Multiscale Coarse Spaces for Overlapping Schwarz Methods Based on the ACMS Space in 2D
Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rheinbach

Multiscale Coarse Spaces for Overlapping Schwarz Methods Based on the ACMS Space in 2D

TU Bergakademie Freiberg
Fakultät für Mathematik und Informatik
Prüferstraße 9
09599 FREIBERG
http://tu-freiberg.de/fakult1
MULTISCALE COARSE SPACES FOR OVERLAPPING SCHWARZ METHODS BASED ON THE ACMS SPACE IN 2D
ALEXANDER HEINLEIN*, AXEL KLAWONN*, JASCHA KNEPPER*, AND OLIVER RHEINBACH†

August 3, 2016

Abstract. Two-level overlapping Schwarz domain decomposition methods for second order elliptic problems in two dimensions are proposed using coarse spaces constructed from the Approximate Component Mode Synthesis (ACMS) multiscale discretization approach. These coarse spaces are based on eigenvalue problems using Schur complements on subdomain edges. It is then proven that the convergence of the resulting preconditioned Krylov method can be controlled by a user-specified tolerance and thus can be made independent of heterogeneities in the coefficient of the partial differential equation. The relations of this new approach to other known adaptive coarse space approaches for overlapping Schwarz methods are also discussed. Compared to one of the competing adaptive approaches, the new coarse space can be significantly smaller. Compared to other competing approaches, the eigenvalue problem is significantly cheaper, i.e., the dimension of the eigenvalue problems is minimal among the competing adaptive approaches under consideration. Our local eigenvalue problems can be solved using one or two iterations of LobPCG for essentially the same cost as an LU-decomposition of a Schur complement on a subdomain edge.

Key words. Domain Decomposition, Multiscale, Approximate Component Mode Synthesis (ACMS), Scientific Software, Parallel, Overlapping Schwarz,

AMS subject classifications. 65F08,65F10,65N55,68W10,74S30

1. Introduction. We consider coarse spaces for two-level overlapping Schwarz methods [38] based on variations of the Approximate Component Mode Synthesis (ACMS) special finite element method, which was introduced in [23] for the discretization of second order elliptic problems with highly varying coefficients. For our new two-level overlapping Schwarz method, we obtain a condition number bound which is independent of large variations in the coefficient; see section 6 for the condition number bound and section 7 for corresponding numerical results.

The ACMS discretization method builds on the traditional Component Mode Synthesis (CMS) method [7, 25] and uses eigenvectors from local discrete eigenvalue problems to construct the approximation space. A discretization error estimate and an a-posteriori error indicator are available [22] for ACMS as well as a parallel implementation [20]. The improved approximation properties for heterogeneous problems, compared to standard FEM spaces, relies on the adaptation of the basis functions to the heterogeneities, i.e., the basis functions are computed in a first (offline) step. They are used in the later (online) simulations, which can be performed on a relatively coarse mesh. However, for large problems, this mesh can still require parallel solution methods, and in [20], it has been shown that parallel domain decomposition solvers can robustly solve the discretized ACMS (online) problems.

Many multiscale discretization methods have been proposed in the past, among them are Multiscale Finite Element Methods (MsFEM) [24, 14], Heterogeneous Multiscale Finite Element Methods (HMM) [12, 13], adaptive multiscale methods [33], and Generalized Finite Element Methods (GFEM) [3, 2]; see also the references therein.

Different exotic coarse spaces for overlapping Schwarz methods are also known,
e.g., energy minimizing coarse spaces [8, 9, 10, 21, 5, 6, 1], where the latter three references use coarse spaces built on MsFEM basis functions. Adaptive coarse spaces from eigenvalue problems for overlapping Schwarz methods were already proposed in [15, 16], considering unions of neighboring subdomains. Their idea was to replace a Poincaré inequality by a computable bound from a discrete eigenvalue problem involving a Neumann matrix and a mass matrix. In [36], Spillane et al. have introduced the GenEO coarse space for overlapping Schwarz methods. This method uses the bilinear form on both sides of the generalized eigenvalue problems. By elimination, the generalized eigenvalue problems can be reduced to the overlap of the subdomains, resulting in smaller eigenvalue problems. This helped to make adaptive overlapping Schwarz methods practical.

The size of the eigenvalue problems is reduced further in the more recent methods in the focus of this paper, where (generalized) eigenvalue problems on the subdomain boundary or on edges are solved. We will briefly review the ACMS method as a discretization before we will introduce the ACMS-based coarse space for overlapping Schwarz, using eigenvalue problems on edges. We will also discuss two approaches closely related to our approach, i.e., the method introduced in [11], where eigenvalue problems on the boundaries of the overlapping subdomains are used, and the very recent method introduced in [17], also using edges.

The methods [15, 16], [11], and [17] are described in subsection 5.1, subsection 5.2, and subsection 5.3, respectively, in order to illustrate differences and relations to our approach. Let us note that, compared to [15, 16] and [11], the eigenvalue problems in our approach are more local, i.e., defined on edges. The eigenvalue problems used in [17] are also defined on edges and are typically computationally slightly cheaper than ours (if the standard, non-economic variant of our approach is used), but our resulting ACMS coarse space can be significantly smaller in certain cases; see section 7.

Adaptive coarse space approaches for nonoverlapping domain decomposition methods are, of course, also related, e.g., [4, 32, 31, 28, 34, 29, 37, 27, 35, 26], but are out of the scope of this paper. For further references to the literature, we refer to the references listed in the aforementioned publications.

2. ACMS Special Finite Element Method. We consider problems of the form

\[
-\nabla \cdot (A(x)\nabla u(x)) = f(x) \quad \text{in } \Omega \subset \mathbb{R}^2, \\
u = 0 \quad \text{on } \partial \Omega,
\]

where the coefficient function \(A \) is highly heterogeneous, possibly with high jumps. The model problem (1) can be transformed into the variational formulation: find \(u \in H_0^1(\Omega) \), such that

\[
a_\Omega (u, v) = L(v) \quad \forall v \in H_0^1(\Omega)
\]

with the bilinear form and the linear functional

\[
a_\Omega (u, v) := \int_\Omega (\nabla u(x))^T A(x) \nabla v(x) \, dx \quad \text{and} \quad L(v) := \int_\Omega f(x) v(x) \, dx,
\]

respectively, where \(f \in L^2(\Omega) \). In addition to that, we denote the semi-norm corresponding to the bilinear form \(a_\Omega (\cdot, \cdot) \) as

\[
|u|_{a, \Omega}^2 := a_\Omega (u, u).
\]

We assume that the coefficient function \(A(x) \) is a uniformly symmetric positive definite matrix and that it satisfies

\[
0 < \alpha_{\min} \xi^T \xi \leq \xi^T A(x) \xi \leq \alpha_{\max} \xi^T \xi \quad \forall x \in \bar{\Omega} \text{ and } \xi \in \mathbb{R}^2 \setminus \{0\},
\]
with constants α_{min} and α_{max} independent of x.

We consider a family $({\mathcal{T}}_H)_H$ of conforming triangulations of Ω into triangles or convex quadrilaterals, where each triangulation introduces an interface

$$(3) \quad \Gamma = \left(\bigcup_{T \in {\mathcal{T}}_H} \partial T \right) \setminus \partial \Omega.$$

The decomposition

$$(4) \quad H^1_0(\Omega) = \left(\bigoplus_{T \in {\mathcal{T}}_H} V_T \right) \oplus V_{\Gamma}$$

is orthogonal with respect to $a_\Omega(\cdot,\cdot)$ and is standard in domain decomposition theory. However, here, the decomposition $({\mathcal{T}}_H)_H$ corresponds to a triangulation by ACMS elements with typical diameter H. Only later, when we will use ACMS as a coarse space for overlapping Schwarz methods, this decomposition will correspond to a nonoverlapping domain decomposition with typical diameter H. Note that this domain decomposition may then also be irregular.

We have

$$(5) \quad V_T = \{ v \in H^1_0(\Omega) : v|_T \in H^1_0(T) \text{ and } v|_{\partial \Omega \setminus \Gamma} = 0 \} \subset H^1_0(\Omega)$$

for all $T \in {\mathcal{T}}_H$ and

$$(6) \quad V_{\Gamma} = \{ H_{\Gamma \rightarrow \Omega}(\tau) \in H^1_0(\Omega) : \tau \in H^{1/2}(\Gamma) \} \subset H^1_0(\Omega),$$

where $H_{\Gamma \rightarrow \Omega}$ corresponds to the harmonic extension operator, i.e., to the solution of

$$(7) \begin{align*}
- \nabla \cdot (A(x) \nabla H_{\Gamma \rightarrow \Omega}(\tau)) &= 0 \quad \text{in } T, \forall T \in {\mathcal{T}}_H, \\
H_{\Gamma \rightarrow \Omega}(\tau) &= \tau \quad \text{on } \Gamma, \\
H_{\Gamma \rightarrow \Omega}(\tau) &= 0 \quad \text{on } \partial \Omega.
\end{align*}$$

Based on the decomposition (4), problem (2) can equivalently be written as: find $u_T \in V_T$ and $u_\Gamma \in V_{\Gamma}$, such that

$$(8) \begin{align*}
a_\Omega(u_T, v_T) &= L(v_T) \quad \forall T \in {\mathcal{T}}_H, \forall v_T \in V_T, \\
a_\Omega(u_T, v_T) &= L(v_T) \quad \forall v_T \in V_{\Gamma},
\end{align*}$$

where the solution of (2) is then given by

$$(9) \quad u = \sum_{T \in {\mathcal{T}}_H} u_T + u_\Gamma \in H^1_0(\Omega).$$

In the CMS method [7, 25], eigenfunctions are used as basis functions to solve the problems (8); see also Kolmogoroff’s n-width from approximation theory, which explains the approximation properties of eigenfunctions. The ACMS finite element space, which was introduced by Hetmaniuk and Lehoucq in [23], is designed as an approximation of the CMS finite element space where only basis functions with local support are employed. This applies, in particular, to the functions in V_T, which have global support, whereas the functions in V_{Γ} are already local in the CMS method.

