MonolithFE?2

3 Examples

)
)
K
X
< K]
:a AV
sharp_notched 1545! 3‘5
- 1 VA% %
beam_ 2D [, [4] S gE
I 2
Miehe Koch
Composite
b =25mm
Ps Psmax = 1.68:0%

2D foam _filter [5]

The following examples can be made available on request:

Name and refer-
ence

micro macro

simple microstructure, 4 rectan-
bimaterial [4] gular elements, two sets with dif- | pure shear, pure bending
ferent constitutive parameters,

plate with
hole tension [4]

VA
VAVAVAV.%
: 5
SOVATAVAVAS B
quater plate SRR
— - S P i A
hole _tension R &%’ﬁ@'&}%ﬁ
\Vi
RN ARRRREEL

/N
4VaVAVAY4y 5%, vaVAVAVAVAVAN
RAVAVANZ P vaVAVAVAVAV
AVAVAVAVLYAVAVAVAVAVAVAVY

from second | qyarter model at large deforma-
tions, Miehe Koch composite

3D beam 3D
foam power law

_hardening [1], 4]

Lange, Hiitter, Kiefer: MonolithFE?2

3 Examples

HyperROM/ Com-
posite [2]

.

HyperROM/ Filter
(needs UMAT for

Creeping) [2]

P

L.
HyperROM/ Wo- i
venComposite

(needs UMAT for

Polymer and Fiber

Bundles) [2] I

Selected examples can be run automatically (in Linux) by the command

Further parameters like NCPUS=. . .

make verify

or ABACALL=. .. can be passed, cf. section [7.1]

Lange, Hiitter, Kiefer: MonolithFE?2

4 Creating Microscale Models 10

4 Creating Microscale Models

General requirements:

e using elements (not restricted to a certain element type, multiple element types per part
allowed) that are part of the shipped UEL interface

e congruent meshes at homologous parts of the boundary

4.1 Within Abaqus/CAE using Plug-In

e Create a 2D Shell or 3D solid part, that can be periodically continued. It can include
any kind of pores and may be partitioned, to assign material sections.

e Create one or more material definitions which sets the parameters of an user Material
including the Depvar definition, because only user material (UMAT) routines can be
used with MonoltihFE2! Put the Material into sections and assign them to all regions
of the mesh.

e Mesh the Part (not its Instance!) with elements available in the UEL library. Ensure
that the nodes at opposite boundary faces are congruent.

Lange, Hiitter, Kiefer: MonolithFE?2

4 Creating Microscale Models 11

e Open the Plugin ,MonolithFE2“. Specify the created Model and Part. ,Job-Name of
Macro job“ is the Job name of the macro problem to be solved. RVE Volume corresponds
to V in (e) = & J,, #d V. A short description has to be added.

[porous microstructure

e In the tab ,Boundary” select “Create Periodic BCs” (use the other option only, if you
already set up the constraints manually in CAE using the naming conventions as spec-
ified in the plugin). Create a set in the Part including the geometry of the boundary
(outer edges in 2D, outer surfaces in 3D). Specify the name of this set and specify the
periodicity vectors, e.g. 1.0,0.0;0.0,1.0 in 2D for a rectangular RVE.

ors: |1.0,0.0,0.0,1.0 |

e In one FE? Analysis, different RVE’s can be used. When creating more then one RVE
input file for a macro FE Analysis, make sure to choose different RVE numbers in the
General Settings of the plugin. Clicking "OK" generates a file *.FE# in the current
working directory, where # is the RVE-Number and * is the macro job name.

Lange, Hiitter, Kiefer: MonolithFE?2

4 Creating Microscale Models 12

4.2 For models with existing equations in CAE

It is also possible to set up the constraints “manually”, or e.g. by other available tools like
EasyPBC, Micromechanics Plugin etc. but then some conventions must be met. Each term
of an equation must have a set that contains only a single node, or a reference point. The
macroscopic reference points (or nodes) have to be in sets called exactly “U1”, “U2”, “U3” for
the rigid body motion and “E11”, “E22”, “E33”, “E12”, “E13”, “E23” for the strains (small def.)
resp. right stretch (finite def.).

