ALGEBRA AND BEYOND

Welcome!

Prof. Dr. rer. nat. Friedrich Martin Schneider

Prof. Dr. Friedrich Martin Schneider


Professor of Applied Algebra
Phone +49 3731 39-3187
Fax +49 3731 39-3595
Martin.Schneider@math.tu-freiberg.de


➥ Contact details

Postal address

Institute of Discrete Mathematics and Algebra
Faculty of Mathematics and Computer Science
Technische Universität Bergakademie Freiberg
D-09596 Freiberg

Physical address

Universitätshauptgebäude
Prüferstraße 1
Room 1.09
09599 Freiberg

Secretary

Kristin Müller
Prüferstraße 9, Room 2.03
Phone +49 3731 39-3111
Kristin.Mueller1@math.tu-freiberg.de

➥ Teaching in Winter 2022/23

Course Lectures Teaching assistant Exercise classes OPAL
Algebra 1 Thursday, 7:30–9:00,
every week, PRÜ–1104
Dr. Maxime Gheysens Tuesday, 11:00–12:30,
every odd calendar week, MIB–1113
link
Geometry &
Topology
Monday, 16:00–17:30,
every week, MIB–1107
Dr. Maxime Gheysens Tuesday, 14:00–15:30,
every week, PRÜ–1104
link
Automata
Theory
Thursday, 9:15–10:45,
every week, PRÜ–1103
Dr. Maxime Gheysens Thursday, 14:00–15:30,
every odd calendar week, PRÜ–1104
link

➥ Seminar topics for students

Currently available topics for the Mathematical Seminar include (but are not limited to):

  • cellular automata and surjunctivity (group theory)
  • Malcev-Neumann rings (algebra)
  • Gromov's compactness theorem (metric geometry)
  • James' space (functional analysis)
  • Nash-Williams partition theorem (infinite combinatorics)

➥ Research interests

Topological groups and dynamics

  • infinite-dimensional transformation groups
  • fixed-point properties
  • ergodic theory of continuous group actions

Asymptotic geometric analysis and functional analysis

  • concentration phenomena
  • metric measure geometry
  • convolution algebras over groups

Ring theory and general algebra

  • structure theory and harmonic analysis of infinite rings
  • von Neumann's continuous geometries
  • topological aspects of universal algebra

➥ Publications

PREPRINTS

Schneider, F. M.:
Group von Neumann algebras, inner amenability, and unit groups of continuous rings.
arXiv

Schneider, F. M.:
Concentration of invariant means and dynamics of chain stabilizers in continuous geometries.
arXiv

Hauser, T.; Schneider, F. M.:
Entropy of group actions beyond uniform lattices.
arXiv


JOURNAL ARTICLES

Schneider, F. M.; Viola, C.:
An Application of Farkas' Lemma to Finite-Valued Constraint Satisfaction Problems over Infinite Domains.
Journal of Mathematical Analysis and Applications 517 (2023), no. 1, 126591.
doi arXiv

Juschenko, K.; Schneider, F. M.:
Skew-amenability of topological groups.
Commentarii Mathematici Helvetici 96 (2021), no. 4, pp. 805–851.
doi arXiv

Schneider, F. M.; Solecki, S.:
Concentration of measure, classification of submeasures, and dynamics of L0.
Journal of Functional Analysis 280 (2021), no. 5, 108890.
doi arXiv

Hanika, T.; Schneider, F. M.; Stumme, G.:
Intrinsic dimension of geometric data sets.
Tohoku Mathematical Journal 74 (2022), no. 1, pp. 23–52.
doi arXiv

Schneider, F. M.; Thom, A.:
The Liouville property and random walks on topological groups.
Commentarii Mathematici Helvetici 95 (2020), no. 3, pp. 483–513.
doi arXiv

Schneider, F. M.:
Equivariant dissipation in non-archimedean groups.
Israel Journal of Mathematics 234 (2019), no. 1, pp. 281–307.
doi arXiv

Schneider, F. M.; Zumbrägel, J.:
MacWilliams' extension theorem for infinite rings.
Proceedings of the American Mathematical Society 147 (2019), no. 3, pp. 947–961.
doi arXiv

Schneider, F. M.:
Equivariant concentration in topological groups.
Geometry & Topology 23 (2019), no. 2, pp. 925–956.
doi arXiv

Schneider, F. M.:
About von Neumann's problem for locally compact groups.
Journal of Noncommutative Geometry 12 (2018), no. 4, pp. 1531–1549.
doi arXiv