We employ, in total, three different types of basis functions in the ACMS method, which we refer to as vertex-specific, edge-based, and fixed-interface basis functions.
A vertex-specific basis function which corresponds to a vertex P of the triangulation τ_H, is given by the boundary value problem

\begin{align}
-\nabla \cdot (A(x) \nabla \varphi_P) &= 0 \quad \text{in } T, \forall T \in \tau_H, \\
\varphi_P &= 0 \quad \text{on } \partial \Omega, \\
\varphi_P &\neq 0 \quad \text{on } \Gamma, \\
\varphi_P(P') &= \delta_{P,P'} \quad \text{on } \Gamma,
\end{align}

where P' is also a vertex of the triangulation τ_H and $\delta_{P,P'}$ is the Kronecker delta function. These functions originate from the Multiscale Finite Element Method (MsFEM) [24, 14], and we will refer to them also as MsFEM basis functions.

They are harmonic extensions of trace functions defined on Γ, and thus $\varphi_P \in V_\Gamma$. The trace values of φ_P on Γ can, e.g., be chosen to be linear in between the vertices or discrete harmonic in one dimension. In the latter case, on each edge $e \subset \Gamma$, we choose them to be the solution of

\begin{align}
\frac{\partial}{\partial T} (A_{e,\text{max}}(x) \tau(x) \nabla \varphi_P(x)) &= 0 \quad \text{on } e, \\
\varphi_P(P') &= \delta_{P,P'} \quad \text{on } \Gamma,
\end{align}

where τ denotes the tangential vector of the edge with $\|\tau\| = 1$ and $\langle \cdot, \cdot \rangle$ is the standard l_2-inner product. Here, we use for an edge $e_{ij} = T_i \cap T_j$ with $T_i, T_j \in \tau_H$, $i \neq j$,

\begin{equation}
A_{e_{ij},\text{max}}(x) := \max \left\{ \lim_{y_i \in \Omega_i \to x} A(y_i), \lim_{y_j \in \Omega_j \to x} A(y_j) \right\}
\end{equation}

instead of A in case of discontinuities across the edge; cf., e.g., the coefficient function in Figure 1.

For any open edge $e \subset \Gamma$, we define the edge-based basis function by the corresponding eigenvalue problem in the space of harmonic extensions: find $(\tilde{\tau}_{s,e}, \lambda_{s,e}) \in H^{1/2}_0(e) \times \mathbb{R}$ such that

\begin{equation}
a_{\Omega} \left(H_{\Gamma \to \Omega} (\tilde{\tau}_{s,e}), H_{\Gamma \to \Omega} (\tilde{\theta}) \right) = \lambda_{s,e} \left(\tilde{\tau}_{s,e}, \tilde{\theta} \right)_{L^2(e)} \quad \forall \theta \in H^{1/2}_0(e)
\end{equation}

with $\tilde{\tau}_{s,e}$ and $\tilde{\theta}$ being the trivial extension of $\tau_{s,e}$ and θ, respectively, by zero to $\Gamma \setminus e$. In order to approximate the solution of the local problems in (8), fixed-interface eigenfunctions with

\begin{equation}
a_{\Omega} (z_{s,T}, v) = \lambda_{s,T} (z_{s,T}, v)_{L^2(\Omega)} \quad \forall v \in V_T,
\end{equation}

on each of the $T \in \tau_H$ are employed. The eigenvalues $\{\lambda_{i,T}\}_{i=1}^{\infty}$ and $\{\lambda_{i,e}\}_{i=1}^{\infty}$ are assumed to be ordered non-decreasingly, and the corresponding eigenmodes accordingly. The eigenmodes $z_{1,T}, z_{2,T}, \ldots$ and $\tau_{1,e}, \tau_{2,e}, \ldots$ form orthonormal bases for the L^2-inner product of V_T and of V_Γ on the element T and on the edge e, respectively.

The finite element space of the ACMS special finite element method is then
Overlapping Schwarz with ACMS Coarse Spaces

\begin{equation}
V_{\text{ACMS}} = \left(\bigoplus_{T \in \tau_H} \text{span} \{ z_{i,T} : 1 \leq i \leq I_T \} \right) \\
\quad \oplus \left(\bigoplus_{P \in \Gamma} \text{span} \{ \varphi_P \} \right) \\
\quad \oplus \left(\bigoplus_{e \subset \Gamma} \text{span} \{ H_{\Gamma \rightarrow \Omega} (\tilde{\tau}_{i,e}) : 1 \leq i \leq I_e \} \right)
\end{equation}

with positive integers \(I_T, \forall T \in \tau_H \), and \(I_e, \forall \text{edges } e \subset \Gamma \), corresponding to the number of eigenmodes used as basis functions in each element and on each edge, respectively.

In practice, the ACMS basis functions are not computed explicitly, but they are replaced by their approximation on a submesh; cf. [23, 20]. This submesh is also denoted as the ACMS fine mesh \(\tau_h \), and its finite elements have a typical diameter of \(h \). Next, in the overlapping Schwarz method with ACMS coarse space, the standard finite element mesh will correspond to the ACMS fine mesh, and the ACMS elements \(T \in \tau_H \) with a typical diameter of \(H \) will correspond to the nonoverlapping domain decomposition underlying the overlapping Schwarz method.

3. Two-Level Overlapping Schwarz Methods. Let

\[K u = f \]

be the discretization of problem (2) by piecewise linear or bilinear finite elements on a family of triangulations \((\tau_h)_h\), \(K \) the stiffness matrix, \(f \) the right hand side, and \(u \) the discrete solution vector on the finite element space \(V := V^h(\Omega) \). Furthermore, let \(\{ \Omega_i \}_{i=1}^N \) be a nonoverlapping domain decomposition of \(\Omega \) with the interface

\[\Gamma = \bigcup_{i=1}^N \partial \Omega_i \setminus \partial \Omega. \]

The typical diameter of the subdomains is \(H \).

The set \(\{ \Omega_i^0 \}_{i=1}^N \) is a corresponding overlapping decomposition of \(\Omega \) with overlap \(\delta \). In the preconditioning context, we assume that the coefficient function \(A \) is constant on each finite element. We define as \(R_i : V \rightarrow V_i := V^h(\Omega_i^0), i = 1, \ldots, N \), the restriction to the local finite element space on the overlapping subdomain \(\Omega_i^0 \); \(R_i^T \) is the corresponding prolongation to \(V^h(\Omega) \). In addition, let \(V_0 \) be a global coarse space. We use exact local solvers, and therefore the local bilinear forms on the subspaces are given by

\begin{equation}
\tilde{a}_i (u_i, v_i) = a_\Omega (R_i^T u_i, R_i^T v_i) \quad \forall u_i, v_i \in V_i
\end{equation}

and the operators \(\tilde{P}_i : V \rightarrow V_i \) by

\begin{equation}
\tilde{a}_i (\tilde{P}_i u, v_i) = a_\Omega (u, R_i^T v_i) \quad \forall v_i \in V_i
\end{equation}

for \(i = 1, \ldots, N \); cf., e.g., [38]. Then, the two-level overlapping Schwarz preconditioner can be written as

\[M^{-1}_{\text{OS}-2} = R_0^T K_0^{-1} R_0 + \sum_{i=1}^{N} R_i^T K_i^{-1} R_i \]
Fig. 1: Discontinuous coefficient function A with inclusion at the vertices of the decomposition. The light blue color corresponds to a coefficient of 1.0 and the dark blue color to a coefficient of 10^8; $1/H = 4$.

<table>
<thead>
<tr>
<th>V_0</th>
<th>it.</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{Q1}</td>
<td>98</td>
<td>$8.87 \cdot 10^9$</td>
</tr>
<tr>
<td>V_{MsFEM}</td>
<td>21</td>
<td>5.56</td>
</tr>
</tbody>
</table>

Table 1: Iteration counts and condition numbers for PCG with a two-level Schwarz preconditioner using Q1 (piecewise bilinear) or MsFEM coarse basis functions; $1/H = 4$, $H/h = 16$, and $\delta = 2h$; relative stopping criterion $\|r^{(k)}\|_2 / \|r^{(0)}\|_2 < 10^{-8}$; for the coefficient distribution, see Figure 1.

with local and coarse stiffness matrices

$$K_i = R_i K R_i^T$$

for $i = 0, ..., N$. Here, the coarse operator K_0 is formed by a Galerkin product instead of using a discretization on a coarse grid.

The condition number of the standard two-level Schwarz preconditioner for problem (2), where standard Lagrange basis functions are used for the discretization of the coarse level, depends on the contrast of the coefficient function A, i.e.,

$$\kappa \left(M^{-1}_{OS-2} K \right) \leq C \max_{x,y \in \omega_K} \left(\frac{A(x)}{A(y)} \right) \left(1 + \frac{H}{\delta} \right).$$

Here, ω_K corresponds to the union of all coarse mesh elements which touch a coarse mesh element K. This bound can be made sharper but a dependence on the coefficient contrast remains; see [18].

3.1. MsFEM Coarse Space. As proposed by Aarnes and Hou [1] as well as by Buck, Iliev, and Andrä [5, 6], MsFEM basis functions can be used in the coarse space of an overlapping Schwarz preconditioner to enhance the performance in presence of rough coefficients.

