Overburden subsidence and sinkholes
Authors: M.Sc. Stefan Harms, Prof. Dr. habil. Heinz Konietzky

1 Introduction..2
2 Types of mining induced surface damages ..2
3 Continuous subsidence ..4
 3.1 Fundamentals...4
 3.2 Profile functions..8
 3.3 Influence functions..10
4 Influence of geological effects and mining parameters..13
5 Discontinuous subsidence ...15
 5.1 Empirical models..15
 5.2 Analytical models..16
 5.2.1 Volume balance models...16
 5.2.2 Simple geomechanical models ...19
6 Consequences of mining induced surface movements..29
 6.1 Static ground movements...29
 6.2 Time-dependent ground movements..31
7 Numerical Models...33
 7.1 Example 1: Numerical simulation of continuous subsidence above an underground coal mine ..33
 7.2 Example 2: Numerical simulation of sinkhole with an continuum approach (Shiau et al., 2016) ...37
 7.3 Example 3: Numerical simulation of sinkhole with a discontinuum approach (Coudron et al., 2006) ...38
8 References...40
1 Introduction

Surface movements and deformations like settlements, inclinations or even sinkholes can be caused by human activities (e.g. mining, petroleum engineering) or natural underground processes (leaching processes, erosion, suffosion etc.). Potential consequences of such deformations are damages on buildings and infrastructure but also hazard for human beings. This chapter considers only mining related subsidence phenomena. Nevertheless, most of the below given information is also applicable to natural induced deformation processes.

2 Types of mining induced surface damages

The type of subsidence depends on various factors. In case of brittle overburden above a near-surface excavation, a basin can be formed with step like edges. As shown in Fig. 1 oblique shear fractures (green) as well as a fractures perpendicular to the stratification (orange) can occur. In case of a compact overlying rock mass above deep and large underground mining excavations, a subsidence trough will appear (Fig. 2) which extends beyond the mining claim boundaries.

If the overburden consists of loose soil, a wedge-shaped depression can be formed, which has the shape of a funnel and narrows with ongoing depth (Fig. 3). Sinkholes can occur due to failure of the overlying strata (Fig. 4). The collapsed material expands bell-shaped towards the depth. If soil is flushed away or backfill slipped away chimney caving can occur (Fig. 5).
Overburden subsidence and sinkholes

Subsidence can be either continuous or discontinuous:

Continuous subsidence shows a smooth profile without jumps, steps or sudden profile changes. This type occurs at excavations of thin, horizontal or only slightly inclined deposits with soft and ductile sedimentary overburden. This is usually the case for longwall mining.

Discontinuous subsidence is characterized by large subsidence rates within a small area. Also, jumps, steps and sudden changes in the subsidence profile are typical. A common form of this type of subsidence are sinkholes connected with near-surface tunneling or karst-structures.
3 Continuous subsidence

The methods for calculation of subsidence can be classified as follows:

- empirical
- analytical
- numerical

3.1 Fundamentals

The general terms for a continuous subsidence trough are explained in Fig. 6. At point P the largest surface subsidence S_{max} is reached which increases with growing mining area. The methods explained below refer to the critical area of extraction and the critical angle ξ, which together with depth H of the mine determine the horizontal range of the subsidence effects. The critical angle ξ, and also the angle of draw ζ, describe the orientation of a connecting line between the boundary of the excavation area and that point at the surface where the subsidence reaches the value of zero. According to Kratzsch (1997) the maximum subsidence S_{max} is proportional to the thickness M of the excavation. In reality, the surface subsidence is always smaller than the thickness M of the excavation, since the lower strata experience tension, the immediate roof will be broken (caving) and the excavation will be filled with broken rock mass (loosening factor). This could be described by the following formula:

$$S_{\text{max}} = a \cdot M \ (a < 1),$$

(1)

Where:

- S_{max} … Maximum surface subsidence
- a …… Loosening factor
- M …… Thickness of the excavation

Fig. 6: Schematic representation of ground movement above an underground mine
The loosening factor \(a \) defines the proportion of the excavation thickness, which is measured as subsidence on the surface. This factor describes the loosening of the overburden rock layers. It is dependent on the mechanical properties of the rock mass, the mining layout and the type and quality of potential backfill. A general definition is given by the ratio between the volume of the subsidence trough \(V_M \) and the active subsidence volume \(V_A \) of the excavation:

\[
a = \frac{V_M}{V_A},
\]

where:
- \(a \) Loosening factor
- \(V_M \) ... Volume of the subsidence trough
- \(V_A \) ... Active subsidence volume

The factor \(a \) applies only to critical and supercritical states. If the full subsidence level \(S \) has not yet been reached (subcritical state), the loosening factor \(a \) is called apparent loosening factor \(a_{ap} \) (Peng, 2008):

\[
S = a_{ap} \cdot M \quad (a < 1),
\]

where:
- \(S \) Surface subsidence
- \(a_{ap} \) ... Apparent loosening factor
- \(M \) Thickness of the excavation

Typical empirical values for the loosening factor \(a \) are given in Tab. 1. If the same area is excavated at larger depth, the critical angle \(\gamma \) increases. The subsidence trough becomes wider but less deep. For this case, an additional parameter must be used, the exposure factor \(e \) (Kratzsch, 1997). The following formula is given for the maximum subsidence \(S_{\text{max}} \):

\[
S_{\text{max}} = e \cdot a \cdot M,
\]

where:
- \(S_{\text{max}} \) ... Maximum subsidence
- \(e \) Exposure factor
- \(M \)Thickness of the excavation

Tab. 1: Empirical values for loosening factor \(a \)

<table>
<thead>
<tr>
<th>Type of mining</th>
<th>Loosening factor (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caving</td>
<td>0.90 – 0.99</td>
</tr>
<tr>
<td>Backfill</td>
<td>0.50 – 0.90</td>
</tr>
<tr>
<td>Yielding pillars</td>
<td>0.30 – 0.60</td>
</tr>
</tbody>
</table>
The exposure factor e is also an empirical value and must be adapted to the respective rock mass conditions.

Horizontal displacements u are directed towards the excavation face and have a symmetrical shape in general. The following relation is valid for the maximum displacement u_{max}:

$$u_{\text{max}} = 0.4 \cdot S_{\text{max}}$$ \hspace{1cm} (5)

where:

u_{max} ... Maximum horizontal displacement

This maximum lies in the region at the inflection point of the subsidence profile and near the excavation faces. The deformation ε along the subsidence trough depends on the elongation of adjacent points. If the elongation is positive, tensile strain and stresses will be produced and vice versa. The transition between tension and compression is defined by the inflection point.