Schneider, F. M.; Thom, A.:
On Følner sets in topological groups.
Compositio Mathematica 154 (2018), no. 7, pp. 1333–1362.
doi arXiv

Pestov, V. G.; Schneider, F. M.:
On amenability and groups of measurable maps.
Journal of Functional Analysis 273 (2017), no. 12, pp. 3859–3874.
doi arXiv

Schneider, F. M.:
A uniform Birkhoff theorem.
Algebra Universalis 78 (2017), no. 3, pp. 337–354.
doi arXiv

Schneider, F. M.; Zumbrägel, J.:
Profinite algebras and affine boundedness.
Advances in Mathematics 305 (2017), pp. 661–681.
doi arXiv

Schneider, F. M.; Thom, A.:
Topological matchings and amenability.
Fundamenta Mathematicae 238 (2017), pp. 167–200.
doi arXiv

Schneider, F. M.; Zumbrägel, J.:
Every simple compact semiring is finite.
Topology and its Applications 206 (2016), pp. 305–310.
doi arXiv

Borchmann, D.; Schneider, F. M.:
Topological entropy of formal languages.
Semigroup Forum 94 (2017), no. 3, pp. 556–581.
doi arXiv

Bodirsky, M; Schneider, F. M.:
A topological characterisation of endomorphism monoids of countable structures.
Algebra Universalis 77 (2017), no. 3, pp. 251–269.
doi arXiv

Schneider, F. M.; Kerkhoff, S.; Pöschel, R.; Behrisch, M.; Siegmund, S.:
Dynamical systems in categories.
Applied Categorical Structures 25 (2017), no. 1, pp. 29–57.
doi

Kerkhoff, S.; Schneider, F. M.:
Dualities induced by topological semirings.
Applied Categorical Structures 24 (2016), no. 4, pp. 315–329.
doi

Kerkhoff, S.; Schneider, F. M.:
Clones of (continuous) partial cofunctions.
Journal of Multiple-Valued Logic and Soft Computing 28 (2017), no. 1, pp. 59–79.
doi

Schneider, F. M.; Kerkhoff, S.; Behrisch, M.; Siegmund, S.:
Chaotic actions of topological semigroups.
Semigroup Forum 87 (2013), no. 3, pp. 590–598.
doi

Schneider, F. M.; Kerkhoff, S.; Behrisch, M.; Siegmund, S.:
Locally compact groups admitting faithful strongly chaotic actions on Hausdorff spaces.
International Journal of Bifurcation and Chaos 23 (2013), no. 9, pp. 135–158.
doi

Schneider, F. M.:
Weak homomorphisms between functorial algebras.
Demonstratio Mathematica 44 (2011), no. 4, pp. 801–818.
doi


ARTICLES IN PEER-REVIEWED CONFERENCE PROCEEDINGS

Kerkhoff, S.; Schneider, F. M.:
Directed tree decompositions.
Formal Concept Analysis, ICFCA 2014,
Lecture Notes in Computer Science, 2014, vol. 8478, pp. 80–95.

Schneider, F. M.:
Chaotic actions of locally compact Hausdorff topological groups.
Proc. Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electronic Notes in Theoretical Computer Science, 2014, vol. 303, pp. 181–195.

Kerkhoff, S.; Pöschel, R.; Schneider, F. M.:
A short introduction to clones.
Proc. Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electronic Notes in Theoretical Computer Science, 2014, vol. 303, pp. 107–120.

Kerkhoff, S.; Schneider, F. M.:
Clones of partial cofunctions.
43rd IEEE International Symposium on Multiple-Valued Logic, 2013, pp. 186–191.


EXTENDED ABSTRACTS

Schneider, F. M.:
On Følner sets in topological groups.
Oberwolfach Report No. 41/2016, pp. 26–27.


PHD THESIS

Schneider, F. M.:
A relational localisation theory for topological algebras.
TU Dresden, 2012, 192 pages.

DIPLOMA THESIS

Schneider, F. M.:
A foundation for a relational localisation theory for topological algebras.
TU Dresden, 2011, 49 pages.

➥ IN ACTION: Presentations recorded on video

Meeting Venue Link
Unifying Themes in Ramsey Theory, November 2018 Banff International Research
Station (BIRS)
video
Mean Dimension and Sofic Entropy Meet Dynamical Systems,
Geometric Analysis and Information Theory
, July 2017
Banff International Research
Station (BIRS)
video
Structure and Geometry of Polish Groups, June 2017 BIRS-affiliated Casa Matemática
Oaxaca (BIRS-CMO)
video