Considering the overlapping Schwarz method and the underlying domain decomposition into nonoverlapping subdomains $\Omega_1, ..., \Omega_N$ of typical diameter H, we identify each Ω_i with an element $T \in \tau_H$ from section 2. The MsFEM basis functions φ_P, as defined in (10), are then discretized in the spaces $V^h(\Omega_i)$, i.e., on a fine triangulation of Ω_i into finite elements of typical diameter h; we also refer to the fine triangulation as the fine mesh.
In particular, the discretized basis functions, which we will also denote as φ_P, are employed to build the coarse MsFEM space

$$V_{\text{MsFEM}} := \bigoplus_{P \in \Gamma} \text{span} \{\varphi_P\}.$$

(18)

Since these functions are thus defined as discrete harmonic extensions, they can be computed also for unstructured domain decompositions, as in the GDSW preconditioner [8, 9, 21], without the need for an additional coarse triangulation. This is an advantage over the use of standard Lagrange coarse basis functions. The GDSW preconditioner is a two-level overlapping Schwarz preconditioner with energy minimizing coarse space functions, i.e., it uses discrete harmonic coarse space functions as well. MsFEM basis functions can also improve significantly the robustness of the overlapping Schwarz preconditioner for coefficient functions of a certain (simple) type; cf., e.g., Figure 1 and the results in Table 1.

Note that, for a constant coefficient function A and a structured domain decomposition into triangles or quadrilaterals, the MsFEM coarse space corresponds to standard piecewise linear or bilinear coarse basis functions, respectively.

4. Coarse Spaces Based on the ACMS Space. In adaptive coarse spaces, generalized eigenvalue problems are typically used in order to obtain condition number estimates that are independent of the contrast of the coefficient function. Thus, it seems natural to use the ACMS edge-based basis functions as coarse basis functions in a two-level Schwarz method for heterogeneous problems; these ACMS edge functions are computed from local generalized eigenvalue problems (13) and contribute to the excellent approximation properties of the ACMS discretization for second order elliptic PDEs with highly heterogeneous coefficients. As we will observe, after applying some modifications to the eigenvalue problems, that we will be able to construct a coarse space for overlapping Schwarz methods which is robust with respect to the contrast of the coefficient function; cf. section 7. This theoretical result will be proven in section 6.

As in the two-level Schwarz preconditioner with MsFEM coarse space (cf. subsection 3.1), let us consider our overlapping Schwarz method using the underlying domain decomposition into nonoverlapping subdomains $\Omega_1, \ldots, \Omega_N$ of typical diameter H. In order to define our ACMS coarse space for the overlapping Schwarz method, we again identify each Ω_i with an ACMS element T; cf. section 2. The triangulation of Ω_i into finite elements of typical diameter h then represents the ACMS fine mesh τ_h; for simplicity, we assume quasi-uniformity of the fine mesh.

4.1. Coarse Space with Dirichlet Boundary Conditions. We propose a coarse space for overlapping Schwarz methods which is based on the construction of the ACMS finite element space. In particular, we use the MsFEM basis functions, i.e., the vertex-specific basis function (see (10)), and a modified version of the edge-based coupling eigenmodes (see (13)), where we replace the L^2-inner product on the right hand side of (13) by a scaled version. Therefore, we define for an edge $\overline{e_{ij}} = \overline{\Omega_i} \cap \overline{\Omega_j}$ the bilinear form

$$b_{e_{ij}}(u,v) := \frac{1}{h} \left(A_{e_{ij},\text{max}} u, v \right)_{L^2(\overline{e_{ij}})},$$

(19)

and the corresponding norm $\|u\|_{b,e_{ij}}^2 := b_{e_{ij}}(u,u)$, where $A_{e_{ij},\text{max}}$ is defined as in (12). Using this bilinear form, we obtain a discrete eigenvalue problem, which is a modification of (13): find
A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach

Fig. 2: Graphical representation of the slab η_{ij}^{kh} corresponding to the edge e_{ij}.

We denote the methods which construct the eigenvalue problems using functions supported on a slab as “economic”.

\[\tau_{*,e_{ij}} \in V_0^h(e_{ij}) := \left\{ v|_{e_{ij}} : v \in V, v = 0 \text{ on } \partial e_{ij} \right\} \text{ such that } \]

\[a_\Omega \left(H_{\Gamma \to \Omega}(\tilde{\tau}_{*,e_{ij}}), H_{\Gamma \to \Omega}(\tilde{\theta}) \right) = \lambda_{*,e_{ij}} b_{e_{ij}} \left(\tau_{*,e_{ij}}, \theta \right) \quad \forall \theta \in V_0^h(e_{ij}). \]

Again, the tilde corresponds to the extensions of $\tau_{*,e_{ij}}$ and θ by zero on $\Gamma \setminus e_{ij}$.

Let the eigenvalues be sorted in non-descending order, i.e., $\lambda_{1,e_{ij}} \leq \lambda_{2,e_{ij}} \leq \ldots \leq \lambda_m$, and the eigenmodes accordingly, where $m = \dim(V_0^h(e_{ij}))$. We select all eigenmodes $\tau_{*,e_{ij}}$ where the eigenvalues are below a certain tolerance, i.e., $\lambda_{*,e_{ij}} \leq \text{tol}$. Then, the coarse basis functions corresponding to the edge e_{ij} are the discrete harmonic extensions of the selected $\tilde{\tau}_{*,e_{ij}}$ to the interior degrees of freedom, i.e., the solutions $v_{*,e_{ij}}$ of

\[a_{\Omega l}(v_{*,e_{ij}}, v) = 0 \quad \forall v \in V_0^h(\Omega_l), l = 1, \ldots, N, \]

\[v_{*,e_{ij}} = \tau_{*,e_{ij}} \quad \text{on } e_{ij}, \]

\[v_{*,e_{ij}} = 0 \quad \text{on } \Gamma \setminus e_{ij}, \]

where $V_0^h(\Omega_l) := \{ v : v \in V, v = 0 \text{ in } \Omega \setminus \Omega_l \}$.

The coarse space based on the ACMS finite element method is then given by

\[V_{\text{ACMS-D}}^{\text{tol}} = V_{\text{MsFEM}} \oplus \left(\bigoplus_{e \in \text{edge}} \text{span} \{ v_{k,e} : \lambda_{k,e} \leq \text{tol} \} \right), \]

where V_{MsFEM} is the MsFEM coarse space, which is the identical to the space spanned by the discretized vertex-based ACMS basis functions; cf (15).

As can be observed in section 7, this coarse space is robust for many coefficient distributions with jumping coefficients, while the eigenvalue problems are defined on the open edges and are thus of comparably modest size.

Here, we enforce Dirichlet boundary conditions on the whole interface for the discrete harmonic extensions on the left hand side of the generalized eigenvalue problem (20). However, for our proof, a different choice of the boundary conditions on the left hand side of (20) will be beneficial; see the subsequent subsection 4.2.

4.2. Coarse Space with Neumann Boundary Conditions. In order to improve the coarse space and, in particular, to be able to prove an estimate for the condition number, we replace the left hand side of the eigenvalue problem.

We first define η_{ij}^{kh} to be a slab of several layers of fine elements around the edge e_{ij}; cf. Figure 2. Then, we replace the Dirichlet boundary condition in the left
hand side of the eigenvalue problem by a Neumann boundary condition:

\begin{equation}
 a_{\eta_{ij}^{kh}} \left(H_{e_{ij}} \rightarrow \eta_{ij}^{kh} (\tau_{s,e_{ij}}), H_{e_{ij}} \rightarrow \eta_{ij}^{kh} (\theta) \right) = \lambda_{\tau_{s,e_{ij}}} b_{e_{ij}} (\tau_{s,e_{ij}}, \theta) \quad \forall \theta \in V_0^h (e_{ij}).
\end{equation}

In this version of the eigenvalue problem, no Dirichlet boundary conditions are prescribed on \(\partial \eta_{ij}^{kh} \setminus e_{ij} \). The coarse basis functions \(v_{\tau_{s,e_{ij}}} \) are again obtained by selecting eigenmodes with eigenvalues up to a certain tolerance and by extending these values on the edge discrete harmonically to the subdomains, i.e., by solving (21).

The resulting coarse space depends on the width of \(\eta_{ij}^{kh} \) and the threshold for the selection of the eigenvalues \(tol \). If \(\eta_{ij}^{kh} = \Omega_i \cup \Omega_j \), i.e., if the slab coincides with the complete subdomain, the resulting coarse space is

\[V_{\text{ACMS}}^{\tau_{s,e_{ij}}^{tol}} = V_{\text{MsFEM}} \oplus \left(\bigoplus_{e \in \text{edge}} \text{span} \{ v_{k,e} : \lambda_{k,e} \leq tol \} \right), \]

and if the width of \(\eta_{ij}^{kh} \) consists of \(k \) layers of fine elements in each of the subdomains \(\Omega_i \) and \(\Omega_j \), the coarse space is denoted as \(V_{\text{ACMS}}^{\tau_{s,e_{ij}}^{tol},k} \); see section 6 for the proof of the condition number of the corresponding Schwarz operator.

4.3. Using a Lumped Mass Matrix. The solution of generalized eigenvalue problems can be expensive, and therefore typical criticism concerns the construction of the adaptive coarse spaces (in the offline stage). In order to reduce the computational cost for the solution of the generalized eigenvalue problem, one can lump the mass matrix on the right hand side.

In particular, for the edge \(e_{ij} \), both eigenvalue problems (20) and (22) can be written in discrete form as

\begin{equation}
 S_{e_{ij}} V = \lambda B_{e_{ij}} V
\end{equation}

using the Schur complement \(S_{e_{ij}} \) where all degrees of freedom except for those on the interior edge have been eliminated. Depending on which version of the ACMS coarse space is used, zero Dirichlet boundary conditions have been applied only to endpoints of the edge (Neumann version) or to all degrees of freedom on \((\partial \Omega_i \cup \partial \Omega_j) \setminus e_{ij} \) (Dirichlet version). The matrix \(B_{e_{ij}} \) corresponds to the scaled mass matrix on the edge, i.e., to the discretization of the bilinear form (19).