4.3 Set up the model by directly creating an inputfile for MonolithFE?

The provided Abaqus Plugin is not the only possibility to create an inputfile. It can be created
manually and has a syntax which is similar to Abaqus and can therefore be code-highlighted
e.g. in Geany, but the commands are not exactly the same! The following rules have to be
respected

e Keywords begin with a single star *

e Comments begin with two stars ** and should incorporate at least two separate words,
e.g. xxA test

e Empty lines are not allowed
e Upper and lower case letter make no difference

e The order of the appearing Keywords with content does not matter, but the Elements
have to be defined before the Element to Node Assignment is specified

e necessary Keywords:

— #Part, "Partname' where "Partname" is just some user defined name, that will
be printed in to the Message File

— *RVE_Volume, V=V where V corresponds to the Volume of the RVE in
(o) = % fv odV.
— #Coupling, Ndof=n where n is the maximal number of DOF that a node can

(1]

have. In the following n lines enter n-times 0 or 1 separated by “,” to specify if the
respective dofs are coupled in the system of equations or not.

— *User_Elements, N=[where [is the number of user element (UEL) definitions
that will follow with all of the following Keywords:

- #*Elementm, TYPE=... where m is a element label from 1 to [and TYPE is
the name of the UEL, whereby the UEL is called with JTYPE set to this name
which has to be an integer number. This has to be the first Keyword in the
Element definition!

- *NNODE, N=o, where o is the number of nodes.

- #*Element_dof, N=k where k is the number of DOFs of the element. In the
following k lines in each line specify the element node (number from 1 to o)
and the node dof (number from 1 to n).

- *NSVARS, N=p where p is the total number of state variables per Element
- *PROPS, N=gq where ¢ is the number of real properties that follow in the next

(13

line separated by “)”.

Lange, Hiitter, Kiefer: MonolithFE?2

4 Creating Microscale Models 13

- *JPROPS, N=r where r is the number of integer properties that follow in the
next line separated by “”.

- #n_additional_hyper_outputs, N=s where s is a number of variables that
are output by the UEL in SVARS needed for the hyper integration (if it is not
needed just set it to 0).

- *End_of _Element has to be the last keyword in the Element definition.

— *End_of _User_Elements has to be the last keyword that is wrapped around of the
element definitions.
— #Node, dimens=d where d is the dimension (2D=2,3D=3) and in the following

lines specify the coordinates of all nodes using d numbers per line separated by “,
(the nodes will get the label in the order they were specified by counting from 1)

— #Element_to_Node, N=[where [is the number of element to node assignments
that must match the number of Element definitions! In the following lines specify
the element to node assignments for all [elements with

- *#Element_to_Node_Assignmentsm, N=t with m being a label from 1 to [cor-
responding to the element definition from above and ¢ is the number of actual
elements of that type. Now ¢ lines follow with o entries separated by “,” spec-

ifying the actual node of the mesh to local node of a specific element.

- *#End_of _Element_to_Node_Assignments ends the element to node assign-
ment for the element type

— *End_of _Element_to_Node ends all element to node assignments.

— *Reaction_Force_dof, N=u specifies a number of u of (macroscopic) dofs that
are not connected to elements, but inserted into the main program by the array
macro_measures (in the order in which they are specified in this inputfile). These
dofs must appear in the equations and will get a reaction response that is output by
the main program through macro_response and the condensed tangent w.r.t. these
dofs will be output through DDSDDE. Dummy nodes have to be set in *Node which
are then specified in u lines by specifying: node number (dummy), node dof

— *Additional_dof, N=v specifies a number of v of (macroscopic) dofs (to be in-
serted in macro_measures after the reaction force dofs). These dofs also must
appear in the equations, but its response will not be computed, even if it might be
NONZEero.

— #Equations, N=w where w is the number of linear constraints to be specified by:

- *EQUATIONz, N=y where z is a number from 1 to w and y is the number
of terms in the equation. In the following line 3 times y entries have to be
specified and separated by “;”. The equations have to be put in zero form and
in each triplet, the first number is the node number, the second number is the
node dof and the third number is the multiplication factor. The first dof in
each equation will be removed from the global system of equations and shall

not appear again in another equation!
— *End_of _Equations ends specifying the equations.

— *End_of_File ends the inputfile, any information below will be ignored

e optional Keywords:

Lange, Hiitter, Kiefer: MonolithFE?2

4 Creating Microscale Models 14

*ROM_Modes, N=a is necessary only in ROM and hyper ROM simulations, then a
is the number of active dofs of the system. In the following lines the modes are to
be specified where each node contains a real numbers.

