ALGEBRA AND BEYOND
Welcome!

Prof. Dr. Friedrich Martin Schneider
Chair of Applied Algebra
Phone +49 3731 39-3187
Fax +49 3731 39-3595
Martin.Schneider@math.tu-freiberg.de
➥ Contact details
Postal address
Institute of Discrete Mathematics and Algebra
Faculty of Mathematics and Computer Science
Technische Universität Bergakademie Freiberg
D-09596 Freiberg
Physical address
Universitätshauptgebäude
Prüferstraße 1
Room 1.09
09599 Freiberg
Secretary
Kristin Müller
Prüferstraße 9, Room 2.03
Phone +49 3731 39-3111
Kristin.Mueller1@math.tu-freiberg.de
➥ Teaching in Summer 2022
Course
Lectures
Teaching assistant
Exercise classes
OPAL
Algebra 2
Monday, 14:00–15:30,
every week, PRÜ–1103
Dr. Maxime Gheysens
Tuesday, 18:00–19:30,
every 2nd week, MIB–1107
link
Topological
Data Analysis
Monday, 11:00–12:30,
every week, PRÜ–1104
Dr. Maxime Gheysens
Tuesday, 14:00–15:30,
every week, MIB–1108
link
Coding Theory &
Cryptography
Wednesday, 16:00–17:30,
every week, MIB–1113
Dr. Maxime Gheysens
Thursday, 9:15–10:45,
every 2nd week, MIB–1113
link
Course | Lectures | Teaching assistant | Exercise classes | OPAL |
---|---|---|---|---|
Algebra 2 | Monday, 14:00–15:30, every week, PRÜ–1103 |
Dr. Maxime Gheysens | Tuesday, 18:00–19:30, every 2nd week, MIB–1107 |
link |
Topological Data Analysis |
Monday, 11:00–12:30, every week, PRÜ–1104 |
Dr. Maxime Gheysens | Tuesday, 14:00–15:30, every week, MIB–1108 |
link |
Coding Theory & Cryptography |
Wednesday, 16:00–17:30, every week, MIB–1113 |
Dr. Maxime Gheysens | Thursday, 9:15–10:45, every 2nd week, MIB–1113 |
link |
➥ Seminar topics for students
Currently available topics for the Mathematical Seminar include (but are not limited to):
- cellular automata and surjunctivity (group theory)
- Malcev-Neumann rings (algebra)
- Gromov's compactness theorem (metric geometry)
- James' space (functional analysis)
- Nash-Williams partition theorem (infinite combinatorics)
Currently available topics for the Mathematical Seminar include (but are not limited to):
- cellular automata and surjunctivity (group theory)
- Malcev-Neumann rings (algebra)
- Gromov's compactness theorem (metric geometry)
- James' space (functional analysis)
- Nash-Williams partition theorem (infinite combinatorics)
➥ Research interests
Topological groups and dynamics
- infinite-dimensional transformation groups
- fixed-point properties
- ergodic theory of continuous group actions
Asymptotic geometric analysis and functional analysis
- concentration phenomena
- metric measure geometry
- convolution algebras over groups
Ring theory and general algebra
- structure theory and harmonic analysis of infinite rings
- von Neumann's continuous geometries
- topological aspects of universal algebra
Topological groups and dynamics
- infinite-dimensional transformation groups
- fixed-point properties
- ergodic theory of continuous group actions
Asymptotic geometric analysis and functional analysis
- concentration phenomena
- metric measure geometry
- convolution algebras over groups
Ring theory and general algebra
- structure theory and harmonic analysis of infinite rings
- von Neumann's continuous geometries
- topological aspects of universal algebra
➥ Publications
PREPRINTS
Schneider, F. M.:
Concentration of invariant means and dynamics of chain stabilizers in continuous geometries.
arXiv
Hauser, T.; Schneider, F. M.:
Entropy of group actions beyond uniform lattices.
arXiv
JOURNAL ARTICLES
Juschenko, K.; Schneider, F. M.:
Skew-amenability of topological groups.
Commentarii Mathematici Helvetici 96 (2021), no. 4, pp. 805–851.
doi arXiv
Schneider, F. M.; Solecki, S.:
Concentration of measure, classification of submeasures, and dynamics of L0.