Now, since the mass matrix is spectrally equivalent to its diagonal, we can replace \(B_{e_{ij}} \) by \(\text{diag} \left(B_{e_{ij}} \right) \) in (23), and obtain

\[\text{diag} \left(B_{e_{ij}} \right)^{-1} S_{e_{ij}} V = \lambda V \]

or, in a symmetric version,

\[\text{diag} \left(B_{e_{ij}} \right)^{-1/2} S_{e_{ij}} \text{diag} \left(B_{e_{ij}} \right)^{-1/2} W = \lambda W \]

with \(\text{diag} \left(B_{e_{ij}} \right)^{1/2} V = W \) in a computationally inexpensive step.

Thus, we are able to solve a standard eigenvalue problem instead of a generalized eigenvalue problem. We denote the corresponding coarse spaces with a bar, i.e., as \(V_{\text{ACMS}}^{\tau_{s,e_{ij}}^{tol},D} \). Accordingly, we write \(V_{\text{ACMS}}^{\tau_{s,e_{ij}}^{tol},N,k} \) for the slab version.

As we will observe in section 7, lumping the mass matrix does not affect the performance of the preconditioner.

4.4. Properties of the Spectral Projection. We consider the projection onto the space spanned by the discrete harmonic extensions of the selected eigen-
functions, i.e., by the \(\{ v_{k,e} \}_{e \in \Gamma} \),

\[
\Pi v := \sum_{e \in \Gamma} \sum_{\lambda_{k,e} \leq \text{tol}} b_e (v, v_{k,e}) v_{k,e}.
\]

(24)

This projection, which will be part of the construction of a stable decomposition of the two-level Schwarz preconditioner in section 6, has typical properties, which are summarized in the following lemma for the Neumann version of the eigenvalue problem; cf. (22). However, the properties in case of the Dirichlet version could be proven analogously. The proof of the next lemma is based on arguments from classical spectral theory and follows arguments which are standard in the theory of adaptive coarse spaces; see, e.g., [28, Lemma 5.3], [36, Lemma 2.11], and [29, Lemma 4.6].

Lemma 1. Consider for an edge \(e \) the eigenvalue problem (22) and the corresponding eigenpairs \(\{ (\tau_{k,e}, \lambda_{k,e}) \}_{k=1}^{\dim(V^h_0(e))} \), and let \(v_{k,e} \) be the discrete harmonic extension of \(\tau_{k,e} \); cf. (21). Then, the projection

\[
\Pi_e v := \sum_{\lambda_{k,e} \leq \text{tol}} b_e (v, v_{k,e}) v_{k,e}.
\]

is orthogonal with respect to the bilinear form

\[
\langle u, v \rangle_{a,*,e,\eta} := a_\eta (H_{e \rightarrow \eta}(u), H_{e \rightarrow \eta}(v))
\]

and therefore

\[
|v|_{a,*,e,\eta}^2 = |\Pi_e v|_{a,*,e,\eta}^2 + |v - \Pi_e v|_{a,*,e,\eta}^2.
\]

The semi-norm is defined as

\[
|u|_{a,*,e,\eta}^2 := \langle u, u \rangle_{a,*,e,\eta}.
\]

In addition, the estimate

\[
\|v - \Pi_e v\|_{b,e}^2 \leq \frac{1}{\text{tol}} |v - \Pi_e v|_{a,*,e,\eta}^2
\]

holds.

Proof. Since both bilinear forms are positive definite, the eigenvectors span the space \(V^h_0(e) \), and therefore they can be chosen to be an orthogonal basis of \(V^h_0(e) \) with

\[
\langle v_{k,e}, v_{l,e} \rangle = \langle \tau_{k,e}, \tau_{l,e} \rangle = b_e (\tau_{k,e}, \tau_{l,e}) = b_e (v_{k,e}, v_{l,e}) = 0 \quad \forall k \neq l
\]

and

\[
|v_{k,e}|_{a,*,e,\eta}^2 = |\tau_{k,e}|_{a,*,e,\eta}^2 = \lambda_{k,e},
\]

\[
\|v_{k,e}\|_{b,e}^2 = |\tau_{k,e}|_{b,e}^2 = 1.
\]

Therefore, since

\[
v = \sum_{k=1}^{\dim(V^h_0(e))} b_e (v, v_{k,e}) v_{k,e} \quad \forall v \in V^h_0(e),
\]
we obtain
\[|v|_{a,*,e,\eta}^2 = \sum_{\lambda_{k,e} \leq \text{tol}} b_e(v, v_{k,e}) v_{k,e}^2 + \sum_{\lambda_{k,e} > \text{tol}} b_e(v, v_{k,e}) v_{k,e}^2 \]
\[= |\Pi_e v|_{a,*,e,\eta}^2 + |v - \Pi_e v|_{a,*,e,\eta}^2. \]

Moreover,
\[\|v - \Pi_e v\|_{b,e}^2 = \sum_{\lambda_{k,e} > \text{tol}} b_e(v, v_{k,e}) \|v_{k,e}\|_{b,e}^2 \]
\[= \sum_{\lambda_{k,e} > \text{tol}} b_e(v, v_{k,e}) \frac{1}{\lambda_{k,e}} |v_{k,e}|_{a,*,e,\eta}^2 \]
\[\leq \frac{1}{\text{tol}} \sum_{\lambda_{k,e} > \text{tol}} b_e(v, v_{k,e}) |v_{k,e}|_{a,*,e,\eta}^2 \]
\[= \frac{1}{\text{tol}} \sum_{\lambda_{k,e} > \text{tol}} b_e(v, v_{k,e}) v_{k,e}^2 \]
\[\leq \frac{1}{\text{tol}} |v - \Pi_e v|_{a,*,e,\eta}^2. \]

Since
\[\Pi v = \sum_{e \subset \Gamma} \Pi_e v \]
the projection \(\Pi \) inherits the bounds for the local projections \(\Pi_e \). In particular, this will be essential in the proofs of section 6.

4.5. Heuristic Construction of Edge Functions. In order to reduce the cost for the computation of the edge-based coupling basis functions even further, one can construct the trace values by inspecting the values of the coefficient function. In particular, we construct one basis function for each heterogeneity with a high coefficient intersecting an edge and extend these values discrete harmonically to the interior of the subdomain. Precisely, we set the functions to one for those degrees of freedom which belong to an element inside a heterogeneity with a high coefficient and to zero elsewhere; cf. Figure 3. Therefore, we define a tolerance \(\text{tol} \) which characterizes the threshold for the identification of a coefficient jump: we identify a coefficient jump if the contrast of the coefficient, \(\frac{A_{t1}}{A_{t2}} \) or \(\frac{A_{t2}}{A_{t1}} \), of two neighboring elements \(t_1 \) and \(t_2 \) is larger than \(\text{tol} \).

We denote the resulting coarse space, which consists of the constructed edge-based basis functions and the ACMS vertex-specific basis functions, as \(V_{\text{tol ACMS}} \). Let us note that the vectors constructed from this approach could also be used in other ACMS approaches as initial values in iterative methods for eigenvalue problems. The first results for the use of the \(V_{\text{tol ACMS}} \) coarse space can be found in [19] and in the master thesis of the third author.

5. Related Adaptive Coarse Spaces for Overlapping Schwarz. While there are several different approaches for adaptive coarse spaces for overlapping
Fig. 3: Heuristic construction of the edge-based coarse basis functions in ACMS-R in order to avoid eigenvalue problems; see subsection 4.5: coefficient function on the two subdomains Ω_i and Ω_j (left), coefficient function on the edge e_{ij} (top, right), and the resulting two coarse basis functions (bottom, right).

Schwarz preconditioners, we would like to mention two of them (in subsection 5.2 and subsection 5.3) which are closely related to our approach. But first, we will describe an early approach by Galvis and Efendiev [15] in the subsequent subsection 5.1.

5.1. Local Spectral Multiscale Coarse Spaces. In [15], Galvis and Efendiev proposed to circumvent the need for a weighted Poincaré inequality

$$\int_\Omega A(x)v^2 \, dx \leq C \int_\Omega A(x)(\nabla v)^2 \, dx,$$

with a constant C which depends on the contrast of the coefficient $\frac{A_{\Omega, \text{max}}}{A_{\Omega, \text{min}}}$, by using eigenfunctions as coarse space functions.

Therefore, the eigenvalue problem

$$\text{div} (A(x)\nabla \psi_k^{\omega_P}) = \lambda_k A(x)\psi_k^{\omega_P}$$

on the union of the neighboring subdomains ("coarse grid blocks")

$$\omega_P := \bigcup_{T \in \mathcal{T}_h, P \in \mathcal{T}} T$$

of the vertex P of the coarse mesh is considered. The discrete form of the eigenvalue problem is: find $\psi_k^{\omega_P} \in V^h(\omega_P) := \{v \in V^h(\omega_P) : v|_{\partial \omega_P \cap \partial \Omega} = 0\}$ such that

$$A^{\omega_P} \psi_k^{\omega_P} = \lambda_k M^{\omega_P} \psi_k^{\omega_P},$$

where A^{ω_P} is the discretized matrix of the bilinear form $a_{\omega_P}(\cdot, \cdot)$ and M^{ω_P} is the discretized matrix of the bilinear form

$$\int_{\omega_P} A(x)uv \, dx.$$

Now let $\{\chi_P\}_{P \in \mathcal{P}_{\text{vertex}}}^{\text{vertex}}$ be a partition of unity, which is subordinated to the covering $\{\omega_P\}_{P \in \mathcal{P}_{\text{vertex}}}^{\text{vertex}}$ of Ω, with $\chi_P \in V^h(\Omega)$ and $|\nabla \chi_P| \leq \frac{1}{H}$. Then, the coarse
basis functions are given as
\begin{equation}
\Phi_{P,k} = I_h(\chi_P \psi_{\omega_P}^k) \quad \text{for} \quad P \in \Gamma \quad \text{vertex and} \quad 1 \leq i \leq L_P,
\end{equation}
where L_P is the number of eigenfunctions selected from the eigenvalue problem on the patch ω_P. The local spectral multiscale coarse space is then defined as
\begin{equation}
V_{LSM} := \{ \Phi_{P,k} : P \in \Gamma, 1 \leq k \leq L_P \}.
\end{equation}

For a two-level Schwarz preconditioner using this coarse space, the authors prove the condition number bound
\begin{equation}
\kappa \left(M^{-1}_{LSM} K \right) \leq C \left(1 + \frac{H^2}{\delta^2} \right),
\end{equation}
where the constant C depends on the number of eigenfunctions selected for the coarse space but not on the contrast of the coefficient function and the mesh size. However, the solution of the eigenvalue problems (28) is quite expensive: each eigenvalue problem is defined on the (coarse) neighborhood ω_P of a coarse node, i.e., it involves all neighboring subdomains of a vertex in the domain decomposition. Moreover, in this approach, unnecessary coarse space functions can be added to the coarse space resulting from the interior part of the subdomain.

