Amtliche Bekanntmachungen der TU Bergakademie Freiberg

Nr. 15, Heft 2 vom 24. Juni 2011

Modulhandbuch

für den

Internationalen Masterstudiengang

Computational Materials Science

INHALTSVERZEICHNIS

ANPASSUNG VON MODULBESCHREIBUNGEN	3
CONTINUUM MECHANICS	
DENSITY FUNCTIONAL THEORY FOR MATERIALS SCIENCE	5
DISLOCATION THEORY AND DISCRETE ELEMENT METHOD	6
EINFÜHRUNG IN DIE FACHSPRACHE ENGLISCH FÜR INGENIEURWISSENSCHAFTEN	
EXPERIMENTAL METHODS	9
FRACTURE MECHANICS COMPUTATIONS	11
FUNDAMENTAL OF MICROSTRUCTURES	
GERMAN BASIC LEVEL I A	
INTRODUCTION TO HIGH PERFORMANCE COMPUTING AND OPTIMIZATION	14
INTRODUCTION TO SCIENTIFIC PROGRAMMING	15
MASTER THESIS COMPUTATIONAL SCIENCE	
MATERIAL PROPERTIES	
MECHANICS OF MATERIALS	19
NUMERICAL ANALYSIS OF DIFFERENTIAL EQUATIONS	
PERSONAL PROGRAMMING PROJECT.	
PLASTICITY	
QUANTUM THEORY I	
RESEARCH SEMINAR AND JOURNAL CLUB	
SELECTED TOPICS OF SOLID STATE PHYSICS	
SELECTED TOPICS OF THE FINITE ELEMENT METHOD	
SELECTED TOPICS OF THE MOLECULAR DYNAMICS METHOD	
STOCHASTIC METHODS FOR MATERIALS SCIENCE	
THERMODYNAMICS OF MATERIALS	

Anpassung von Modulbeschreibungen

Zur Anpassung an geänderte Bedingungen können folgende Bestandteile der Modulbeschreibungen vom Modulverantwortlichen mit Zustimmung des Dekans geändert werden:

- 1. "Code/Daten"
- 2. "Verantwortlich"
- 3. "Dozent(en)"
- 4. "Institut(e)"
- 5. "Qualifikationsziele/Kompetenzen"
- 6. "Inhalte", sofern sie über die notwendige Beschreibung des Prüfungsgegenstandes hinausgehen
- 7. "Typische Fachliteratur"
- 8. "Voraussetzungen für die Teilnahme", sofern hier nur Empfehlungen enthalten sind (also nicht zwingend erfüllt sein müssen)
- 9. "Verwendbarkeit des Moduls"
- 10. "Arbeitsaufwand"

Die geänderten Modulbeschreibungen sind zu Semesterbeginn durch Aushang bekannt zu machen.

Code/Dates	KOTM MA Nr.3120	Version: 02.12.10	Start: SS 2012
Nomo			
Name			(D
Responsible	Last Name Kuna First Name	e Meinhard Title Pro	f. Dr.
Lecturer(s)	Last Name Kuna First Name	e Meinhard Title Pro	f. Dr.
Institute(s)	Mechanics and Fluid-Dynam	ics	
Duration	1 semester		
Competencies	Students will get familiar with the fundamentals of continuum mechanics of three-dimensional bodies under large deformations.		
Contents	Most important ingredients are: tensor algebra and analysis, Eulerian and Lagrangian description, kinematics of continua in large deformations, definition of various measures of stretch and strain, dynamics of continua, generalizes stress tensors, balance laws (mass, momentum, energy, entropy), material theory		
Literature	P. Haupt: Continuum Mechanics and Theory of Materials, Springer, 2000		
Types of Teaching	Lecture (2 SWS); Exercise (1 SWS). Lectures will be given in English.		
Pre-requisites	Basic knowledge in theoretical mechanics		
Applicability	All programs that require sound knowledge of continuum mechanics, such as Mechanical Engineering, Geo-Engineering, Vehicle Construction and Materials Technology.		
Frequency	Every summer semester.		
Requirements for Credit Points	Oral exam (45 minutes)		
Credit Points	The course has a value of 4 credit points.		
Grade	The corresponding mark is the result of the oral examination.		
Workload	The course requires 120 hours split into 45 hours of personal attendance and 75 hours of private study.		