Journal of Functional Analysis 280 (2021), no. 5, 108890.
doi arXiv
Hanika, T.; Schneider, F. M.; Stumme, G.:
Intrinsic dimension of geometric data sets.
Tohoku Mathematical Journal 74 (2022), no. 1, pp. 23–52.
doi arXiv
Schneider, F. M.; Thom, A.:
The Liouville property and random walks on topological groups.
Commentarii Mathematici Helvetici 95 (2020), no. 3, pp. 483–513.
doi arXiv
Schneider, F. M.:
Equivariant dissipation in non-archimedean groups.
Israel Journal of Mathematics 234 (2019), no. 1, pp. 281–307.
doi arXiv
Schneider, F. M.; Zumbrägel, J.:
MacWilliams' extension theorem for infinite rings.
Proceedings of the American Mathematical Society 147 (2019), no. 3, pp. 947–961.
doi arXiv
Schneider, F. M.:
Equivariant concentration in topological groups.
Geometry & Topology 23 (2019), no. 2, pp. 925–956.
doi arXiv
Schneider, F. M.:
About von Neumann's problem for locally compact groups.
Journal of Noncommutative Geometry 12 (2018), no. 4, pp. 1531–1549.
doi arXiv
Schneider, F. M.; Thom, A.:
On Følner sets in topological groups.
Compositio Mathematica 154 (2018), no. 7, pp. 1333–1362.
doi arXiv
Pestov, V. G.; Schneider, F. M.:
On amenability and groups of measurable maps.
Journal of Functional Analysis 273 (2017), no. 12, pp. 3859–3874.
doi arXiv
Schneider, F. M.:
A uniform Birkhoff theorem.
Algebra Universalis 78 (2017), no. 3, pp. 337–354.
doi arXiv
Schneider, F. M.; Zumbrägel, J.:
Profinite algebras and affine boundedness.
Advances in Mathematics 305 (2017), pp. 661–681.
doi arXiv
Schneider, F. M.; Thom, A.:
Topological matchings and amenability.
Fundamenta Mathematicae 238 (2017), pp. 167–200.
doi arXiv
Schneider, F. M.; Zumbrägel, J.:
Every simple compact semiring is finite.
Topology and its Applications 206 (2016), pp. 305–310.
doi arXiv
Borchmann, D.; Schneider, F. M.:
Topological entropy of formal languages.
Semigroup Forum 94 (2017), no. 3, pp. 556–581.
doi arXiv
Bodirsky, M; Schneider, F. M.:
A topological characterisation of endomorphism monoids of countable structures.
Algebra Universalis 77 (2017), no. 3, pp. 251–269.
doi arXiv
Schneider, F. M.; Kerkhoff, S.; Pöschel, R.; Behrisch, M.; Siegmund, S.:
Dynamical systems in categories.
Applied Categorical Structures 25 (2017), no. 1, pp. 29–57.
doi
Kerkhoff, S.; Schneider, F. M.:
Dualities induced by topological semirings.
Applied Categorical Structures 24 (2016), no. 4, pp. 315–329.
doi
Kerkhoff, S.; Schneider, F. M.:
Clones of (continuous) partial cofunctions.
Journal of Multiple-Valued Logic and Soft Computing 28 (2017), no. 1, pp. 59–79.
doi
Schneider, F. M.; Kerkhoff, S.; Behrisch, M.; Siegmund, S.:
Chaotic actions of topological semigroups.
Semigroup Forum 87 (2013), no. 3, pp. 590–598.
doi
Schneider, F. M.; Kerkhoff, S.; Behrisch, M.; Siegmund, S.:
Locally compact groups admitting faithful strongly chaotic actions on Hausdorff spaces.
International Journal of Bifurcation and Chaos 23 (2013), no. 9, pp. 135–158.
doi
Schneider, F. M.:
Weak homomorphisms between functorial algebras.
Demonstratio Mathematica 44 (2011), no. 4, pp. 801–818.
doi
ARTICLES IN PEER-REVIEWED CONFERENCE PROCEEDINGS
Kerkhoff, S.; Schneider, F. M.:
Directed tree decompositions.