As a result, improved approaches were later proposed. For example, in [16], the authors have presented an improved version, where the dimension of the coarse space is reduced by introducing a suitable second partition of unity which modifies the scaling of the mass matrix. Thereby, basis functions which correspond to interior inclusions are eliminated.

We will now describe the two approaches more closely related to our new algorithm which, like us, use smaller eigenvalue problems, i.e., eigenvalue problems on traces instead of volumes in order to further reduce computational cost, i.e., [11] and [17].

5.2. Coarse Spaces Based on Local Dirichlet-to-Neumann Maps. In [11], the authors Dolean, Nataf, Scheichl, and Spillane have introduced a coarse space which is related to the ACMS approach. However, the corresponding eigenvalue problem is defined on the complete boundary of the overlapping subdomains, i.e., it is defined using the Schur complements on the subdomain boundaries $\partial \Omega'_i$; see (30).

In particular, on each overlapping subdomain Ω'_i, the eigenvalue problem is given by
\begin{equation}
\begin{aligned}
\text{div} \left(A(x) \nabla v_k \right) &= 0 \quad \text{in} \quad \Omega'_i, \\
A(x) \frac{\partial v_k}{\partial n_i} &= \lambda_k A(x) v_k \quad \text{on} \quad \partial \Omega'_i,
\end{aligned}
\end{equation}
where $\frac{\partial}{\partial n_i}$ is the derivative in normal direction. The corresponding variational formulation is
\begin{equation}
\int_{\Omega'_i} A(x) \nabla v_k \cdot \nabla w \, dx = \lambda_k \int_{\partial \Omega'_i} \text{tr}_i (A(x)) v_k \, w \, ds \quad \forall w \in H^1(\Omega'_i),
\end{equation}
where $\text{tr}_i A(x) := \lim_{y \in \Omega'_i \rightarrow x} A(x)$ for a.e. $x \in \partial \Omega'_i$. In discrete form the eigenvalue problem can be written as
\begin{equation}
S_{i,1}^{(i)} v_{k,1}^{(i)} = \lambda_{i}^{} M_{i,1}^{(i)} v_{k,1}^{(i)}.
\end{equation}
Here, $M_{\Gamma'}^{(i)}$ corresponds to the 1D mass matrix on $\partial \Omega_i'$, and $S_{\Gamma'}^{(i)}$ corresponds to the Schur complement where the interior degrees of freedom of the overlapping subdomains have been eliminated. Then, $v_{k, \Gamma}^{(i)}$ is extended discrete harmonically to Ω_i' and denoted by $v_k^{(i)}$. The corresponding coarse space is given by

$$V_{\text{DN}} := \text{span}\{\Phi_{H,i,k}^{(i)} : 1 \leq i \leq N \text{ and } 1 \leq k \leq m_i\}$$

where m_i is the number of eigenfunctions selected in subdomain Ω_i'. The basis functions are defined by

$$\Phi_{H,i,k}^{(i)} := I_h (\chi_{i,k}^{(i)})$$

and the functions $\{\chi_i\}_{i=1}^N$ form a partition of unity corresponding to the overlapping decomposition $\{\Omega_i'\}_{i=1}^N$ with

$$\chi_i(x_j) := \frac{\text{dist}(x_j, \partial \Omega_i')}{\sum_{x_j \in \Omega_i'} \text{dist}(x_j, \partial \Omega_i')}.$$

In order to prove the condition number estimate

$$\kappa \left(M_{\text{DN}}^{-1} K \right) \leq C + \max_{i=1}^N \frac{1}{\delta \lambda_{m_i+1}^{(i)}},$$

the authors assume a quasi-monotone coefficient function A. Here, δ denotes the width of the overlap.

Note that the eigenvalue problems are still rather large since each corresponds to the degrees of freedom on the complete boundary of a single overlapping subdomain.

5.3. Spectral Harmonically Enriched Multiscale Coarse Space.

In [17], the authors Gander, Loneland, and Rahman have introduced a coarse space which is very closely related to our approach of using the ACMS space as a coarse space: first, MsFEM basis functions corresponding to the vertices of the decomposition are used in the coarse space, second, eigenvalue problems on the degrees of freedom of the edges of the nonoverlapping decomposition are employed.

In particular, the eigenvalue problem

$$\bar{a}_{e_{ij}} \left(\psi_{e_{ij}}^k, v \right) = \lambda_{e_{ij}}^k \bar{b}_{e_{ij}} \left(\psi_{e_{ij}}^k, v \right) \quad \forall v \in V_h^0 (e_{ij})$$

is considered, where

$$\bar{a}_{e_{ij}} (u, v) := (A_{e_{ij}, \text{max}}(x) D_{xt} u, D_{xt} v),$$

$$\bar{b}_{e_{ij}} (u, v) := h^{-1} \sum_{x_k \in e_{ij}} \beta_k u(x_k) v(x_k),$$

and

$$\beta_k := \sum_{t \in \tau_h, k \in \text{dof}(t)} A_t.$$

Here, $A_{e_{ij}, \text{max}}$ is defined as in (12), A_t is the constant coefficient on the element $t \in \tau_h$, $D_{xt'}$ denotes the tangent derivative with respect to the edge e_{ij}, and the x_k correspond to the finite element nodes on the edge. Eigenfunctions corresponding to the first $m_{e_{ij}}$ eigenvalues are selected and extended discrete harmonically by solving

$$a_{\Omega_l} \left(p_{e_{ij}}^k, v \right) = 0 \quad \forall v \in V_h^0 (\Omega_l), l = 1, ..., N,$$

$$p_{e_{ij}}^k = \psi_{e_{ij}}^k \quad \text{on } e_{ij},$$

$$p_{e_{ij}}^k = 0 \quad \text{on } \Gamma \setminus e_{ij}.$$
The Spectral Harmonically Enriched Multiscale (SHEM) coarse space is then given by

$$V_{\text{SHEM}} := \bigoplus_{e_{ij} \in \Gamma} \text{span} \left\{ p_{e_{ij}}^k : k \leq m_{e_{ij}} \right\} \oplus V_{\text{MsFEM}}.$$

Using this choice, the authors are able to prove an estimate for the condition number of the preconditioned system

$$\kappa \left(M_{\text{SHEM}}^{-1} A \right) \leq C \left(1 + \frac{1}{\lambda_{m+1}} \right),$$

where $$\lambda_{m+1} := \max_{e_{ij} \in \Gamma} \left\{ \lambda_{e_{ij}} \right\}.$$

The authors thus use the bilinear form on the edge (rather than a Schur complement). The eigenvalue problems are small and local, and therefore inexpensive to set up and solve. However, a drawback of this coarse space is that, due to the reduction of the eigenvalue problem to the edges, the coarse space can become large for certain coefficient functions where a much smaller coarse space would be sufficient; cf. section 7, where we observe that this smaller coarse space will be found by the non-economic versions of the new methods described in this paper, i.e., using the eigenvalue problems from subsection 4.1 or subsection 4.2. Of course, if in the economic versions the slab is wide enough then the resulting adaptive method will also be successful. Note that among our methods, only the methods from subsection 4.2 are covered by our theory in section 6.

6. Convergence Analysis for the Overlapping Schwarz method with ACMS Coarse Space. Since the first level of our Schwarz preconditioner is standard, strengthened Cauchy-Schwarz inequalities (Assumption 1) and local stability (Assumption 2) can be assumed; cf. [38].

Assumption 1 (Strengthened Cauchy-Schwarz Inequality). There exist constants $$0 \leq \epsilon_{ij} \leq 1, 1 \leq i, j \leq N$$ such that

$$|a_\Omega \left(R_i^T v_i, R_j^T v_j \right)| \leq \epsilon_{ij} |a_\Omega \left(R_i^T v_i, R_i^T v_j \right)|^{1/2} |a_\Omega \left(R_j^T v_j, R_j^T v_j \right)|^{1/2},$$

for $$v_i \in V^h (\Omega_i')$$ and $$v_j \in V^h (\Omega_j').$$ We denote the spectral radius of the matrix $$\epsilon = (\epsilon_{ij})_{i,j}$$ as $$\rho (\epsilon).$$

Then, the maximum eigenvalue of the Schwarz operator depends on $$\rho (\epsilon),$$ which can be bounded by the coloring constant $$\mathcal{N}^C.$$ One way to obtain the coloring constant $$\mathcal{N}^C$$ is to determine, for each point $$x \in \Omega,$$ the number of overlapping subdomains it belongs to. The maximum of these numbers can be taken as $$\mathcal{N}^C;$$ see, e.g., [38, Section 3.6].