*Active_Elements, N=b is necessary only in hyper ROM simulations, then b is
the number of elements which are called. In the following line b element labels
must be specified, for the elements that are active, where the elements are counted
consecutively starting with the first element type then the second and so on. In
the next line the element multiplication factors corresponding to the active element
labels have to be specified.

Example for a homogeneous 2D RVE with 4 linear Elements:

**MonolithFE2 Version 3.0
**Do not modify this inputfile, otherwise it may not work properly!

*Part, "h

omogeneous"

*RVE_Volume, V=1.0

*Coupling
1,1
1, 1

, Ndof=2

*User_Elements, N=1

*Element1
*Element_

B W wWw NN P -
N RN~ N

4, 2
*NNODE, N
*NSVARS,
*PROPS, N
100.0, O.
*JPROPS,
*n_additi
*End_of_E

, TYPE=2008
dof, N=8

=4

N=6

=6

3, 1.0, 0.0, 3.0, 1.0
N=0

onal_hyper_outputs, N=4
lement

*End_of_User_Elements

*Node, di
-0.5, -0.
0.0, -0.5
0.5, -0.

mens=2
5

Lange, Hiitte

r, Kiefer: MonolithFE?

4 Creating Microscale Models

0.0, 0.0

0.0, 0.0

0.0, 0.0

*Element_to_Node, N=1

*Element_to_Node_Assignmentsl, N=4
, 2, 5, 4

3

1

2, 3, 6,5
4,5, 8,7
5, 6, 9, 8

B > B

*End_of _Element_to_Node_Assignments
*End_of_Element_to_Node

**¥Reaction forces for E11 E22 E12
*Reaction_Force_dof, N=3

11, 1

11, 2

12, 1

x*macro displacements Ul U2 (always set to zero -> rigid body motion)
*Additional_dof, N=2

10, 1

10, 2

*Equations, N=12

*EQUATION1, N=2

3,1, -1.0, 11, 1, 1.0

*EQUATION2, N=2

3, 2, -1.0, 12, 1, 0.5

*EQUATION3, N=2

7,1, -1.0, 12, 1, 0.5

*EQUATION4, N=2

7, 2, -1.0, 11, 2, 1.0

*EQUATIONS, N=3

9,1, -1.0, 11, 1, 1.0, 12, 1, 0.5
*EQUATION6, N=3

9, 2, -1.0, 12, 1, 0.5, 11, 2, 1.0
*EQUATION7, N=3

8,1, -1.0, 2, 1, 1.0, 12, 1, 0.5
*EQUATION8S, N=3

8, 2, -1.0, 2, 2, 1.0, 11, 2, 1.0
*EQUATION9, N=3

6, 1, -1.0, 4, 1, 1.0, 11, 1, 1.0
*EQUATION10, N=3

6, 2, -1.0, 4, 2, 1.0, 12, 1, 0.5
*EQUATION11, N=2

1, 1, -1.0, 10, 1, 1.0
*EQUATION12, N=2

1, 2, -1.0, 10, 2, 1.0
*End_of_Equations

*End_of_File

Lange, Hiitter, Kiefer: MonolithFE?2

5 Postprocessing 16

5 Postprocessing

The postprocessing for the macro problem can be done as usual in Abaqus/Viewer. For
the micro problems no conventional postprocessing is available at the moment. Instead the
load history of selected macroscopic integration points can be extracted and then resimulated
directly in Abaqus. It is not sufficient to start Abaqus Viewer, opening Abaqus CAE is
mandatory.

0. Before starting the FE? simulation select SDV as field output in the macro model. There
the macro stretch tensor (resp. strain) will be saved. Without having the SDVs as field
output no postprocessing can be done in large displacement analysis.

1. Open the created micro model. If the box ,,generate constraints in CAE" in the ,Generate
FE2 microscale mesh” Plugin as described in chapter wasn’t ticked in the first call,
redo the process, now with ticked box. This creates constraints between nodes on
opposite boundary’s, boundary conditions, amplitudes and a step. This step can be
skipped for all example problems!

2. Modify the steps settings as needed.

3. Now load the odb-file resulting from the FE? simulation.

4. Open the Plugin "MonolithFE2“. In the General dialogue select the micro model. The
therein mentioned micro model is the model from point [I| and should still be open.