In: Formal Concept Analysis: 12th International Conference, ICFCA 2014 Proceedings.
Lecture Notes in Computer Science (2014), vol. 8478, pp. 80–95.
Schneider, F. M.:
Chaotic actions of locally compact Hausdorff topological groups.
Proc. Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electronic Notes Theoretical Computer Science (2014), vol. 303, pp. 181–195.
Kerkhoff, S.; Pöschel, R.; Schneider, F. M.:
A short introduction to clones.
Proc. Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electronic Notes Theoretical Computer Science (2014), vol. 303, pp. 107–120.
Kerkhoff, S.; Schneider, F. M.:
Clones of partial cofunctions.
Proceedings of the 43rd IEEE International Symposium on Multiple-Valued Logic,
IEEE Computer Society 2013, pp. 186–191.
EXTENDED ABSTRACTS
Schneider, F. M.:
On Følner sets in topological groups.
Oberwolfach Report No. 41/2016, pp. 26–27.
PHD THESIS
Schneider, F. M.:
A relational localisation theory for topological algebras.
TU Dresden, 2012, 192 pages.
DIPLOMA THESIS
Schneider, F. M.:
A foundation for a relational localisation theory for topological algebras.
TU Dresden, 2011, 49 pages.
PREPRINTS
Schneider, F. M.:
Concentration of invariant means and dynamics of chain stabilizers in continuous geometries.
arXiv
Hauser, T.; Schneider, F. M.:
Entropy of group actions beyond uniform lattices.
arXiv
JOURNAL ARTICLES
Juschenko, K.; Schneider, F. M.:
Skew-amenability of topological groups.
Commentarii Mathematici Helvetici 96 (2021), no. 4, pp. 805–851.
doi arXiv
Schneider, F. M.; Solecki, S.:
Concentration of measure, classification of submeasures, and dynamics of L0.
Journal of Functional Analysis 280 (2021), no. 5, 108890.
doi arXiv
Hanika, T.; Schneider, F. M.; Stumme, G.:
Intrinsic dimension of geometric data sets.
Tohoku Mathematical Journal 74 (2022), no. 1, pp. 23–52.
doi arXiv
Schneider, F. M.; Thom, A.:
The Liouville property and random walks on topological groups.
Commentarii Mathematici Helvetici 95 (2020), no. 3, pp. 483–513.
doi arXiv
Schneider, F. M.:
Equivariant dissipation in non-archimedean groups.
Israel Journal of Mathematics 234 (2019), no. 1, pp. 281–307.
doi arXiv
Schneider, F. M.; Zumbrägel, J.:
MacWilliams' extension theorem for infinite rings.
Proceedings of the American Mathematical Society 147 (2019), no. 3, pp. 947–961.
doi arXiv
Schneider, F. M.:
Equivariant concentration in topological groups.
Geometry & Topology 23 (2019), no. 2, pp. 925–956.
doi arXiv
Schneider, F. M.:
About von Neumann's problem for locally compact groups.
Journal of Noncommutative Geometry 12 (2018), no. 4, pp. 1531–1549.
doi arXiv
Schneider, F. M.; Thom, A.:
On Følner sets in topological groups.
Compositio Mathematica 154 (2018), no. 7, pp. 1333–1362.
doi arXiv
Pestov, V. G.; Schneider, F. M.:
On amenability and groups of measurable maps.
Journal of Functional Analysis 273 (2017), no. 12, pp. 3859–3874.
doi arXiv
Schneider, F. M.:
A uniform Birkhoff theorem.
Algebra Universalis 78 (2017), no. 3, pp. 337–354.
doi arXiv
Schneider, F. M.; Zumbrägel, J.:
Profinite algebras and affine boundedness.
Advances in Mathematics 305 (2017), pp. 661–681.
doi arXiv
Schneider, F. M.; Thom, A.:
Topological matchings and amenability.
Fundamenta Mathematicae 238 (2017), pp. 167–200.
doi arXiv
Schneider, F. M.; Zumbrägel, J.:
Every simple compact semiring is finite.