Assumption 2 (Local Stability). There exists an $$\omega > 0$$ such that

$$a_\Omega \left(R_i^T v_i, R_i^T v_i \right) \leq \omega a_i \left(v_i, v_i \right)$$

where $$v_i \in \text{range} \left(P_i \right) \subset V^h (\Omega_i'), 1 \leq i \leq N.$$

Since we use exact local solvers, i.e., $$a_i \left(v_i, v_i \right) = a_\Omega \left(R_i^T v_i, R_i^T v_i \right),$$ we have $$\omega = 1$$ in our case; cf. (16). For the definition of $$P_i,$$ see (17).

To prove an estimate for the convergence of the OS-ACMS preconditioner, we have to prove the existence of a stable decomposition; cf., e.g., [38]. Therefore, we have to provide a suitable coarse interpolation $$I_0$$ into the coarse space

$$V_0 := \bigoplus_{P \in P} \text{span} \left\{ \varphi_P \right\} \oplus \bigoplus_{e \in \Gamma} \text{span} \left\{ v_{k,e} : \lambda_{k,e} \leq \text{tol} \right\},$$

(32)
in particular, into the space $V_{\text{ACMS}}^{\text{tol}−N}$ or $V_{\text{ACMS}−N,k}^{\text{tol}}$. We construct I_0 from a point-wise interpolation
\begin{equation}
I_{\text{MsFEM}} u := \sum_{P \in \Gamma} u(P) \varphi_P
\end{equation}
to the coarse multiscale space V_{MsFEM} (see also (10)) and the projection Π onto the space spanned by the edge-based coupling eigenfunctions; cf. (24).

We start with the proof of a lemma which states the a-stability of the MsFEM interpolation operator in 1D. The semi-norms
\begin{align*}
|u|_{a,\eta}^{2} &:= a_{\eta}^{kh}(u, u) := \int_{\Omega_i} (\nabla u(x))^T A(x) \nabla u(x) \, dx \\
|u|_{a,e}^{2} &:= \bar{a}_{e,i_j} (u, u)
\end{align*}
will be used in the following proofs to shorten the notation, where $\bar{a}_{e,i_j} (u, v)$ is given in (31).

Lemma 2. The MsFEM interpolation operator, which is defined in (33), is stable with respect to the $|\cdot|_{a,e}^{2}$ semi-norm, i.e.,
\begin{equation}
|I_{\text{MsFEM}} v|_{a,e}^{2} \leq |v|_{a,e}^{2} \quad \forall v \in V^h_{\text{0}} (e_{ij}).
\end{equation}

Proof. The MsFEM interpolation is exact in the vertices of the nonoverlapping decomposition, i.e.,
\begin{equation}
I_{\text{MsFEM}} v (P) = v (P)
\end{equation}
for all vertices $P \in \Gamma$. Furthermore, the MsFEM basis functions are defined as discrete harmonic, i.e., energy minimizing, functions on the edges of the decomposition; cf. (11). Therefore, $I_{\text{MsFEM}} v$ is the discrete harmonic extension of the values of v in the vertices to the edges, and thus
\begin{equation}
|I_{\text{MsFEM}} v|_{a,e}^{2} \leq |v|_{a,e}^{2} \quad \forall v \in V^h_{\text{0}} (e_{ij}).
\end{equation}

We define the coarse component of the stable decomposition as
\begin{equation}
u_0 := I_0 u := I_{\text{MsFEM}} u + \Pi (u - I_{\text{MsFEM}} u) \in V_0.
\end{equation}
Using this coarse component, we prove the existence of a stable decomposition; cf. Figure 4 for a graphical representation of the overlapping region Ω_i, δ and the nonoverlapping region Ω_{\circ}^i, which are used for the proofs in this section. In the following proofs, we assume that the edges of the subdomains are straight.

In order to prove the existence of a stable decomposition, the following lemma will be useful.

Lemma 3. Let $u \in V^h (\Omega)$, $u_0 := I_0 u := I_{\text{MsFEM}} u + \Pi (u - I_{\text{MsFEM}} u)$, and $w_{e_{ij}} \in V^h (\Omega_i \cup \Omega_j)$ with
\begin{equation}
w_{e_{ij}} = \begin{cases}
 u - u_0, & \text{on } \delta e_{ij}, \\
 0, & \text{on } \Omega_{\circ}^i \setminus e_{ij}, \\
 \text{piecewise linear/bilinear}, & \text{in } \Omega_{\circ}^i \setminus \Omega_{\circ}^j, \\
 0, & \text{in } \Omega_{\circ}^j.
\end{cases}
\end{equation}
for an edge $e_{ij} = \Omega_i \cap \Omega_j$ and $k = i, j$. Then,
\begin{equation}
|w_{e_{ij}}|_{a,\Omega_i}^{2} \leq \frac{C}{l_{ij}} \left(|u|_{a,\Omega_i}^{2} + |u|_{a,\Omega_j}^{2} \right),
\end{equation}
where $C > 0$ is a constant independent of H, h, and the contrast of the coefficient function.
Fig. 4: In our proof of Theorem 4, we consider a partition of unity corresponding to an overlapping decomposition with overlap h. The overlapping region is called Ω_{i,δ_i} and the nonoverlapping region Ω_i°.

Proof. From the construction of $w_{e_{ij}}$ and a standard inverse inequality, we obtain

$$|w_{e_{ij}}|^2_{a,\Omega_i} \leq C \|u - u_0\|^2_{b,e_{ij}}.$$

Using the properties of the projection Π, cf. Lemma 1, we obtain

$$\|u - u_0\|^2_{b,e_{ij}} = \|u - I_{\text{MsFEM}} u - \Pi (u - I_{\text{MsFEM}} u)\|^2_{b,e_{ij}} \leq \frac{1}{tol} \left| |u - I_{\text{MsFEM}} u - \Pi (u - I_{\text{MsFEM}} u)|^2_{a,\ast,e_{ij},\eta^h_i} \right| \leq \frac{1}{tol} \left| |u - I_{\text{MsFEM}} u|^2_{a,\ast,e_{ij},\eta^h_i} \right|.$$

We can decompose the semi-norm into parts belonging to Ω_i and Ω_j, i.e., $\eta^h_i := \eta^h_{ij} \cap \Omega_i$ and $\eta^h_j := \eta^h_{ij} \cap \Omega_j$, respectively, and obtain

$$|u - I_{\text{MsFEM}} u|^2_{a,\ast,e_{ij},\eta^h_i} = |u - I_{\text{MsFEM}} u|^2_{a,\ast,e_{ij},\eta^h_i} + |u - I_{\text{MsFEM}} u|^2_{a,\ast,e_{ij},\eta^h_j}.$$

Next, we estimate each part separately and obtain

$$|u - I_{\text{MsFEM}} u|^2_{a,\ast,e_{ij},\eta^h_i} = \left| \mathcal{H}_{e_{ij}} \rightarrow \eta^h_i (u - I_{\text{MsFEM}} u) \right|^2_{a,\eta^h_i} \leq C h |u - I_{\text{MsFEM}} u|^2_{a,e_{ij}} \leq C h |u|^2_{a,e_{ij}} \leq C \left(|u|^2_{a,\eta^h_i} + |u|^2_{a,\eta^h_j} \right) \leq C \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right).$$

In particular, the energy minimality of the discrete harmonic extension is used in the second step, and the a-stability of the 1D MsFEM interpolation operator, cf. Lemma 2, is used in the third step.

Summing over all terms, we finally obtain

$$|w_{e_{ij}}|^2_{a,\Omega_i} \leq \frac{C}{tol} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right).$$

Now, we are able to prove the existence of a stable decomposition
Theorem 4 (Stable Decomposition). For each $v \in V = V^h(\Omega)$, there exists a decomposition $u = \sum_{i=0}^{N} R_i^T u_i$ with $u_i \in V_i = V^h(\Omega'_i)$ such that

$$
\sum_{i=0}^{N} |u_i|^2_{a,\Omega'_i} \leq C_0^2 |u|^2_{a,\Omega}
$$

where $C_0^2 = C \left(1 + \frac{1}{h^2}\right)$.

Proof. We first consider the estimate of the coarse component and proceed subdomain by subdomain. Using Lemma 3, and the fact that u_0 is discrete harmonic on each subdomain Ω_i, we obtain

$$
|u_0|^2_{a,\Omega_i} \leq 2 \left(|\mathcal{H}_{\Omega_i} \to \Omega_i, (u)|^2_{a,\Omega_i} + |\mathcal{H}_{\partial \Omega_i} \to \Omega_i, (u - u_0)|^2_{a,\Omega_i} \right)
$$

$$
\leq 2 \left(|u|^2_{a,\Omega_i} + C \sum_{e_{ij} \subset \partial \Omega_i} |w_{e_{ij}}|^2_{a,\Omega_i} \right)
$$

$$
\leq 2 |u|^2_{a,\Omega_i} + C \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right)
$$

(34)

Now, we consider the local components $u_i := I^h(\theta_i (u - u_0))$ based on the partition of unity $\{\theta_i\}_{i=1}^N$; see, e.g., [38, Lemma 3.4], where

$$
\theta_i(x_j) := \frac{\text{dist} \left(x_j, \partial \Omega_i \right)}{\sum_{x_j \in \Omega_k} \text{dist} \left(x_j, \partial \Omega_k \right)}
$$

and $\{\Omega_i\}_{i=1}^N$ is an overlapping decomposition with overlap h corresponding to the nonoverlapping decomposition $\{\Omega_i\}_{i=1}^N$. Then, $u = \sum_{i=0}^{N} R_i^T u_i$ and

$$
|u_i|^2_{a,\Omega'_i} = |u_i|^2_{a,\Omega'_i \setminus \Omega_i} + |u_i|^2_{a,\Omega_i \setminus \Omega_i} + |u_i|^2_{a,\Omega_i}.
$$