Code/Dates	DFT. MA .Nr. 3205	Version: 02.12.10	Start: SS 2012
Name	Density functional theory for materials science		
Responsible	Last Name Kortus First Name Jens Title Prof. Dr. rer. Nat. habil.		
Lecturer(s)	Last Name Kortus First Name Jens Title Prof. Dr. rer. Nat. habil.		
Institute(s)	Theoretical Physics		
Duration	1 semester		
Competencies	This course uses the theory and application of atomistic computer simulations based on quantum mechanics to model, understand, and predict the properties of real materials.		
Contents	Specific topics include: density functional theory and the total- energy pseudopotential method; errors and accuracy of quantitative predictions and free energy and phase transitions. The course employs case studies from applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of electronic-structure approaches		
Literature	Martin, R. <i>Electronic Structure: Basic Theory and Practical Methods</i> . Cambridge, UK: Cambridge University Press.		
Types of Teaching	Lecture (2 SWS); Exercise (1 SWS); Practical Exercise (1 SWS). Lectures will be given in English		
Pre-requisites	It is recommended to pass Quantum Theory I		
Applicability	For students interested in atomistic simulations of materials.		
Frequency	Every summer semester		
Requirements for Credit Points	The exam will be oral (duration 30 min) in case of less than 12 students. Otherwise it will be a written exam (duration 120 min). Precondition of the exam will be a certificate from the exercises.		
Credit Points	The course has a value of 6 credit points.		
Grade	The corresponding mark is the	ne result of the exam	ination.
Workload	The course requires 180 hours split into 60 hours of personal attendance and 120 hours of private study including preparation for lessons and exam.		

Code/Dates	DisTheo. MA .Nr. 3206 Version: 02.12.10 Start: WS 2012		
Name	Dislocation Theory and Discrete Element Method		
Responsible	Last Name Groh First Name Sebastien Title Prof. Dr.		
Lecturer(s)	Last Name Groh First Name Sebastien Title Prof. Dr.		
	Last Name Konietzky First Name Heinz Title Prof. DrIng. habil.		
Institute(s)	Mechanics and Fluid-Dynamics		
	Geotechnical		
Duration			
Competencies	 dislocation theory and numerical methods available to model individual and collective properties of dislocations. different techniques based on discrete elements to 		
	perform and evaluate corresponding simulations		
Contents	 Elastic properties of dislocations, Thermal properties of dislocations; Nucleation and Multiplication of Dislocations; Dislocation properties in different crystal structures; Mechanisms of motion; Interaction and reactions between dislocations; Link between dislocation plasticity and crystal plasticity. Modeling dislocation properties in an elastic continuum. modeling strategy (conceptual and numerical model); classification of DEM; contact detection; constitutive laws; discontinuum versus continuum; modelling of granular material; simulation of damage and fracture; practical 		
	hints; applications; practical exercises in 2d and 3d.		
Literature	Dislocation Theory: Theory of Dislocations: Hirth and Lothe Strengthening Mechanisms in Crystal Plasticity (Oxford Series on Materials Modelling): Ali S. Argon Discrete Element Method: Pöschel, T. & Schwager, T. (2005): Computational Granular Dynamics, Springer, 322 p. Jing, L & Stephansson, O. (2007): Fundamentals of Discrete Element Methods for Rock Engineering, Elsevier, 545 p. Darve, F. & Ollivier, JP. (2008): Discrete Modelling of Geomaterials, European J. Env. Civil Eng., 12(2008)7-8, 253 p. UDEC/3DEC-Manuals (2010), Itasca Consulting Group PFC/PFC3D-Manuals (2010), Itasca Consulting Group		
Types of Teaching	Dislocation Theory:		
	Lecture (2 SWS) Exercise (1 SWS) Practical Exercise (1SWS). <u>Discrete Element Method:</u> Lecture (3 x 1,5 h); Exercise (3 x 1,5 h). Lectures are given in English.		
Pre-requisites	Knowledge in the fields of metals; Introduction to Scientific Programming and Fundamental of Microstructures. Fundamentals in mechanics		
Applicability	Students of Master in Computational Materials Science or other students as minor subject. Students of Materials Science and Materials Engineering.		
Frequency	Every winter semester.		
Requirements for Credit Points	Dislocation Theory: Oral examination if less than 5 students. Written examination		