First derivation with respect to location x of the subsidence curve gives the tilt. Second derivation with respect to location x gives the curvature:

$$T(x) = S(x) \cdot \frac{d}{dx}$$

$$C(x) = S(x) \cdot \frac{d^2}{dx^2}$$ \hspace{1cm} (6)

The maximum tilt is situated at the inflection points of the subsidence profile. A geometrical calculation of tilt and geometrical approximation of curvature is the following:

$$T_{i,i+1} = \frac{S_{i+1} - S_i}{l}$$

$$C_i \approx \frac{S_{i+1} - 2 \cdot S_i + S_{i-1}}{l^2}$$ \hspace{1cm} (7)

In addition to these calculations, Fig. 7 shows the location of the measurement points.
Dynamic ground movements are declared by subsidence velocity \(\dot{S} \), subsidence acceleration \(\ddot{S} \) and deformation velocity \(\dot{\varepsilon} \). These values are the first and second derivative with respect to time of subsidence and deformation:

\[
\dot{S} = S(x,t) \cdot \frac{d}{dt} \\
\ddot{S} = S(x,t) \cdot \frac{d^2}{dt^2} \\
\dot{\varepsilon} = \varepsilon(x,t) \cdot \frac{d}{dt}
\]

(8)

where:
\(\dot{S} \) Subsidence velocity,
\(\ddot{S} \) Subsidence acceleration,
\(\dot{\varepsilon} \) Deformation velocity,
\(S(x,t) \) Subsidence function in time and space,
\(\varepsilon(x,t) \) Deformation function in time and space.

Fig. 8 illustrates the face advance of an underground excavation. The face advance is subdivided into three stages to show the development of the subsidence (National Coal Board, 1975). The excavation is slightly oblique and thus characterized by an increase in mining depth from \(H_1 \) to \(H_4 \). The subsidence trough for the subcritical state is given by the green line. The maximum subsidence \(S_{\text{max}} \) is reached for the critical state (red line). Areas beyond this range are called supercritical (magenta line). Here, the subsidence has already reached its maximum and shows only further extension in the horizontal direction.

The critical width \(w_c \) (critical range) is calculated as follows (National Coal Board, 1975):

\[
w_c = 2 \cdot H \cdot \tan \zeta
\]

(9)

where:
\(w_c \) Critical width
\(H \) Depth of the excavation
\(\zeta \) Angle of draw

Another equation for the critical width \(w_c \) (critical state) for underground coal mines is (Luo & Peng, 1997):

\[
w_c = 100 + 1.048 \cdot H
\]

(10)
If the location of vanishing surface subsidence and S_{max} are known, the subsidence profile can be calculated by using influence or profile functions.

The time delay between the excavation volume and the development of a subsidence trough will be considered by the time coefficient tc (Zimmermann, 2011):

$$ tc = \frac{1}{\Delta t} $$

where:

Δt ... time delay

3.2 Profile functions

Profile functions (Fig. 9) are used to describe the shape of subsidence trough. They have the following general form:

$$ S = S_{\text{max}} \cdot f(B, x, C) $$

where:

S_{max} ... Maximum subsidence
B ... Critical radius
x ... Horizontal distance to auxiliary points
C ... Constant or additional function (depending on type of mining, geology, etc.)

The critical radius is calculated as follows:

$$ B = H \cdot \tan(\zeta) $$

$$ B = H \cdot \cot(\xi) $$

where:

H ... Mining depth
ζ ... Angle of draw
ξ ... Critical angle
Exponential, trigonometric, hyperbolic or error functions are used to describe the subsidence trough. The method with a negative exponential function finds application in considering subcritical states due to the asymmetric behaviour around the inflection point (Peng & Cheng, 1981):

\[S(x) = S_{max} \cdot e^{-m \left(\frac{x}{w_s} \right)^n} \]

(14)

where:

\[S \ldots \text{Subsidence} \]
\[x \ldots \text{Distance to the centre of the subsidence trough} \]
\[w_s \ldots \text{Half width of the subsidence trough} \]
\[m, n \ldots \text{Empirical coefficients} \]

The half width \(w_s \) of the subsidence trough is determined by (after Peng, 2008):

\[w_s = \frac{w}{2} + B \]

(15)

where:

\[w_s \ldots \text{Half width of the subsidence trough} \]
\[w \ldots \text{Width of the excavation} \]
\[B \ldots \text{Critical radius} \]

According to Brady & Brown (2004) the approach with a hyperbolic function (Peng & Cheng, 1981) provides the best results:

\[S(x) = \frac{1}{2} \cdot S_{max} \left[1 - \tanh \left(\frac{b \cdot x}{H} \right) \right] \]

(16)

The empirical coefficient \(b \) is determined on the basis of the experience for a specific mining area. Hyperbolic functions are more suitable for critical and supercritical states because of their symmetry around the inflection point. Another hyperbolic function is proposed by Karmis, Goodman & Hasenfus (1984):

\[S(x) = \frac{1}{2} \cdot S_{max} \left[1 - \tanh \left(\frac{b \cdot x}{w_i} \right) \right] \]

(17)

where:

\[x \ldots \text{Distance to the inflection point of the subsidence trough} \]
\[w_i \ldots \text{Distance between centre and inflection point of the subsidence trough} \]

Profile functions are easy to apply, but they are valid only for the considered region. Parameters of the excavation, geology of the overburden and depth of the mine have significant influence.
Fig. 9: Schematic illustration of a profile function with parameters

3.3 Influence functions

Influence functions are used to describe the impact of the smallest excavation areas to the earth’s surface. According to the principle of superposition, the subsidence profile for the complete excavation can be determined by integrating the influence function $p(r)$ over the excavation area. The use of a numerical integration provides subsidence predictions for mining areas of any shape.