Clicking on "OK* creates amplitudes for the strain resp. displacement gradient in the
micro CAE model.

MonolithFE2 Toolbox)|

Hode. | General | Boundary | Pavansters Posterocessing | Trainina |

Select the macro-odb to extract the load history

ODB: [/tnp/Hode]-1-elast ic1651483727,57186.0db] Parts [PART-1 ¥|

Pick an elemert: (Picked) [y |

Specify the integration point: Il

Get the load history fron: [E]

Note in order to use SIV (solution depenend variables) as source of the load
history, SIVs must be requested as field output in the STEP, Use strains E only
for geometricalls linear simulations,

5. Now create a job for the micro model and submit it.

6. Do the postprocessing as usually with the Abaqus/Viewer.

Lange, Hiitter, Kiefer: MonolithFE?2

6 Hyper ROM Method 17

S, Mises

(Avg: 75%)
+1.25de+00
+1.169e+00

7. Repeat steps [to [0] for all macro integration points to be postprocessed.

6 Hyper ROM Method

The basic idea of the ROM method is, that the vector of nodal displacements can be approx-
imated by a linear combination of a low number of modes. The integration can then also be
reduced by a lower number of weighted elements. Necessary steps in MonolithFE2:

1. Generate training data (snapshots of nodal displacements and force vector at integration
points).
e Open then "MonolithFE2“ Plugin, select the micro model and macro job name in
the General dialogue and fill out the upper dialogue of "Training“. This creates an
UMAT _Driver inputfile defining the training directions with the name of the macro
job chosen. It also creates a configuration file "Analysisparameters.cfg* which sets
the necessary parameters.

Lange, Hiitter, Kiefer: MonolithFE?2

6 Hyper ROM Method 18

e Thereby number of variations means the how often every entry of the macroscopic
strain (resp. stress) tensor is varied.

e The output of training data can be requested at certain time steps, whereby the
plugin assumes equidistant dump steps (which is no requirement). The time steps
could be set differently in the file "Analysisparameters.cfg* if needed.

*Data_dump, N=ngteps
t1,t2,13 ..., tnstcps

e Run the simulation by ticking the box “directly start training simulations”. Oth-
erwise start UMAT Driver

./UMAT_Driver CpuS=nNcpuys job=Jobname
Thereby the compiled program UMAT _Driver.o(bj) must be in the same folder.
Note that the Jobname.FE# file must have the RVE label 1 (#=1)

e The simulations can be parallelized by specifying the number of cpus.

e The simulation outputs the displacement values in files with the name training-
data-u-*.txt and the (generalized) “force” values in training-data-f-*.txt whereby *
is an ID number.

e Clustered training and unspecific training are possible

— In unspecific training, the entries of the macroscopic stress/strain tensor will
be varied

— For the clustered training, at first a simulation with some replacement mate-
rial must be performed. Then the odb has to be opened in Abaqus and the
clustering parameters have to be set. Then by using the data of the odb the
training directions will be created.

2. Evaluate data to get the displacement modes.

3. Evaluate the data to get the hyper elements and their corresponding element multipli-
cation factors.
4. Write the results to the input file of the trained RVE.

e All steps can be done using the Python Plugin graphically or running the data
evaluation script from a command line using the Hyperintegration.py script with
the therein specified input parameters.

e As a pre step the FORTRAN parts of the code must be compiled into a shared
object file. Therefore run

make (Linux) or
compile (Windows)

in the Plugin folder.
e In Abaqus CAE:

— Open the "MonolithFE2“ Plugin, write the macro job name in the General
dialogue and fill out the under dialogue of "Training".

Lange, Hiitter, Kiefer: MonolithFE?2

6 Hyper ROM Method 19

e

— Note that the micro Inputfile which has to be chosen (and into which the
resulting data is written) has to be in the folder containing the training data

— The data evaluation can be parallelized, whereby the reading of files and the
singular value decomposition run both in parallel.