Now, analogously to (34), we have

$$
|u_i|^2_{a,\Omega'_i} \leq |u - u_0|^2_{a,\Omega_i} \leq 2 |u|^2_{a,\Omega_i} + 2 |u_0|^2_{a,\Omega_i}
$$

$$
\leq 2 |u|^2_{a,\Omega_i} + 2 \left(2 |u|^2_{a,\Omega_i} + C \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right) \right)
$$

$$
\leq 6 |u|^2_{a,\Omega_i} + C \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right).
$$
Furthermore, we have
\[
|u_i|^2_{a,\Omega_i} \leq 2|u_i - (u - u_0)|^2_{a,\Omega_i} + 2|u - u_0|^2_{a,\Omega_i}
\]
\[
\leq C \sum_{e_{ij} \subset \partial \Omega_i} |w_{e_{ij}}|^2_{a,\Omega_i} + 4|u|^2_{a,\Omega_i} + 4|u_0|^2_{a,\Omega_i}
\]
\[
\leq \frac{C}{tol} \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right)
\]
\[
+ 4|u|^2_{a,\Omega_i} + 4 \left(2|u|^2_{a,\Omega_i} + \frac{C}{tol} \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right) \right)
\]
\[
\leq 12 |u|^2_{a,\Omega_i} + \frac{C}{tol} \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right)
\]

and

\[
|u_i|^2_{a,\Omega_i \setminus \Omega_i} \leq C \sum_{e_{ij} \subset \partial \Omega_i} |w_{e_{ij}}|^2_{a,\Omega_j}
\]
\[
\leq \frac{C}{tol} \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right).
\]

Therefore, we obtain
\[
\sum_{i=0}^{N} |u_i|^2_{a,\Omega} = \sum_{i=1}^{N} \left(|w_0|^2_{a,\Omega_i} + |u_i|^2_{a,\Omega_i \setminus \Omega_i} + |u_i|^2_{a,\Omega_i \setminus \Omega_i} + |u_i|^2_{a,\Omega_i} \right)
\]
\[
\leq \sum_{i=1}^{N} \left(20 |u|^2_{a,\Omega_i} + \frac{C}{tol} \sum_{e_{ij} \subset \partial \Omega_i} \left(|u|^2_{a,\Omega_i} + |u|^2_{a,\Omega_j} \right) \right)
\]
\[
\leq C \left(1 + \frac{1}{tol} \right) |u|^2_{a,\Omega}.
\]

From Theorem 4, we directly obtain a condition number estimate for the pre-conditioned system.

Corollary 5. The condition number of the ACMS two level Schwarz operator is bounded by
\[
\kappa \left(M^{-1}_{ACMS} A \right) \leq C \left(1 + \frac{1}{tol} \right).
\]
The constant C is independent of H, h, and the contrast of the coefficient function A.

Proof. Using Assumption 1 and Assumption 2, we obtain, using standard arguments,
\[
\kappa \left(M^{-1}_{ACMS} A \right) \leq C_0^2 \omega \left(\rho \left(\varepsilon \right) + 1 \right),
\]
where C_0^2 is the constant of the stable decomposition; cf. [38]. Since we use exact solvers on the subdomains, we have $\omega = 1$. From $\rho \left(\varepsilon \right) \leq N^C$ and Theorem 4, we obtain the final estimate.

Let us note that in the numerical experiments considered in section 7, we have $N^C = 4$.

Fig. 5: Discontinuous coefficient function A with different types of channels and inclusions intersecting through the interface. The light blue color corresponds to a coefficient of $A_{\text{min}} = 1.0$ and the dark blue color to a high coefficient of A_{max}; $1/H = 4$.

Table 2: Numerical results for the coefficient function in Figure 5 with varying contrast $A_{\text{max}}/A_{\text{min}}$: tolerance for the selection of the eigenfunctions, iteration counts, condition numbers, and resulting coarse space dimension for different coarse space variants; $1/H = 4$, $H/h = 30$, and $\delta = 2h$; relative stopping criterion $\|r^{(k)}\|_2/\|r^{(0)}\|_2 < 10^{-8}$. The theory new presented in this paper covers the two coarse spaces marked in bold face.

7. Numerical Results. We present numerical results which illustrate the robustness of our overlapping Schwarz method with ACMS coarse space and support our theory. Our numerical experiments also show that the dimension of our adaptive coarse space is usually small, i.e., our iterative method does not degenerate to a direct solver. This is important since, as in other domain decomposition methods with adaptive coarse spaces, the condition number is determined by the user but the dimension of the resulting coarse space is determined by the algorithm and, in general, only known ex post.

We consider the different variants of ACMS coarse spaces in numerical experiments. By $V_{\text{ACMS-D}}^{\text{tol}}$, we denote the method from subsection 4.1, where Dirichlet boundary conditions are used. By $V_{\text{ACMS-N}}^{\text{tol}}$, we denote the method described in subsection 4.2, where Neumann boundary conditions are used. In both cases tol is the user-defined tolerance. If mass lumping is used, we denote the space by $V_{\text{ACMS-\bar{D}}}^{\text{tol}}$ or $V_{\text{ACMS-\bar{N}}}^{\text{tol}}$, respectively.

For the Neumann versions, we also consider variants using harmonic extensions only on slabs of width h; see subsection 4.2. These are denoted as $V_{\text{ACMS-\bar{N},1}}^{\text{tol}}$.
Fig. 6: Discontinuous coefficient functions A: circles and a channel intersecting several edges (left); comb-shaped inclusions intersecting the horizontal edges (right). The light blue color corresponds to a coefficient of $A_{\text{min}} = 1$ and the dark blue color to a high coefficient of A_{max}; $1/H = 4$.

<table>
<thead>
<tr>
<th>V_0</th>
<th>$\text{Coeff. function } A$ from Figure 6 (left)</th>
<th>$\text{Coeff. function } A$ from Figure 6 (right)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tol</td>
<td>it.</td>
</tr>
<tr>
<td>$V_{\text{M-FEM}}$</td>
<td>-</td>
<td>318</td>
</tr>
<tr>
<td>$V_{\text{tol}}^{\text{ACMS-D}}$</td>
<td>10^{-1}</td>
<td>33</td>
</tr>
<tr>
<td>$V_{\text{tol}}^{\text{ACMS-D}}$</td>
<td>$2 \cdot 10^{-1}$</td>
<td>33</td>
</tr>
<tr>
<td>$V_{\text{tol}}^{\text{ACMS-N}}$</td>
<td>10^{-2}</td>
<td>36</td>
</tr>
<tr>
<td>$V_{\text{tol}}^{\text{ACMS-N}}$</td>
<td>10^{-2}</td>
<td>36</td>
</tr>
<tr>
<td>$V_{\text{tol}}^{\text{SHEM}}$</td>
<td>10^{-3}</td>
<td>28</td>
</tr>
<tr>
<td>$V_{\text{tol}}^{\text{ACMS-R}}$</td>
<td>2.0</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 3: Results for the coefficient functions in Figure 6: tolerance for the selection of the eigenfunctions, iterations counts, condition numbers, and resulting coarse space dimension for different coarse space variants; $1/H = 4$, $H/h = 30$, and $\delta = 2h$; maximum coefficient $A_{\text{max}} = 10^8$; relative stopping criterion $\|r^{(k)}\|_2 / \|r^{(0)}\|_2 < 10^{-8}$.

when lumping the mass matrix, $V_{\text{tol}}^{\text{ACMS-N}}$.$1$.

In the method $V_{\text{tol}}^{\text{ACMS-N}}$.$1$ (cf. subsection 4.2), the left hand side of the eigenvalue problem is assembled using discrete harmonic functions supported only on narrow slabs of width h, cf. Figure 2, and in the methods $V_{\text{tol}}^{\text{SHEM}}$ and $V_{\text{tol}}^{\text{ACMS-R}}$ the work for the assembly and construction of the left hand sides of the eigenvalue problems corresponds only to the degrees of freedom on the open edge. Therefore, we denote these four approaches as “economic”. Let us note that the right hand side in all eigenvalue problems is computed by a one-dimensional integral over the edge and is therefore not affected.

In the non-economic approaches (i.e., $V_{\text{tol}}^{\text{ACMS-N}}$, $V_{\text{tol}}^{\text{ACMS-N}}$.$1$, $V_{\text{tol}}^{\text{ACMS-D}}$, and $V_{\text{tol}}^{\text{ACMS-D}}$.$1$), harmonic extensions to the complete subdomains are used, leading to a higher computational cost. However, the use of the coefficient information on the complete subdomain can be beneficial: the resulting coarse space can be significantly smaller; see Table 3.

In all tables, we highlight in bold face the methods $V_{\text{tol}}^{\text{ACMS-N}}$ and $V_{\text{tol}}^{\text{ACMS-N}}$.$1$, which are supported by our theory; see section 6.
Fig. 7: Discontinuous coefficient function A with many connected channels intersecting the interface. The light blue color corresponds to a coefficient of $A_{\text{min}} = 1.0$ and the dark blue color to a high coefficient of $A_{\text{max}}; 1/H = 4$.

Table 4: Results for the coefficient functions in Figure 7: tolerance for the selection of the eigenfunctions, iterations counts, condition numbers, and resulting coarse space dimension for different coarse space variants; $1/H = 4$, $H/h = 40$, and $\delta = 2h$; maximum coefficient $A_{\text{max}} = 10^8$; relative stopping criterion $\|r^{(k)}\|_2 / \|r^{(0)}\|_2 < 10^{-8}$.