The influence function $p(r)$ yields the influence of subsidence at a point P of the earth’s surface depending on a small element dA at a point P' in the underground as a function of r (horizontal projection of P to P') as shown in Fig. 10. P has the coordinates x, y (plane on the earth’s surface) and P' has the coordinates ς and η. This plane is shown in Fig. 11. This results in the following form for the influence function $p(r)$ (Brady & Brown, 2004):

$$p(r) = \omega(\varsigma, \eta) \cdot f(r)$$

where:

- p Influence value
- $\omega(\varsigma, \eta)$... Weighting factor (consideration of variations in mining height M)
- r Horizontal distance from P to P'

The horizontal distance r is calculated as:

$$r = \sqrt{(x - \varsigma)^2 + (y - \eta)^2}$$

where:

- x, yCoordinates of P
- ς, η ... Coordinates of P'
The subsidence S of a region A can be determined with $dA = d\zeta \cdot d\eta$ by integration (Brady & Brown, 2004):

$$S(x,y) = \int_{\eta} \int_{\zeta} \omega(\zeta, \eta) \cdot f\left(\sqrt{(x - \zeta)^2 + (y - \eta)^2}\right) d\zeta d\eta$$ \hspace{1cm} (20)

In Germany and Eastern Europe, trigonometric or exponential functions of the following form are used (Brauner, 1973):

$$p(r) = k_1 \cdot S_c \cdot f(B, r, k_2)$$ \hspace{1cm} (21)

where:
- pInfluence value
- k_1Constant
- BCritical radius
- rHorizontal distance from P to P'
- k_2Constant

A widespread function is (Brady & Brown, 2004):

$$p(r) = \frac{n \cdot S_{max}}{B^2} \cdot e^{-n \cdot \pi \left(\frac{r^2}{B}\right)}$$ \hspace{1cm} (22)

With the parameter n which characterise the properties of the rock mass

By integration over large areas, it may be possible that obtained influence functions coincide with the profile functions because they are mathematically unambiguous. Profile functions have the advantage to be easily obtained. However, influencing functions are more adaptable to the posed problem and they are more suitable for geometrically irregular mining areas.

In case of several panels, the superposition principle can be applied for the construction of the final subsidence trough like shown in Fig. 11. It should be noticed, that above outlined calculation procedures were widely used for a long time, but they have one general major disadvantage: they are pure geometrical with some empirical functions considering rock mass behaviour and do not incorporate the behaviour of the rock mass in a physical manner. Therefore, due to the progress in numerical simulation methods, these techniques are more and more replaced by predictions based on numerical calculations using constitutive models to describe the rock mass behaviour.
Fig. 10: Extracted element of the mining area (after Brady & Brown, 2004)

Fig. 11: Excavation with extracted element (after Brady & Brown, 2004)

Fig. 12: Resulting subsidence profile of adjacent mining panels
4 Influence of geological effects and mining parameters

In the case of mining, shape and size of the subsidence trough is depending on the mining method, the depth and the rock mass conditions. All points inside the subsidence area except the center are influenced by horizontal and vertical movements. The center is subjected only to vertical movement. The shape of the subsidence basin depends on the geometry and the dip angle of the excavation. If the excavation is horizontal with a rectangular base, the shape of the subsidence profile is elliptical. Factors influencing the subsidence profile are shown in Tab. 2.

Tab. 2: Influencing factors of the subsidence profile (Peng, 2008)

<table>
<thead>
<tr>
<th>Influencing factor</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of the overburden</td>
<td></td>
</tr>
<tr>
<td>Hard and strong</td>
<td>Subsidence is lower</td>
</tr>
<tr>
<td>Soft and weak</td>
<td>Subsidence is higher</td>
</tr>
<tr>
<td>Angle of dip of the excavation</td>
<td></td>
</tr>
<tr>
<td>Horizontal to slightly dipping</td>
<td>Surface movement direction mainly vertical</td>
</tr>
<tr>
<td>Steeply dipping</td>
<td>Surface movement direction parallel and vertical</td>
</tr>
<tr>
<td>Excavation</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Size of the geosyncline increases</td>
</tr>
<tr>
<td></td>
<td>Subsidence profile becomes weaker and deformations decrease (deformations are inversely proportional to the mining depth)</td>
</tr>
<tr>
<td></td>
<td>Velocity of surface movements decreases (velocity of maximum surface movements is inversely proportional to mining depth)</td>
</tr>
<tr>
<td></td>
<td>Temporal duration of surface movements increases</td>
</tr>
<tr>
<td>Low</td>
<td>Subsidence profile is stronger pronounced and deformations increase</td>
</tr>
<tr>
<td></td>
<td>Velocity of surface movements increases</td>
</tr>
<tr>
<td></td>
<td>Temporal duration of surface movements decreases</td>
</tr>
<tr>
<td>Ratio of excavation depth to mining thickness</td>
<td></td>
</tr>
<tr>
<td>$\frac{H}{M}$ is increasing</td>
<td>Deformations decrease and are less pronounced</td>
</tr>
<tr>
<td>$\frac{H}{M}$ is very small</td>
<td>Large cracks on the earth's surface, steps or sinkholes can arise</td>
</tr>
<tr>
<td>Size of excavation</td>
<td></td>
</tr>
<tr>
<td>Increasing</td>
<td>Subsidence increases</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Subsidence decreases</td>
</tr>
<tr>
<td>Development coefficients to determine the degree of subsidence</td>
<td>$n_1 < 1$ or $n_2 < 1$: Shape of the excavation is subcritical and surface movements have not reached the full extent</td>
</tr>
</tbody>
</table>
Overburden subsidence and sinkholes

Updated: 22 January 2018

<table>
<thead>
<tr>
<th>Multipanel mining in horizontal or vertical direction</th>
<th>The subsidence profile of adjacent excavations depends on the geological situation, the geometry, the mining depth as well as the mining height</th>
<th>Differences in these properties lead to a differentiated expression of the final subsidence profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faults / discontinuities</td>
<td>Angle of dip, size, strength, position</td>
<td>Could lead to increased shear displacements in the area of the fault and weakness zones as well as to cracks or steps on the earth's surface</td>
</tr>
<tr>
<td>Topography</td>
<td>Steep slopes in the area of the geosyncline</td>
<td>Stability can be adversely affected and it can lead to landslides</td>
</tr>
<tr>
<td></td>
<td>Topographic height</td>
<td>Gentry (1977) showed that subsidence is higher at the highest topographic points than at the lowest topographic points</td>
</tr>
</tbody>
</table>

\[
n_1 = C \cdot \frac{L}{H} \quad \text{und} \quad n_2 = C \cdot \frac{W}{H}
\]

where:
- \(C \) … rock property influence coefficient
- \(L, W \) … Length, width of excavation
- \(H \) … Mining depth

\(n_1 > 1 \) and \(n_2 > 1 \): Excavation is in the critical or over-critical range and surface movements are fully developed.
5 Discontinuous subsidence

In case of mining close to the surface, sinkholes (Fig. 13) can occur during or after the excavation. Sinkholes are connected with a mass deficit. The original cavity is partially filled (partial collapse) and later possibly completely filled (full collapse) by rock mass or soil under gravitational load. The sinkhole develops from the excavation upwards until it reaches the surface.