— As a result the modes and element IDs and multiplication factors are written
into the inputfile #.FE1.

e Note that the SVD of the various data is stored to text files named LSV_...txt
(LSV=Left Singular Vectors). Note that when the data Evaluation is restarted,
the data is read from these files.

e When using the script directly from the command line:

python pluginpath/Hyperreduction.py path_to_inputfile=... ... ncpus=...
— allowed values:
* path_to_inputfile absolute Path to inputfile
Method=’ROM’ or ’hyperROM’

*

*

n_modes= from 1...nmodes

*

NELEM= from 1...7clements

* ncpus= from 1...ncpus

5. Do actual simulations by setting a reduction mode in the ”Analysisparameters.cfg” con-
trol file.

Lange, Hiitter, Kiefer: MonolithFE?2

7 Source Code and Compilation 20

e Either by using the Python Plugin or by setting the following option:

*3olving_Process
— full: no reduction
— reduced: only ROM projection, but full integration
— hyperreduced: ROM projection and hyper integration

7 Source Code and Compilation

7.1 Compilation

The code is compiled under Linux by command
make [OPTION=value]

or under Windowsﬂ by
[SET OPTION=value]
compile
The possible options are listed in Table[3] These commands create the object files MonolithFE2_XXX.o
resp. MonolithFE2_XXX.obj (where XXX corresponds to the chosen material routine name),
which can be used as described in section 2

Tab. 3: Options for compilation

Option default value | remark
ABACALL abaqus command for calling Abaqus (e.g. abq2020)
MATERIAL Mises material routine for microscale

Required additional packages (by default in same folder as folder of MonolithFE?):
e UELLD [3]
o UEL-large-deformation

e UMAT Driver (only needed for generating Training data for ROM Method)

— The UMAT _Driver program has to be compiled as described in the documentation
of the respective project and then copied to the corresponding training folder, when
used as driver routine for generating training data.

The location of these packages is given in the Makefile and compile.bat and can be set
by make UEL1ibDIR=... etc or modifying compile.bat. Alternatively, the files can be
made accessible either directly in folder src/ (linked or copied) or the respective directo-
ries are added to the include path with option -I of line compile_fortran in the envi-
ronment file (1nx86_64.env/win86_64.env loaded from abaqus_v6.env). With the option
MATERIAL=directory a user defined material behavior can be specified. The directory co-
incides with the name of the folder containing the necessary source files to be placed in the
materialroutines folder of uel-large-deformation. For further details look into chapter 77.
When MATERIAL is omitted the standard value is Mises.

3If the environment variables are not set correctly in the default shell or in "Abaqus Command" shell, the
command should be run in "Intel oneAPI command prompt ...for Visual Studio" from start button of
Windows.

Lange, Hiitter, Kiefer: MonolithFE?2

7 Source Code and Compilation 21

Further requirements:

e Linux: Compiler options in the environment file 1nx86_64 . env loaded from abaqus_v6.env
(as set in present package) in line compile_fortran

— -mkl=cluster: include MKL
— -heap-arrays: Create large arrays in heap instead of stack to avoid stack overflow

— -nostandard-realloc-1lhs: Turned out to be necessary to avoid certain runtime
errors.

— The Fortran preprocessor FPP must be switched off by deleting the option -fpp.
The reason is that the present code is written in free-form Fortran whereas other
included files may be written in fixed form. The present implementation employs
the compiler directives !DEC$ FREEFORM and !DEC$ NOFREEFORM to switch between
both settings. However, this compiler directive is incompatible with FPP.

e Windows: Changes in the environment file win86_64.env loaded from abaqus_v6.env
(and as shipped with present package)

— additional compiler options to line compile_fortran: \heap-arrays, \nostandard-realloc-1lhs,
\names : lowercase (problem of Abaqus2020 with OneAPI), \Qmk1, \I"%MKLROOT%\include"

— additional linker option to link_sl: mkl_rt.1lib in order to include MKL library
in linking
e The program adapts free-form versions of the required interface definitions from SMAAspUser*.hdr.

It may be necessary to check whether these definitions have been changed in other ver-
sion of Abaqus.

e The UEL has to provide an additional subroutine GET_n_STATEV_elem, which returns
the number of state variables which have to be reserved by MonolithFE?for each element
(NSVARS in the head of UEL), cf. attached file UEL. f.

7.2 Plugin for Abaqus/CAE

All necessary FORTRAN routines in the abaqus_plugin folder have to be precompiled in this
folder by:

make
in Linux or

compile
in Windows. This creates a shared object file needed for the Abaqus Python Plugin Mono-
lithFE2.

Subsequently, the folder abaqus_plugins has to be copied either to the current directory,

home directory or Abaqus installation directory. In the next start of Abaqus/CAE the Plugin
is available.