<table>
<thead>
<tr>
<th>V_0</th>
<th>Coeff. function A from Figure 7 (left)</th>
<th>τ_{tol}</th>
<th>κ</th>
<th>dim V_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{MsFEM}</td>
<td></td>
<td>460</td>
<td>$1.94 \cdot 10^8$</td>
<td>9</td>
</tr>
<tr>
<td>$V_{\text{tol ACSM-\bar{D}}}$</td>
<td></td>
<td>10^{-2}</td>
<td>45</td>
<td>23.02</td>
</tr>
<tr>
<td>$V_{\text{tol ACSM-\bar{N}}}$</td>
<td></td>
<td>10^{-2}</td>
<td>47</td>
<td>22.95</td>
</tr>
<tr>
<td>$V_{\text{tol ACSM-\bar{N},1}}$</td>
<td></td>
<td>10^{-2}</td>
<td>21</td>
<td>5.14</td>
</tr>
<tr>
<td>V_{SHEM}</td>
<td></td>
<td>10^{-2}</td>
<td>23</td>
<td>5.03</td>
</tr>
<tr>
<td>$V_{\text{tol ACSM-\bar{R}}}$</td>
<td></td>
<td>2.0</td>
<td>26</td>
<td>6.22</td>
</tr>
</tbody>
</table>

As described in subsection 4.3, all methods which are denoted by a bar, i.e., $V_{\text{tol ACSM-\bar{D}}}, V_{\text{tol ACSM-\bar{N}}},$ and $V_{\text{tol ACSM-\bar{N},1}},$ use a lumped mass matrix. Here, the eigenvalue problems can be transformed into standard eigenvalue problems with small computational effort, which leads to another reduction of computational work; this holds true also for the SHEM coarse space. However, we observe that lumping the mass matrix does not significantly affect the performance of the method; cf. Table 2, Table 3, Table 4, and Table 5.

In Table 2, for the coefficient function illustrated in Figure 5, we compare the different approaches of adaptive coarse spaces. We see that for this problem the MsFEM coarse space V_{MsFEM} is not sufficient: the condition number and the number of iterations is large since the MsFEM coarse space cannot cope with several heterogeneities intersecting through an edge. For all other methods, a small condition number κ (below 10) of the preconditioned operator can be obtained (if the tolerance τ_{tol} is chosen appropriately) resulting in a number of approximately 20 conjugate gradient iterations. We also observe that all methods are robust with respect to variations in the contrast of the coefficient function. Note that the size of the coarse space is identical in all cases of adaptive coarse spaces.

At first sight, the results are similar for the coefficient functions depicted in Figure 6 (left and right); see Table 3. However, now the dimensions of the coarse
Overlapping Schwarz with ACMS Coarse Spaces

Table 5: Results for the coefficient function in Figure 5: iterations counts, condition numbers, and resulting coarse space dimension for different coarse space variants; \(1/H = 4\), \(H/h = 30\), and \(\delta = 2h\); maximum coefficient \(A_{\text{max}} = 10^8\); relative stopping criterion \(\frac{\|r^{(k)}\|_2}{\|r^{(0)}\|_2} < 10^{-8}\). Relative tolerance of \(10^{-5}\) for LobPCG; the tolerance for the selection in the SHEM coarse space is set to \(10^{-3}\).

<table>
<thead>
<tr>
<th>(V_{0})</th>
<th>1 LobPCG it.</th>
<th>2 LobPCG it.</th>
<th>Direct eigensolver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>it.</td>
<td>(\kappa)</td>
<td>dim (V_{0})</td>
</tr>
<tr>
<td>(V_{10}^{\text{ACMS-D}})</td>
<td>23</td>
<td>4.75</td>
<td>69</td>
</tr>
<tr>
<td>(V_{10}^{\text{ACMS-N}})</td>
<td>22</td>
<td>4.43</td>
<td>69</td>
</tr>
<tr>
<td>(V_{10}^{\text{ACMS-N,1}})</td>
<td>21</td>
<td>4.33</td>
<td>69</td>
</tr>
<tr>
<td>(V_{\text{SHEM}})</td>
<td>20</td>
<td>4.33</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 6: Results for the \(V_{10}^{\text{ACMS-N}}\) coarse space with varying \(H/h\): iterations counts, condition numbers, and resulting coarse space dimension for different coarse space variants; \(1/H = 4\) and \(\delta = 2h\); maximum coefficient \(A_{\text{max}} = 10^8\); relative stopping criterion \(\frac{\|r^{(k)}\|_2}{\|r^{(0)}\|_2} < 10^{-8}\).

<table>
<thead>
<tr>
<th>(H/h)</th>
<th>Coeff. function (A) from Figure 5</th>
<th>Coeff. function (A) from Figure 6 (left)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\kappa)</td>
<td>dim (V_{0})</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>5.03</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>4.30</td>
</tr>
<tr>
<td>30</td>
<td>22</td>
<td>4.43</td>
</tr>
<tr>
<td>40</td>
<td>21</td>
<td>4.82</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
<td>5.28</td>
</tr>
<tr>
<td>60</td>
<td>23</td>
<td>5.76</td>
</tr>
<tr>
<td>70</td>
<td>24</td>
<td>6.25</td>
</tr>
<tr>
<td>80</td>
<td>25</td>
<td>6.75</td>
</tr>
</tbody>
</table>

spaces differ. In the methods, where the construction of the eigenvalue problem is economic, the coarse space is larger. The reason is that, e.g., for the ring-like structure in Figure 6 (left), these methods cannot detect that the ring is a connected structure and thus a single eigenvector is sufficient. This is even more pronounced for the comb-like structures in Figure 6 (right).

To investigate this effect further, we have considered the coefficient function in Figure 7, where on each edge a comb-like structure is placed in addition to a small inclusion. Here, for each horizontal edge, the non-economic coarse spaces allows two eigenvalues to the coarse space resulting in a dimension of 9 + 24 = 33. On the other hand, for the economic versions (which includes \(V_{\text{SHEM}}\)), for each horizontal edge 7 eigenvectors are used. As a result, the coarse space is larger by a factor of almost 4 for the economic versions; see Table 4. It is clear that for an (artificial) example of a very fine comb on a very fine grid the coarse space constructed from the economic versions can be larger by an arbitrary factor compared to our coarse spaces \(V_{\text{ACMS-D}}^{\text{tol}}\) and \(V_{\text{ACMS-N}}^{\text{tol}}\) (or the corresponding lumped versions \(V_{\text{ACMS-D}}^{\text{tol}}\) and \(V_{\text{ACMS-N}}^{\text{tol}}\)).

It is clear that the solution of the eigenvalue problems can be costly. First, note that we need to solve only standard eigenvalue problems instead of generalized eigenvalue problems. In particular, for the versions with a lumped mass matrix this is computationally inexpensive; see subsection 4.3.

To show how the computational cost can be reduced further, in Table 5, we
show numerical experiments, where the eigenvalue problems are solved approxi-
mately by using only one or two iterations of LobPCG [30] using the Cholesky
decomposition of the Schur complement matrix as a preconditioner: instead of the
eigenfunctions corresponding to the smallest eigenvalues of (23), we solve for the
smallest eigenvalues of

$$-B_{e_{ij}}V = \lambda S_{e_{ij}}V$$

and use the inverse of $S_{e_{ij}}$ as the preconditioner in the LobPCG iteration. The
results show that a single iteration of LobPCG is sufficient and that the use of two
iterations gives the same results as a direct eigensolver (LAPACK); see Table 5.
The cost for approximating the eigenvectors thus is comparable to a Cholesky de-
composition of the Schur complement $S_{e_{ij}}$ on the edge.

In Table 6, the results for the $V_{\text{tol}}^{\text{ACMS-N}}$ method are depicted for a varying
number of elements per subdomain, i.e., for a growing H/h. We observe that the
dimension of the coarse space is robust with respect to different H/h, and for the
coefficient function from Figure 5, we even observe that the number of iterations
and the condition number increase only slightly.

In some methods, the choice of the tolerance tol is more difficult than in others.
In the methods using Neumann boundary conditions (i.e., $V_{\text{tol}}^{\text{ACMS-N}}$, $V_{\text{tol}}^{\text{ACMS-N,1}}$, $V_{\text{tol}}^{\text{ACMS-S,1}}$, $V_{\text{tol}}^{\text{HEM}}$) there is a clear spectral gap, and we observe that
the tolerance tol can be chosen relatively easy, for different values of H/h; in our
experiments, we can indeed use $tol = 10^{-2}$ for all our computations. However, for
the methods using Dirichlet conditions the choice is more difficult since the gap in
the spectrum is smaller.

Let us note that, currently, in the construction of the adaptive coarse space, we
have not taken advantage of the fact that the MsFEM space also removes certain
bad eigenvalues. Therefore, in the best case, the size of our coarse could be reduced
by one, for each edge with a heterogeneity.

The method described here for overlapping domain decompositions is related
(as well as the other approaches [15, 16, 11, 17]) to the approach in [28] for FETI-DP
and BDDC methods, where also a Poincaré inequality is replaced by an eigenvalue
problem. However, for nonoverlapping domain decomposition, to obtain robustness
for certain cases, an additional eigenvalue problem is needed to replace an extension
theorem.

8. Conclusion. We have introduced an overlapping Schwarz method using an
ACMS-based coarse space. This coarse space uses eigenvalue problems on edges.
We then have shown that the condition number of the method can be controlled
independently of the heterogeneities in the problem, and, finally, we have provided
supporting numerical experiments. We have observed that our coarse space can
be smaller by a large factor compared to other competing coarse spaces for special
coefficient functions while still remaining computationally inexpensive. Indeed, we
have also shown numerically that the approximation of the local eigenvectors by a
single iteration of preconditioned LobPCG can be sufficient. Among the competing
approaches which generate small coarse spaces, to the best of our knowledge, our
approach uses eigenvalue problems with the smallest dimension.

REFERENCES

ideas, results and perspective, International Journal of Computational Methods, 1 (2004),