5.1 Empirical models

The hazard assessment is based on statistical analyses of observed sinkholes. Geological, hydrogeological and geomechanical factors are considered. In most cases, only rough statements are possible and a strong regional distinction has to be taken into account. The following empirical models are widespread in Germany.

Fenk (1981) developed empirical rules to predict:

- Relative fracture probability
- Time-to-failure
- Final diameter of sinkhole
- Horizontal distance from excavation face to the sinkhole edge

Fenk (1979, 1981, 1984 and 1994) includes the following factors:

- Mining and rock mass parameters
 - Dimension of excavation
 - Form of excavation
 - Support and backfill of excavation
 - Depth of excavation
 - Excavation height
 - Dip angle of deposit
 - Rock and rock-matrix properties of the overlying strata
 - Groundwater level above the excavation
 - Water supply of the excavation
- Morphology and usage of the Earth’s surface
- Climate and rainfall

Fig. 13: Funnel-shaped sinkhole caused from cave-in of rock material (Kratzsch, 1997)
• Subrosion and suffocation in the overburden
• Traffic

Lerche & Lempp (2002) evaluated openings according to different aspects by the help of data analysis and classification schemes. Based on these data it is possible to predict the occurrence of sinkholes. This procedure is not restricted to man-made excavations, but applicable to all types of caves.

5.2 Analytical models

5.2.1 Volume balance models

Predictions for sinkhole hazards is made by comparing (balancing) the volume of the cavity with the volume of broken rock mass for an assumed growth of the cavity. This is defined by a loosening factor \(fl \):

\[
fl = \frac{V_A}{V_B}
\]

(23)

with:

\(fl \)Loosening factor (> 1)
\(V_A \)Volume of broken mass
\(V_B \)Volume of intact rock mass

The value of the loosening factor depends on the rock mass type and the stability of the loosened material. Typical values are shown in Tab. 3. Thus, a distinction can be made between temporary loosening factor and final (long-term) loosening factor. (Reuter & Waldmann, 1978; Penzel, 1981)

Eckart (1973) provides an estimate for the limit of rock thickness \(H_{max} \). If the depth of the excavation is lower than \(H_{max} \), there is no risk for a sinkhole.

\[
H_{max} = \frac{0.0127 \cdot (100 - bf) \cdot M}{fl - 1}
\]

(24)

Tab. 3: Typical loosening factors

<table>
<thead>
<tr>
<th>Rock mass type</th>
<th>Loosening factor (fl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loess</td>
<td>1.2</td>
</tr>
<tr>
<td>Clay</td>
<td>1.2 – 1.5</td>
</tr>
<tr>
<td>Sand</td>
<td>1.2 – 1.4</td>
</tr>
<tr>
<td>Lignite</td>
<td>1.2</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6 – 1.9</td>
</tr>
<tr>
<td>Sandstone</td>
<td>1.6 – 2.0</td>
</tr>
<tr>
<td>Shale</td>
<td>1.4 – 1.5</td>
</tr>
<tr>
<td>Palaeozoic shale</td>
<td>1.7</td>
</tr>
</tbody>
</table>
where:
\(bf \) Backfill (%)
\(M \) Mining height

However, is the cavity located at the same level or higher than \(H_{\text{max}} \), an additional check for sinkhole risk must be carried out. The boundary conditions of this method are: (1.) no horizontal material transports of the loosened rock masses and (2.) the fractured (loosened) rock mass above the cavity has the shape of a half-ellipse (Eckart, 1972).

Meier (1978 and 2001) put together analytical solutions for the volume balance between broken rock mass and open space (cavity) for several geometrical constellations (Fig. 14 to Fig. 17):

a) Sinkhole is bordered by vertical fracture planes over a lateral delimited cavity (gallery, drift etc.)

\[
H_{\text{max}} = \frac{M}{fl - 1} \left(1 + \frac{M}{l \cdot \tan \phi} \right)
\]

(25)

where:
\(M \) Opening height
\(\phi \) Dumping angle

b) Sinkhole (vertical half-ellipse) over the laterally delimited cavity (gallery, drift, load mining, etc.)

\[
H_{\text{max}} = \frac{1,274 \cdot M}{fl - 1} \left(1 + \frac{M}{l \cdot \tan \phi} \right)
\]

(26)

with the angle of repose \(\phi \).

c) Chimney-like sinkhole with vertical fracture planes above cave without lateral boundaries for mass flow

\[
H_{\text{max}} = \frac{M}{fl - 1} \left(1 + \frac{M}{l \cdot \tan \phi} + \frac{M^2}{\frac{3}{2} \cdot l^2 \cdot \tan^2 \phi} \right)
\]

(27)

with:
\(\phi \) Angle of repose
\(l \) Width of chimney
Overburden subsidence and sinkholes

Fig. 14: Schematic illustration of a sinkhole with vertical boundaries above a lateral delimited excavation

Fig. 15: Schematic illustration of a sinkhole of half-elliptical shape above a laterally delimited excavation

Fig. 16: Schematic illustration of a sinkhole as vertical chimney above an excavation
Fig. 17: Schematic illustration of spheroidal fracture above an excavation

d) Sinkhole (spheroid) above an excavation without lateral boundaries for the collapsed masses

\[H_{\text{max}} = \frac{3}{2} \frac{M}{f} \left(\frac{1}{2} \tan \phi + \frac{M}{2} \frac{l}{2} \tan^2 \phi \right) \] (28)

with:
\(\phi \) …..Angle of repose
\(l \) …..Maximum width of sinkhole

5.2.2 Simple geomechanical models

Over the years a lot of geomechanical models based on force or stress equilibrium have been proposed. A few of them are presented below.

a) Model Liszkowski

Based on Terzaghi (1943) and Protodjakonov (1926), Liszkowski (1973) assumed that an arch-shaped damage area of height \(H_{\text{Br}} \) forms above the opening:

\[H_{\text{Br}} = \frac{w}{2} + M \cdot \tan \left(45^\circ + \frac{\theta}{2} \right) \] (29)

with:
\(H_{\text{Br}} \) …..Height of the arch-shaped damage area
\(w \) …..Width of opening
\(M \) …..Opening height
\(\theta \) …..Internal friction angle
\(k \) …..Strength coefficient after Protodjakonov
The strength coefficient k after Protodjakonov (1926) is a general indicator of rock mass resistance and can be defined as follows:

$$k = \frac{\sigma_c}{10}$$

where σ_c is the uniaxial compressive strength. Based on this coefficient, Protodjakonov (1926) divided rock mass into 15 categories as shown in Tab. 4.