7.3 Source Code

The structure of the components of MonolithFE? is illustrated in Fig. [1l The following table
explains selected routines of the MonolithFE?kernel.

| filename [routine [description ‘

Lange, Hiitter, Kiefer: MonolithFE?2

Source Code and Compilation

22

include.f

Includes all files that are needed for MonolithFE?. Tt is
in turn included by the macro UMAT. If in a new im-
plementation a different macro UMAT and UEL will be
implemented: This include file stays the same, the UEL
sourcefile must be named exactly “UEL.f” and the new
macro UMAT must include this file at the beginning.

UMATmacro_
mechanical.f

UMAT

actual macro-UMAT interface to be called from Abaqus
at each macro-GP; includes all needed source files;
gets all pointers to the needed data; calls the main
program (staggered/monolithic) to get macro STRESS
and macro DDSDDE; extrapolates micro displacements
in staggered case

mechanical.f

UMATmacro_ get abaqus_stress_stiffness | return STRESS and DDSDDE in the format Abaqus
mechanical.f expects it.
UMATmacro_ trans_stress_stiffness The (symmetric) Biot stress is transformed to Cauchy

stress (also the material tangent: nominal tangent —
DDSDDE).

UMATmacro_
mechanical.f

polar _decomposition

The macro deformation gradient is split in the rotation
and right stretch tensor

MonolithFE2.f

main _program _staggered

actual main program for the staggered algorithm, which
calls all needed routines (assemble, solve...) in the right
order

MonolithFE2.f

main_ program__monolithic

main program for monolithic algorithm

MonolithFE2.f

convergence _check

checks if convergence is reached (currently infinity
norm)

MonolithFE2.f

enforce constraint

Enforce the constraint using the Equations defined in
the Inputfile.

MonolithFE2.f

update _nodal _ sol

Update the nodal solution, by adding the computing
increment at the correct place of the solution vector
and enforcing the constraint.

MonolithFE2.f

assemble

Call the element routine for all active elements and sort
the right hand side and the tangent matrix at the cor-
rect place and manage the state variables.

MonolithFE2.f

assemble full derivative
matrix_ and_RHS

In the HF simulation case, insert the tangent matrix
into the sparse system matrix and the non sparse matri-
ces corresponding to macro reactions, sort in the RHS.

MonolithFE2.f

assemble ROM _derivative
matrix and RHS

In the hyper ROM simulation case, insert the tangent
matrix into the non sparse system matrix and the non
sparse matrices corresponding to macro reactions, sort
in the RHS.

MonolithFE2.f

ROM _projection

Do the Galerkin projection with the ROM modes in the
not hyper integrated case for the RHS and the Tangent.

MonolithFE2.f

static_ condensation

Compute the macroscopic response and corresponding
tangent through static condensation.

type_solver.f

type_solver: initialize, fac-
tor, solve, finish

Empty interface, that declares an object with methods,
to either call the PARDISO solver for sparse system
matrices or the LAPACK solver for dense systems.

type_solver.f

Solver PARDISO:initialize,
factor, solve, finish,
get permutation matrix,
interpret error

Module that wraps around the PARDISO solver

type_solver.f

Solver LAPACK:initialize,
factor, solve, finish

Module that wraps around the LAPACK

d(ge/sy)tr(s/f) solver

manage_
data.f

UEXTERNALDB

Abaqus interface UEXTERNALDB is called from
Abaqus at the start/end of a analysis and start/end
of a timestep. It’s used to manage the mesh and state
variable data at the correct point of the analysis

Lange, Hiitter, Kiefer: MonolithFE?2

7 Source Code and Compilation

23

manage_ readdata at the analysis begin the micro mesh & analysis param-
data.f eters are read and stored

manage_ manage SVARS data at the end of a time step the state variables of all macro
data.f GPs are written to: t—t-1, t-+1—t; at the start of a

time step the data is initialized; at the end of the anal-
ysis the allocated disk space is freed

type_macro_

allocate data

in this module a user derived FORTRAN type is de-

arameters.f

read data
get pointer
deallocate data

GP_DATA.f allocate solver data clared which encapsulates all the macro GP state date
get pointer (micro displacements, state variables of the micro GPs,
deallocate data o)

type_meshp type_meshparameters: n this module a user derived FORTRAN type is de-

clared which encapsulates all the data for defining the
microscopic mesh (coordinates, element to node con-
nection, etc.). The read data routine reads the data
from disk and sets up the system of equations, the
get pointer routine accesses the data, by setting the
pointers and the deallocate routine frees the allocated
memory

type_analy read data In this module a user derived FORTRAN type is de-

sispara get pointer clared which encapsulates all the data for defining anal-

meters.f deallocate data ysis parameters, for example if the monolithic or stag-
gered algorithm shall be used, if symmetric matrix stor-
age shall be used etc.

type_ allocation In this module a FORTRAN type is declared, that en-

systemmatrices|fdeallocation capsulates the matrices of derivatives, rhs’s and solu-

tion increments.