Topology and its Applications 206 (2016), pp. 305–310.
doi arXiv
Borchmann, D.; Schneider, F. M.:
Topological entropy of formal languages.
Semigroup Forum 94 (2017), no. 3, pp. 556–581.
doi arXiv
Bodirsky, M; Schneider, F. M.:
A topological characterisation of endomorphism monoids of countable structures.
Algebra Universalis 77 (2017), no. 3, pp. 251–269.
doi arXiv
Schneider, F. M.; Kerkhoff, S.; Pöschel, R.; Behrisch, M.; Siegmund, S.:
Dynamical systems in categories.
Applied Categorical Structures 25 (2017), no. 1, pp. 29–57.
doi
Kerkhoff, S.; Schneider, F. M.:
Dualities induced by topological semirings.
Applied Categorical Structures 24 (2016), no. 4, pp. 315–329.
doi
Kerkhoff, S.; Schneider, F. M.:
Clones of (continuous) partial cofunctions.
Journal of Multiple-Valued Logic and Soft Computing 28 (2017), no. 1, pp. 59–79.
doi
Schneider, F. M.; Kerkhoff, S.; Behrisch, M.; Siegmund, S.:
Chaotic actions of topological semigroups.
Semigroup Forum 87 (2013), no. 3, pp. 590–598.
doi
Schneider, F. M.; Kerkhoff, S.; Behrisch, M.; Siegmund, S.:
Locally compact groups admitting faithful strongly chaotic actions on Hausdorff spaces.
International Journal of Bifurcation and Chaos 23 (2013), no. 9, pp. 135–158.
doi
Schneider, F. M.:
Weak homomorphisms between functorial algebras.
Demonstratio Mathematica 44 (2011), no. 4, pp. 801–818.
doi
ARTICLES IN PEER-REVIEWED CONFERENCE PROCEEDINGS
Kerkhoff, S.; Schneider, F. M.:
Directed tree decompositions.
In: Formal Concept Analysis: 12th International Conference, ICFCA 2014 Proceedings.
Lecture Notes in Computer Science (2014), vol. 8478, pp. 80–95.
Schneider, F. M.:
Chaotic actions of locally compact Hausdorff topological groups.
Proc. Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electronic Notes Theoretical Computer Science (2014), vol. 303, pp. 181–195.
Kerkhoff, S.; Pöschel, R.; Schneider, F. M.:
A short introduction to clones.
Proc. Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electronic Notes Theoretical Computer Science (2014), vol. 303, pp. 107–120.
Kerkhoff, S.; Schneider, F. M.:
Clones of partial cofunctions.
Proceedings of the 43rd IEEE International Symposium on Multiple-Valued Logic,
IEEE Computer Society 2013, pp. 186–191.
EXTENDED ABSTRACTS
Schneider, F. M.:
On Følner sets in topological groups.
Oberwolfach Report No. 41/2016, pp. 26–27.
PHD THESIS
Schneider, F. M.:
A relational localisation theory for topological algebras.
TU Dresden, 2012, 192 pages.
DIPLOMA THESIS
Schneider, F. M.:
A foundation for a relational localisation theory for topological algebras.
TU Dresden, 2011, 49 pages.
➥ IN ACTION: Presentations recorded on video
Meeting
Venue
Link
Unifying Themes in Ramsey Theory, November 2018
Banff International Research
Station (BIRS)
video
Mean Dimension and Sofic Entropy Meet Dynamical Systems,
Geometric Analysis and Information Theory, July 2017
Banff International Research
Station (BIRS)
video
Structure and Geometry of Polish Groups, June 2017
BIRS-affiliated Casa Matemática
Oaxaca (BIRS-CMO)
video
Meeting | Venue | Link |
---|---|---|
Unifying Themes in Ramsey Theory, November 2018 | Banff International Research Station (BIRS) |
video |
Mean Dimension and Sofic Entropy Meet Dynamical Systems, Geometric Analysis and Information Theory, July 2017 |
Banff International Research Station (BIRS) |
video |
Structure and Geometry of Polish Groups, June 2017 | BIRS-affiliated Casa Matemática Oaxaca (BIRS-CMO) |
video |