Tab. 4: Classification of the rock mass (after Protodjakonov, 1926)

<table>
<thead>
<tr>
<th>Category</th>
<th>Rock mass types</th>
<th>Strength coefficient k</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>High strength</td>
<td>Compact quartzite, basalt</td>
</tr>
<tr>
<td>II</td>
<td>Very strength</td>
<td>Rhyolite, very hard granite rocks, compact granites, schist quartzite, strong sandstones and limestones, flint shales</td>
</tr>
<tr>
<td>III</td>
<td>Regular strength</td>
<td>Granites (rubble), very compact limestones and sandstones, iron ore, conglomerates</td>
</tr>
<tr>
<td>III-a</td>
<td>Regular strength</td>
<td>Dolomites, compact limestones and sandstones, marbles</td>
</tr>
<tr>
<td>IV</td>
<td>Fairly strength</td>
<td>Cracked quartzite, ordinary sandstones</td>
</tr>
<tr>
<td>IV-a</td>
<td>Fairly strength</td>
<td>Sandstone clay schist, schist sandstone</td>
</tr>
<tr>
<td>V</td>
<td>Moderate strength</td>
<td>Schist, weak sandstones and limestones, soft conglomerates</td>
</tr>
<tr>
<td>V-a</td>
<td>Moderate strength</td>
<td>Weaker schist, marl, weaker iron ore</td>
</tr>
<tr>
<td>VI</td>
<td>Fairly soft</td>
<td>Soft schist, very soft limestone, cracked sandstone, chalk, halite, gypsum, frozen ground, coal, marl</td>
</tr>
<tr>
<td>VI-a</td>
<td>Fairly soft</td>
<td>Decomposed schist, strength coal, hardened clay, wet soft iron ore</td>
</tr>
<tr>
<td>VII</td>
<td>Soft</td>
<td>Compressed clay, coal with medium strength, clayey soil</td>
</tr>
<tr>
<td>VII-a</td>
<td>Soft</td>
<td>Loess, soft coal</td>
</tr>
<tr>
<td>VIII</td>
<td>Soil</td>
<td>Agriculture soil, peat, wet sand</td>
</tr>
<tr>
<td>IX</td>
<td>Mould</td>
<td>Sand, fine grained gravel, heaps</td>
</tr>
<tr>
<td>X</td>
<td>Liquid</td>
<td>Quicksand, muddy soil, highly wet soil</td>
</tr>
</tbody>
</table>
Overburden subsidence and sinkholes

\[H'' \] defines the lower limit for the tensile stress zone according to Therzaghi (1943):

\[
H'' = \frac{5 \cdot c}{\rho \cdot g} \cdot \tan \left(45^\circ + \frac{\theta}{2} \right)
\]

(31)

where:
\(H'' \) Lower limit of tensile stress zone
\(c \) Cohesion
\(\rho \) Density
\(g \) Gravity
\(\theta \) Internal friction angle

If the damaged zone reaches or exceeds this limit a sinkhole is formed.

b) Model Jarosz

Jarosz (1975) considered clay and sand layers of thickness \(H'' \), assuming that a vertical chimney-shaped cave develops if the arch-shaped damage area with height \(H_{Br} \) reaches these layers (Fig. 18). The distance from the roof of the excavation to the lower boundary of the tensile stress zone is represented by the thickness \(H' \). A sinkhole is predicted if \(H' < H_{Br} \). The height \(H_{Br} \) of the arch-shaped damage area is calculated as follows:

\[
H_{Br} = \frac{w \cdot \left(1 - \frac{1}{\nu} \right) - M}{2}
\]

(32)

where:
\(H_{Br} \) Height of the arch-shaped damage area
\(w \) Width of opening
\(M \) Opening height
\(\nu \) Poisson’s ratio

c) Model Penzel

Penzel (1980) assumes an axially symmetric cylindrical failure body and balances the tangential forces (driving force vs. frictional resistance). It is assumed that the overburden layers are homogeneous. Loosening of the rock mass is not considered. The thickness threshold \(H_{max} \) is calculated as follows:

\[
H_{max} = \frac{w - 2 \cdot \frac{c}{\rho \cdot g}}{\tan(\theta) \cdot \lambda}
\]

(33)

where:
\(H_{max} \) Threshold thickness of rock mass
\(c \) Cohesion of rock mass
\(\rho \) Density of rock mass
\(g \) Gravity
Overburden subsidence and sinkholes

\[\theta \ldots \text{Internal friction angle} \]
\[\lambda \ldots \text{Coefficient of lateral earth pressure} \]

d) **Model Bierbaumer**

Bierbaumer (1913) assumed vertical sliding faces above the excavation up to the earth’s surface (Fig. 19) and considered the equilibrium along these sliding faces:

\[Q - 2 \cdot T = P \] \hspace{1cm} (34)

where:
- \(Q \ldots \) Weight force of the sliding mass
- \(T \ldots \) Tangential forces by friction on sliding faces
- \(P \ldots \) Support load

![Earth's surface](image.png)

Fig. 18: Arch shaped damage model

![Model with vertical sliding faces](image.png)

Fig. 19: Model with vertical sliding faces above the excavation
The individual components of this equilibrium are:

\[Q = 2 \cdot a_0 \cdot \rho \cdot g \cdot h \]

\[T = H \cdot \tan(\phi) \]

\[H = \frac{h}{2} \cdot \lambda \cdot q = \frac{1}{2} \cdot \lambda \cdot \rho \cdot g \cdot h^2 \]

where:

- \(Q \) Weight force of the sliding mass
- \(T \) Tangential forces by friction on sliding faces
- \(P \) Support load
- \(2a_0 \) Width of the excavation
- \(\rho \) Density
- \(g \) Gravity
- \(h \) Height of the overburden
- \(H \) Lateral forces
- \(\phi \) Friction angle
- \(\lambda \) Coefficient of lateral pressure

Substituting these terms into the equation of equilibrium, gives support load \(P \):

\[P = a_0 \cdot \rho \cdot g \cdot h \left(2 - \lambda \cdot h \cdot \frac{h}{a_0} \cdot \tan(\phi) \right) \] \hspace{1cm} (36)

\[P_A = \frac{P}{2 \cdot a_0} \] \hspace{1cm} (37)

where:

- \(P \) Support load
- \(P_A \) Active support pressure

e) Model Salustowicz

Salustowicz (2009) supposed that the weakness area do not reach the earth’s surface. The height \(h^* \) of the failed area is smaller than the height \(h \) considered by Bierbaumer. The support load \(P \) becomes than a function of height \(h \):

\[P = P(h) \] \hspace{1cm} (38)
Extreme values for this function are:

\[
0 = \frac{dP}{dh} = 2 \cdot a_0 \cdot \rho \cdot g - 2 \cdot \frac{\lambda}{a_0} \cdot \rho \cdot g \cdot h \cdot \tan(\phi)
\]

\[
0 = 2 - 2 \cdot h \cdot \frac{\lambda \cdot \tan(\phi)}{a_0}
\]

\[
h = \frac{a_0}{\lambda \cdot \tan(\phi)}
\]

\[
\rightarrow h = h^*
\]

The support load \(P \) for the height \(h^* \) is calculated as follows:

\[
P(h^*) = a_0 \cdot \rho \cdot g \cdot h^* \left(2 - \frac{h^*}{a_0} \cdot \tan(\phi) \right)
\]

\[
= a_0 \cdot \rho \cdot g \cdot \frac{a_0}{\lambda \cdot \tan(\phi)} \left(2 - \frac{\lambda \cdot \tan(\phi)}{a_0} \cdot \tan(\phi) \right)
\]

\[
= \frac{a_0^2 \cdot \rho \cdot g}{\lambda \cdot \tan(\phi)}
\]

Fig. 20 shows the behaviour of the support load for increasing depth for the two theories after Bierbaumer and Salustowicz.

Fig. 20: Comparison of the theories of Bierbaumer and Salustowicz
f) Model Terzaghi

Terzaghi assumed a failed area above an excavation with lateral borders by sliding faces (Fig. 21). His approach is based on differential equilibrium (equilibrium at infinitesimal small strips) considering the Mohr-Coulomb criterion.

The primary state of stress is given by:

\[
\sigma_r = \rho \cdot g \cdot z = \sigma_z(z) \\
\sigma_n = \rho \cdot g \cdot z = \sigma_n(z)
\]

(41)

where:

\(\sigma_n, \sigma_z \) Stress in vertical direction

\(\sigma_n, \sigma_h \) Stress in horizontal direction

\(\rho \) Density

\(g \) Gravity

\(z \) Depth

The Mohr-Coulomb failure criterion is given by:

\[
\tau = \sigma_n \cdot \tan(\phi) + C
\]

(42)

where:

\(\tau \)Shear stress

\(\sigma_n \)Stress in horizontal direction (normal stress)

\(\phi \) Friction angle

\(C \)Cohesion

The self-weight of the considered strip is:

\[
dG = \rho \cdot g \cdot 2 \cdot a_0 \cdot d z
\]

(43)

where \(2a_0 \) is the width of the excavation.

The force equilibrium in the vertical direction (z-direction) is given by:

\[
2 \cdot a_0 \cdot \sigma_r + dG - 2 \cdot a_0 \cdot (\sigma_r + d\sigma_r) - 2 \cdot \tau \cdot d z = 0
\]

\[
\sigma_v = \sigma_r
\]

(44)

\[
\frac{d\sigma_x}{dx} + \frac{\tau}{h} = 0 \quad \text{(Equilibrium condition)}
\]

where:

\(2a_0 \)Width of excavation

\(\sigma_r \)Stress in vertical direction

\(\sigma_x \) Stress in horizontal direction

\(\tau \) Shear stress

\(g \)Gravity

\(h \)Half height of the strip
The stresses \(\sigma_x \) and \(\sigma_y \) depends only on direction \(x \). There are no shear stresses. Due to this fact \(\sigma_x \) and \(\sigma_y \) are principal (normal) stresses. If \(dz \) approaches zero, the following equations can be established (Fig. 22):

\[
\varepsilon_y = 0 : \quad \sigma_y = \sigma_y \quad (\sigma_y \cdot dx = \sigma_y \cdot dx)
\]

\[
\varepsilon_x = 0 : \quad \sigma_x \cdot 2 \cdot h - (\sigma_x + d\sigma_x) \cdot 2 \cdot h - \tau \cdot dx
\]

\[
h \cdot d\sigma_x + \tau \cdot dx
\]

where:
\(\varepsilon_x, \varepsilon_y \)Horizontal deformation
\(\sigma_x, \sigma_y \)Normal stresses
\(\tau \)Shear stress
\(h \)Half height of the strip

According to the above mentioned formulas the following differential equation can be deduced:

\[
\frac{d\sigma_z}{dz} + \frac{\tau}{a_0} = \rho \cdot g
\]

where:
\(\sigma_z \)....Vertical stress
\(\tau \)Shear stress
\(a_0 \)....Half width of excavation
\(g \)Gravity
\(\rho \)....Density

The limit state is defined by:

\[
\tau = \lambda \cdot \tan(\phi) \cdot \sigma_z + C
\]

where:
\(\tau \)Shear stress
\(\lambda \)Coefficient of lateral pressure
\(\sigma_z \)....Vertical stress
\(\phi \)Friction angle
\(C \)Cohesion

This finally leads to the following differential equation:

\[
\frac{d\sigma_z}{dz} + \frac{\lambda \cdot \tan(\phi) \cdot \sigma_z}{a_0} = \rho \cdot g \cdot C
\]

By using the boundary condition: \(\sigma_z(z = 0) = 0 \), the constant of integration \(A \) could be calculated and the final solutions can be obtained:

\[
\sigma_z(z) = \frac{\rho \cdot g \cdot a_0 - C}{\lambda \cdot \tan(\phi)} \left[1 - e^{-\frac{\lambda \cdot \tan(\phi) \cdot z}{a_0}} \right]
\]
Overburden subsidence and sinkholes

Fig. 21: Consideration of stresses acting on an infinitesimal strip

Fig. 22: Sketch to illustrate stress distribution at an infinitesimal small strip

Fig. 23: Sketch for extended model of Terzaghi
a) **Model Terzaghi (extended)**

Terzaghi provided also an extension of his model by assuming that the failed area creates inclined sidewalls at the opening and the failed overburden area is becoming broader (Fig. 23). The width of the developed failed area is given by:

\[
W = 2 \cdot \left[\frac{b}{2} + m \cdot \tan \left(45^\circ - \frac{\phi}{2} \right) \right]
\]

(50)

where:
- \(W \) ……Width of failed area
- \(b \) ……Width of excavation
- \(m \) ……Excavation height
- \(\phi \) ……Friction angle