Lange, Hiitter, Kiefer: MonolithFE?2

24

Buissadoidisod :

S|

uoI3eSUaPUOD dI3eIS

(3susp) MOVdV1
(9s1eds) OSIAYvd
J9A10S I

z34 IVINN

13an

s|quasse

S1y3Ijouow urew

paJabbels ulew

34 VNN

8 Limitations, Problems and Future Developments

Emo Buluiey u.a:o_

_ AJ1VLS sbeuew _

sAelly YINS

9|uanduj 03 usnM E—
syybiam pue
sjuiod JadAy -
Sapow WOH -

eiep ajen|ena

ejep Bujuiely 2103s

suol3dadip bujuleny
yum 3jyandu| a3ea1d

!NOY JadAy Joy Bulureny

slojoweded |013U0D SISAjeue 19S

3|uindu) peal

adTvNY3LX3N =

~+:w
‘ug <0y

uoissiwgns sisAjeuy

|opow oudew jo buissadoidald

<34Yjouoiy 1o} ajuInduj 91e810 | @

uonez|(3audsip 34 I
\@C__QUOCL Snovay

~ 2JN312N.13S0J01W |eal

z34Y3jouo Jo syusuodwod

not thermal etc.).

(

Fig. 1: Structure of MonolithFE?

e The provided UELs are only suited for mechanical behavior

8 Limitations, Problems and Future Developments

Lange, Hiitter, Kiefer: MonolithFE?2

8.1 Limitations

8 Limitations, Problems and Future Developments 25

e The provided UMAT at the macroscale (UMATmacro_mechanical.f) is only sutied for
mechanical behavior. If “multiphysical” problems have to be solved a respective UMAT
has to be programmed in analogy, that interprets the in- and outputs differently.

e No real visualization of the Microscale FE problems. In a future work this could be
done with ParaView if necessary.

e distributed-memory computations ("multi-node") may not work with the monolithic-
stored stiffness matrix factorization algorithm in some cases (first tests yield no problem

yet)

8.2 Known lIssues

e sometimes convergence problems, specifically:
— large deformation analysis
— plane stress (especially in large deformation analysis)
e At the moment Abaqus Plugins only work if English System language is installed and set

(tested under Linux, include in the .bashrc "export LANG=en US.utf8" and "export
LANGUAGE=en_US").

8.3 Software environment

e The file ABA_PARAM. INC is not found by Abaqus by default under Linux, but put "arti-
ficially" to folder src/. Its content must be checked under different OS and computer
architectures.

e Integer kind specifications in SMAAspUserArraysFortran.f are fixed (adopted from
SMAAspUserSubroutines.hdr of Abaqus) and may be specific to OS and computer
architecture as well.

8.4 Development for generalized continua

If other cases than First Order mechanical Homogenization have to be simulated, follow these
implementation steps:

e Write a micro element using the UEL interface as defined by Abaqus (if the mechanical
cauchy continuum is not sufficient) and call the source code to be included (may itself
include other files) exactly “UEL.f” and make it accessible while compiling the program.

e Write an RVE Inputfile for MonolithFE?, that defines the created UEL element and
suitable constraints correctly.

o Write an “generalized UMAT” at the macro scale in analogy to the existing First Order
mechanical one, but interpret the macro_measure input to MonolithFE2and resulting
reaction forcemacro_response and tangent DDSDDE according to the problem solved.

e Write a macro UEL, that calls the macro UMAT at its integration points.