	otherwise. 2 weeks before the examination, a research article will be given to the students. It will give them enough time to analyze the paper (re-demonstrate formula, how the presented data play a role in a multiscale modelling framework, weaknesses of the method) If oral exam: The student will have 30 minutes to present the research article. If written exam: 120 minutes to answer questions related to the research paper. Programming project <u>Discrete Element Method:</u> Report about programming task performed during private study
Credit Points	The course has a value of 7 credit points.
Grade	The corresponding mark is the result of the average between the oral/written examination, the programming project and the DEM report programming task weighted with coefficient 3, 3 and 1, respectively.
Workload	Dislocation Theory: The course required 174 hours split in 60 hours of personal attendance and 114 hours of personal work. The amount of time needed for the preparation and reworking of lectures and exercises is rather large due to the complexity of the topics treated within this course and because of the programming exercises involved. Discrete Element Method: The course requires 36 hours split into 9 hours of personal attendance and 27 hours of private study including the generation of the documentation about the programming task.

Code/Daten	ENWWT1 BA.Nr. 091 Stand: 14.7.09 Start: WS 2009/2010		
Modulname	Einführung in die Fachsprache Englisch für Ingenieurwissenschaften (Werkstoffwissenschaft, Technologiemanagement, Fahrzeugbau: Werkstoffe und Komponenten, Gießereitechnik)		
Verantwortlich	Name Fijas Vorname Liane Titel Dr.		
Dozent(en)	Name Fijas Vorname Liane Titel Dr.		
Institut(e)	Fachsprachenzentrum		
Dauer Modul	2 Semester		
Qualifikationsziele/ Kompetenzen	Der Teilnehmer erwirbt grundlegende Fertigkeiten der schriftlichen und mündlichen Kommunikation in der Fachsprache, einschließlich eines allgemeinwissenschaftlichen und fachspezifischen Wortschatzes sowie fachsprachlicher Grundstrukturen und translatorischer Fertigkeiten.		
Inhalte	Materials Science and Engineering, Numbers and Measuring Units, Elements and Compounds, Metals, Properties and Behaviour of Metals, Stress-Strain Diagram, Extracting Metals/Blast Furnace, Steel Production, Materials for Computers and Communication/Silicon, III-V Compounds, Copper, Ceramics, Synthetic Materials, Composite Materials		
Typische Fachliteratur	English for Materials Science and Materials Technology, 1 st and 2 nd semester,TU Bergakademie Freiberg, 2001		
Lehrformen	Übung (4 SWS, Nutzung des Sprachlabors)		
Voraussetzung für die Teilnahme	Kenntnisse der gymnasialen Oberstufe bzw. der Stufe UNIcert II		
Verwendbarkeit des Moduls	Voraussetzung für Modul UNIcert III - Englisch für Werkstoff- wissenschaften		
Häufigkeit des Angebotes	Beginn jährlich zum Wintersemester.		
Voraussetzung für Vergabe von Leistungspunkten	erfolgreiche Teilnahme am Unterricht (mind. 80%) bzw. adäquate Leistung. Leistungsnachweis durch eine Klausurarbeit (im SS) im Umfang von 90 Minuten		
Leistungspunkte	4		
Note	Die Modulnote ergibt sich aus der Note der Klausurarbeit.		
Arbeitsaufwand	Der Zeitaufwand beträgt 120 h und setzt sich zusammen aus 60 h Präsenzzeit und 60 h Selbststudium. Letzteres umfasst die Vor-und Nachbereitung der Lehrveranstaltung sowie die Klausurvorbereitung.		