The limit state is characterized by the following equation:

\[
\tau = \sigma \cdot \tan(\phi) + C = \sigma_h \cdot \tan(\phi) + C = \lambda \cdot \sigma_r \cdot \tan(\phi) + C
\]

(51)

where:
- \(\tau \) ……Shear stress
- \(\lambda \) ……Coefficient of lateral pressure
- \(\sigma_r \) ……Vertical stress
- \(\sigma_h \) ……Horizontal stress
- \(\phi \) ……Friction angle
- \(C \) ……Cohesion

The force equilibrium at the stripe is:

\[
0 = W \cdot (\sigma_r + d\sigma_r) - W \cdot \sigma_r + 2 \cdot \tau \cdot dz - \rho \cdot g \cdot dz
\]

(52)

At the limit state this results in the following equation:

\[
0 = \frac{d\sigma_r}{dz} + 2 \cdot \lambda \cdot \sigma_r \cdot \frac{\tan(\phi)}{W} + \rho \cdot g - 2 \cdot \frac{C}{W}
\]

(53)

After determination of integration constant the following solution is obtained:

\[
\sigma_r = q \cdot e^{\left[-2 \cdot \lambda \cdot \frac{\tan(\phi)}{b} \cdot z \right]} \cdot \left(\rho \cdot g - 2 \cdot \frac{C}{W} \right) \cdot e^{\left[-2 \cdot \lambda \cdot \frac{\tan(\phi)}{b} \cdot z \right]} \cdot \left(1 - e^{\left[-2 \cdot \lambda \cdot \frac{\tan(\phi)}{b} \cdot z \right]} \right)
\]

(54)
6 Consequences of mining induced surface movements

6.1 Static ground movements

Damage on constructions depends not only on the surface movements itself, but also on the particular design properties of influenced objects. Different objects have different sensibilities in respect to surface movements. Tab. 5 evaluates the sensitivity of specific objects against certain ground movement parameters. Parameters without an influence on the object are coloured green and parameters with a significant impact on the object are coloured red and divided in three classes (low, medium and high impact).

Potential damage of objects is characterized by specific limit values. Most classifications are based on that of Budryk & Knothe (1956) and give object-based limit values for tilt (T_{limit}) critical radius (B_{limit}) and deformation (ε_{limit}). If specific ground movement parameters are below certain limit values, objects of a specific category do not suffer loss of functionality or stability. Nevertheless, smaller damages like small plastering fissures have to be expected even below these thresholds. Exemplary,
Tab. 6 shows common limit values.

Tab. 5: Damage sensibility of various objects (green: ☑ no impact; red: ☐ low impact, ☐☐ medium impact, ☐☐☐ high impact) (after Kratzsch, 1997)

<table>
<thead>
<tr>
<th>Object</th>
<th>Subsidence</th>
<th>Tilt</th>
<th>Curvature</th>
<th>Displacement</th>
<th>Tension / Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>House</td>
<td>☒</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Office building</td>
<td>☒</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Terraced house</td>
<td>☒</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Machine</td>
<td>☒</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Funnel</td>
<td>☒</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Railway track</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Road track</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Bridge</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
<tr>
<td>Sewer system</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
<td>☐☐</td>
<td>☐☐☐</td>
</tr>
</tbody>
</table>
Tab. 6: Limit values for surface movement parameters (after Budryk & Knothe, 1956)

<table>
<thead>
<tr>
<th>Object category</th>
<th>T_{limit} [mm/m]</th>
<th>B_{limit} [km]</th>
<th>$\varepsilon_{\text{limit}}$ [mm/m]</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>50</td>
<td>0.5</td>
<td>historical buildings, large-scale power plant</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>20</td>
<td>1.5</td>
<td>industrial complex, monuments</td>
</tr>
<tr>
<td>2</td>
<td>5.5</td>
<td>12</td>
<td>3</td>
<td>railroads, pipelines</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>low-rise buildings, roads, cables</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>4</td>
<td>9</td>
<td>storehouses, solid constructions</td>
</tr>
<tr>
<td>5</td>
<td>> 15</td>
<td>< 4</td>
<td>> 9</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7: Limit values and their impact on objects (after Peng, 1992)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit value</th>
<th>Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{limit} [mm/m]</td>
<td>~10</td>
<td>construction is uncomfortable to occupy</td>
</tr>
<tr>
<td>B_{limit} [km]</td>
<td>~50</td>
<td>damages on aboveground parts of the building</td>
</tr>
<tr>
<td>$\varepsilon_{\text{limit}}$ [mm/m]</td>
<td>2</td>
<td>concrete wall segments</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>masonry structures</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>cracks on roads (bitumen)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>cracks in ground soil</td>
</tr>
</tbody>
</table>

Tab. 8: Subsidence limits for different construction types

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Subsidence limit s_{max} [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terzaghi & Peck (1961)</td>
<td>isolated footing 25</td>
</tr>
<tr>
<td></td>
<td>base plate 50</td>
</tr>
<tr>
<td>Sowers & Sowers (1961)</td>
<td>frame construction 50 – 100</td>
</tr>
<tr>
<td></td>
<td>brickwork 25 - 50</td>
</tr>
<tr>
<td></td>
<td>base plate 50</td>
</tr>
</tbody>
</table>
Another set of thresholds and expected damages is proposed by Peng (1992) based on mining induced damages and protection measures (Tab. 7). To consider the subsidence s at constructions alone is less significant, but provides a first possibility for control and evaluation of a foundation. A distinct number of authors define rules and standards for tolerable subsidence dependent on type of foundation, static superstructure and ground conditions. Selected numbers are shown in Tab. 8. Detailed information about the interaction between constructions and subsoil including subsidence limits for several forms of structures are given in the work of Fischer (2009). Insurance companies use above-mentioned limit values to estimate payments of compensation for construction owners (Behrens & Minzemay, 2015).

6.2 Time-dependent ground movements

Mine-surveying analysis shows that induced damage on the surface depends not only on absolute movement parameters, but also on their evolution with time. The coherence of occurred deformation ε, deformation velocity $\dot{\varepsilon}$ and extraction rate v is shown in Fig. 24. Increasing extraction rates cause higher deformation velocities.