Lange, Hiitter, Kiefer: MonolithFE?2

9 Version history

26

9 Version history

date

description

2020-07-29

final version of diploma thesis of N. Lange [4]

2020-12-17

Material in rate formulation; large deformations; all elements of UELIlib
added; in Plugin "Generate FE? Inputfile" plane strain/plane stress/3D
stress selectable; general applicable plane stress algorithm in UXMATMises.f
added; stiffnessmatrix factorization indefinite/positiv definite selectable

2021-02-03

switched from MKL DSS solver to MKL PARDISO solver due to an existing
memory leak when using the DSS solver, added a postprocessing for micro
problems

2021-04-20

version 1.0 published

2021-05-06

v1.01 with binaries for Windows

2021-07-20

v1.02, Inputfile adopts *Keyword style of Abaqus, number of node dof’s
named generally to be compatible with generalized continua, material rou-
tines can now be integrated more easily without changing the UEL.{ file

2021-07-23

v1.02a, bug removed; added: automatic verification run auf examples
within Makefile

2022-05-05

v2.0, major version change, all plugins combined to a single one; micro
material definition now in the *.FE+# inputfile; hyper ROM reduction im-
plemented, in a training step data is collected, in a evaluation step the
ROM modes and integration point weights are calculated, written to the
* FE# inputfile, then it can be used in actual simulations; in finite defor-
mation now a polar decomposition is done and only the stretch is impressed
onto the RVE; now no more limitation to 5 RVE definitions in a simulation

2023-07-20

Memory Leak of MKL fixed, now the solver memory ca be released in the
full mode

2024-04-05

v3.0, major version change, new Inputfile without information on the struc-
ture of the system of equations, more flexibility on the elements (more than
one element type may be defined), general Equations, general number of
dof per node of an element, element based hyper integration, UEL interface
called without non-Abaqus-Standard arguments, System of equations is set
up at the start of the simulation.

References

[1] N. LANGE, G. HUTTER, B. KIEFER: An efficient monolithic solution scheme for
FE? problems, Computer Methods in Applied Mechanics and Engineering 382 (2021),

113886.

[2] N. LANGE, G. HOTTER, B. KIEFER: A monolithic hyper ROM FE? method with
clustered training at finite deformations , Computer Methods in Applied Mechanics
and Engineering 418 (2024), 116522.

[3] G. HUTTER, S. RoTH, R. SKRYPNYK: UELIib — A library for user-defined elements
in Abaqus, Technical Report, TU Bergakademie Freiberg, Institute of Mechanics and
Fluid Dynamics.

[4] N. LANGE: Implementation of a monolithic FE? program (in German), diploma thesis,
TU Bergakademie Freiberg, 2020.

Lange, Hiitter, Kiefer: MonolithFE?2

References 27

[5] G. HUTTER, C. SETTGAST, N. LANGE, M. ABENDROTH, B. KIEFER: A hybrid ap-

proach for the multi-scale simulation of irreversible material behavior incorporating
neural networks, Proc. Appl. Math. Mech. 20 (2020), €202000248.

[6] R. MCLENDON: Micromechanics Plugin for Abaqus,

https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon,
2017.

[7] M. ABENDROTH, E. WERZNER, C. SETTGAST, S. RAY: An Approach Toward Numer-
ical Investigation of the Mechanical Behavior of Ceramic Foams during Metal Melt Fil-
tration Processes, Adv. Eng. Mater. 19 (2017), 1700080. DOI:10.1002/adem.201700080

[8] J. HERNANDEz, M. CAICEDO-SILVA, A. FERRER FERRE: Dimensional hyper-
reduction of nonlinear finite element models via empirical cubature, Computer Methods
in Applied Mechanics and Engineering 313 (2016), DOI:10.1016/j.cma.2016.10.022

[9] ABAQUS/Standard User’s Manual, Version 6.9, Michael Smith, Dassault Systémes
Simulia Corp, 2009

Lange, Hiitter, Kiefer: MonolithFE?2

https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon
https://doi.org/10.1002/adem.201700080
https://doi.org/10.1016/j.cma.2016.10.022

	Description
	Features
	Requirements

	Quick Start Guide
	Running Your First FE2 Simulation
	General proceeding

	Examples
	Creating Microscale Models
	Within Abaqus/CAE using Plug-In
	For models with existing equations in CAE
	Set up the model by directly creating an inputfile for MonolithFE2

	Postprocessing
	Hyper ROM Method
	Source Code and Compilation
	Compilation
	Plugin for Abaqus/CAE
	Source Code

	Limitations, Problems and Future Developments
	Limitations
	Known Issues
	Software environment
	Development for generalized continua

	Version history