Code/Dates	MechTest.MA.Nr. 3207	Version: 03.02.11	Start: WS 2012
Name	Experimental Methods		
Responsible	Last Name Krüger First Name Lutz Title Prof. DrIng.		
Lecturer(s)	Last Name Krüger First Name Lutz Title Prof. DrIng.		
	Last Name Martin First Name Stefan Title DiplIng		
Institute(s)	Materials Engineering		
-	Materials Science		
Duration	1 semester		
Competencies	Students will get familiar w	with:	
	 Experimental Methods to measure the flow stress-, 		
	loading rate temperature and stress state		
	Basic principles and examples of the methods for		
	microstructure analysis (optical and scanning electron		
	microscopy, X-ray diffraction).		
Contents	Most important ingredients are:		
	Experimental Methods: hardness tests, methods to measure the		
	flow stress-behavior und	der tensile, compressiv	ve, bending and
	shear loading, Charpy-im	pact test, drop weight	tear test, Pellini-
	lest, Robertson test. eff	rect of temperature an	d strain rate on
	determine fracture toug	nule and ducile land	der quasi-static
	impact and cycling loadi	ing, fatique testing (W	öhler test / SN-
	curve), multiaxial testing	methods, high strain	rate tests (drop
	weight test, split Hopkinso	on bar)	х I
	Microstructural Analysis	<u>s</u> : Basic principles of s	canning electron
	microscopy and X-ray diffraction; phase identification and		
	quantitative phase analysis, determination of the grain, crystallite		
	size and defect-induced i	microstrains, global and	a local preferred
Litoraturo	Experimental Methods:		
Literature	Dowling Norman E :	Mechanical Rehavior	of Materials –
	Engineering Methods for	r Deformation. Fractur	e. and Fatique.
	2007, Pearson Prentice H	lall	o, and i anguo,
	Meyers, Marc A.: Dynam	nic Behavior of Material	ls, John Wiley &
	Sons, New York, 1994		
	Microstructural Analysis:		
	V. Randle, O. Engler: Introduction to texture analysis,		
	macrotexture, microtexture and orientation mapping, Gordon &		
	V Randle: Microtexture	, determination and	its applications
	Institute of Materials. Long	don. 1992.	
	Klug, Harold P., Alexande	er, Leroy E.: X-ray diffra	ction procedures
	for polycrystalline and ar	morphous materials, N	ew York, Wiley,
	2nd edition 1974.		
Types of Teaching	Lecture (3 SWS); Exercise (0 SWS); Practical Exercise (0 SWS)		
D	Lectures are given in English.		
re-requisites	mechanics advanced	mathematics physics in Mi	for scientists
	crystallography.		
Applicability	Master students in Computational Materials Science. Materials		
	Science and Materials Eng	gineering	,
Frequency	Every winter semester		

Requirements for Credit Points	Joint examination for both parts of the module (Mechanical Testing and Microstructure Analysis). Written exam (120 min) if more than 5 students are present.	
	Otherwise oral examination of 30 min.	
Credit Points	The course has a value of 4 credit points.	
Grade	Grade: The corresponding mark is the result of the examination.	
Workload	The course requires 120 hours split into 45 hours of personal attendance and 75 hours of private study and exam preparation.	