Dżegniuk & Sroka (1978), Sroka (1993), Dżegniuk et al. (1997) and Grün (1998) proposed specific limit values for time-dependent movement parameters (Tab. 9). These limits are subsidence velocity \dot{S}_{limit}, deformation velocity $\dot{\varepsilon}_{\text{limit}}$ and subsidence deficit Δsd. The subsidence velocity \dot{S}_{limit} will decrease if the excavation process stops at time t_1. Regular subsidence move on after excavation delay at time t_2. Subsidence that not occurred between time t_1 and t_2 is called subsidence deficit Δsd (Fig. 25). Bialtek (1995) derived another correlation between time-dependent ground movement and object damages based on a statistical approach. He connects static and dynamic stress on constructions by effective deformation ε_{eff}:

$$\varepsilon_{\text{eff}} = 0.31 \cdot \varepsilon_{\text{max}} + 0.43 \cdot \dot{S}_{\text{max}}$$

(55)

where:

ε_{eff} …… Effective deformation

ε_{max} …… Maximum deformation

\dot{S}_{max} …… Maximum subsidence velocity
Tab. 9: Limit values for time-dependent ground movement parameters (after Sroka, 2003)

<table>
<thead>
<tr>
<th>Object category</th>
<th>\dot{S}_{limit} [mm/day]</th>
<th>$\dot{\varepsilon}_{\text{limit}}$ [mm/m/day]</th>
<th>Δsd [mm]</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.005</td>
<td>1</td>
<td>historical buildings, large-scale power plant</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.015</td>
<td>2.5</td>
<td>industrial complex, monuments</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.03</td>
<td>5</td>
<td>railroads, pipelines</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>0.06</td>
<td>10</td>
<td>low-rise buildings, roads, cables</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>0.1</td>
<td>15</td>
<td>storehouses, solid constructions</td>
</tr>
<tr>
<td>5</td>
<td>> 18</td>
<td>> 0.1</td>
<td>> 15</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 24: Relationship between extraction rate, deformation velocity and their influence on object damage (after Sroka, 1993)

Fig. 25: Effect of an excavation delay on the subsidence progress (after Zimmermann, 2011)
7 Numerical Models

Frequently used numerical methods for the simulation of subsidence and sinkholes are the Finite Element Method (FEM), the Finite Difference Method (FDM) and the Discrete Element Method (DEM) incl. particle based methods. The following three simple examples show the potential of numerical simulation techniques to predict subsidence trough or sinkholes based on geomechanical constitutive laws and parameters. In contrast to geodetic, mine-surveying based, empirical or statistical methods, numerical methods can work without any pre-existing local subsidence or sinkhole data. They need however rock mass strength and stiffness parameters.

7.1 Example 1: Numerical simulation of continuous subsidence above an underground coal mine

An underground coal mine may be located in a layered rock mass as shown in Fig. 26. The excavation has a width of 600 m in x- and y-direction. The mining height is 4 m and it takes place at a depth of 503 m to 507 m. Using Eq. 10 to determine the critical width give us a value of $w_c = 627.14$ m. The excavation does not reach the critical width, therefore the model provides a subcritical state. Due to the symmetry of model and boundary conditions only a quarter of the model is simulated to speed up the calculation time. The obtained subsidence after extraction of coal is illustrated in Fig. 27 and 28. Also the typical subsidence-trough of continuous subsidence is shown until final closure of the opening. To predict subsidence profiles at the surface, in parallel to the numerical simulations the profile functions according to Eq. 10, 12 and 13 are used. Fig. 29 shows the subsidence profiles obtained from numerical calculations (red) and the analytical solutions (black dotted and blue dotted) by using the exponential functions (Eq. 14).

In reality the begin of the subsidence trough depends on the precision of the survey. The used accuracy reflects the determination of the half width of subsidence trough w_s, which is necessary for the analytical calculation. To illustrate this effect two levels of accuracy (± 10 mm and ± 1 mm) of surveying are used for the analytical solution. It becomes obvious, that the analytical solution fits better with the numerical simulations by increasing the precision of the survey (blue dotted line). Analytical solutions for hyperbolic functions (Eq. 16 and 17) are shown in Fig. 30. As visible from Fig. 29 and Fig. 30, the exponential function is better suited for the considered constellation.
Overburden subsidence and sinkholes

Fig. 26: Numerical model set with layers (excavation of a coal bed in the underground)

Fig. 27: Contour plot of vertical displacements (m) for a cross section
Fig. 28: Contour plot of vertical displacements (m)

Fig. 29: Numerical data and analytical solution by use of an exponential function with different survey precisions
Fig. 30: Numerical data and analytical solution by use of hyperbolic functions
7.2 Example 2: Numerical simulation of sinkhole with an continuum approach (Shiau et al., 2016)

This 2-dimensional example is based on the strength-reduction technique to predict safety factors and potential shape of sinkhole.

Fig. 31: Simulation of onset of sinkhole development due to strength reduction (top: displacement vectors, middle: principal stresses, down: displacement contours)
7.3 Example 3: Numerical simulation of sinkhole with a discontinuum approach (Coudron et al., 2006)

The development of sinkholes is a highly discontinuum mechanical process of damage, fracturing and mass transport. Therefore, continuum mechanical approaches have limited capabilities to duplicate this process. Discrete element or particle based approaches can be used to simulate this process as shown by this example, which couples a particle code (PFC) and a continuum code (FLAC). Fig. 32 shows an interim stage during the sinkhole evolution and Fig. 33 to Fig. 35 as well as Tab. 9 document, that such a procedure is able to duplicate the movements in a quite realistic manner.

Fig. 32: Model set-up for 2-dimensional continuum-discontinuum coupled simulation of a sinkhole process in a layered rock mass

Fig. 33: Interim stage of sinkhole development with foundation interaction
Overburden subsidence and sinkholes

Fig. 34: Comparison between predicted and measured settlement values

Fig. 35: Comparison between predicted and measured horizontal displacements

Tab. 10: Comparison between predicted and measured values

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Physical test with SSI</th>
<th>FLAC-PFC in greenfield</th>
<th>FLAC-PFC with SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{max}</td>
<td>127 cm</td>
<td>120 cm</td>
<td>151 cm</td>
</tr>
<tr>
<td>i</td>
<td>~4.5 m</td>
<td>~4 m</td>
<td>~4 m</td>
</tr>
<tr>
<td>% of V_{cavity}</td>
<td>64%</td>
<td>58%</td>
<td>54%</td>
</tr>
<tr>
<td>Maximum slope</td>
<td>35%</td>
<td>24%</td>
<td>34%</td>
</tr>
<tr>
<td>Maximum slope on the building</td>
<td>~18%</td>
<td>~15.3%</td>
<td>~11%</td>
</tr>
<tr>
<td>Situation (span)</td>
<td>F_2-F_3</td>
<td>F_2-F_3</td>
<td>F_2-F_3</td>
</tr>
</tbody>
</table>
8 References