Code/Dates	FMC. MA .Nr. 3208	Version: 02.12.10	Start: SS 2012
Name	Fracture Mechanics Computations		
Responsible	Last Name Kuna First Name Meinhard Title Prof. Dr.		
Lecturer(s)	Last Name Kuna First Name	e Meinhard Title Pro	f. Dr.
Institute(s)	Mechanics and Fluid-Dynam	ics	
Duration	1 semester		
Competencies	Development of an understanding of the fracture of materials and structures from the point of view of a design engineer; students acquire knowledge about theoretical (numerical) stress analysis of cracked structures as well as fracture mechanics concepts of brittle, ductile and fatigue failure. Development of the ability to design fail-safe structures with defects, qualitatively assess the safety and durability as well as estimate the duration of life for subcritical crack growth under (random) in-service loads.		
Contents	Most important ingredients are: fundamentals of fracture mechanics, including fracture mechanics concepts and relevant load parameters for elastic and plastic materials under static as well as cyclic loading. Suitable Finite-Element techniques for the calculation of load parameters are introduced. The application of fracture mechanics concepts to the assessment of safety and durability of structures is demonstrated with the help of real-world examples.		
Literature	Ted L. Anderson: Fracture Mechanics: Fundamentals and Applications, CRC Press 2004 M. Kuna: Numerische Beanspruchungsanalyse von Rissen, FEM in der Bruchmechanik, Vieweg-Teubner 2010		
Types of Teaching	Lecture (2 SWS); Exercise (2 SWS). Lectures will be given in English.		
Pre-requisites	Basic knowledge in theoretical mechanics		
Applicability	All programs that require sound knowledge of the mechanics of materials, such as Vehicle Construction, Mechanical Engineering, Materials Science, and Materials Technology.		
Frequency	Every summer semester.		
Requirements for Credit Points	Written exam (120 minutes)		
Credit Points	The course has a value of 5 credit points.		
Grade	The corresponding mark is the result of the written examination.		
Workload	The course requires 150 hours split into 60 hours of personal attendance and 90 hours of private study.		

Code/Dates	FUNMICRO. MA .Nr. 3209 Version: 02.12.10 Start: WS 2011
Name	Fundamental of Microstructures
Responsible	Last Name Groh First Name Sebastien Title Prof. Dr.
Institute(s)	Mechanics and Fluid-Dynamics
Duration	1 Semester
Competencies	The students will get familiar with the microstructural elements that can be found in real crystalline materials.
Contents	Most important ingredients are: Crystallography, Dislocations, Void and Void growth mechanisms, solute atoms and strengthening mechanisms, Inclusion and Eshelby solution, characteristic length scale associated to each elements.
Literature	Introduction to dislocations: Hull and Bacon Crystal defects and microstructures: Modeling across length scale. Phillips Strengthening Mechanisms in Crystal Plasticity (Oxford Series on Materials Modelling): Ali S. Argon
Types of Teaching	Lecture (2 SWS); Exercise (0 SWS); Practical Exercise (0 SWS). Lectures are given in English.
Pre-requisites	None
Applicability	Students from the Master of Computational Materials Science
Frequency	Every winter semester
Requirements for Credit Points	Oral exam. The students will have 30 minutes to prepare the examination (one question from the lecture notes and one exercise to discuss). They will then have 30 minutes to discuss the topic and present a solution for the exercice. If there are more than 5 students a written exami (120 minutes) will have to be taken.
Credit Points	The course has a value of 3 credit points.
Grade	The corresponding mark is the result of the oral examination.
Workload	The course required 90 hours split in 30 hours of personal attendence and 60 hours of personal work.

Code/Dates	GERBA1A .MA.Nr. 094 Version. 28.04.2010 Start: WT 2010/11		
Name	German Basic Level I A		
Responsible	Surname Keßler First name Gisela Academic Title		
Lecturer(s)	Surname Paul First name Sandra Academic Title Diplom-Lehrerin		
Institute(s)	Fachsprachenzentrum		
Duration	1 Semester		
Competencies	Students are imparted the basics of phonetics, orthography, grammar and vocabulary. They acquire basic knowledge of the German language and listening, speaking, reading and writing skills in general language as well as regional and cultural studies.		
Contents	Communication in everyday life situations (get to know each other, shopping, restaurant, the course of the day, time expressions); grammar: e.g. question asking, numbers, conjugation of verbs, present and past tenses, amounts, plural forms of nouns, compositions		
Literature	Berliner Platz, volume 1 Langenscheidt		
Types of Teaching	Exercise (60 hours)		
Pre-requisites	No previous proficiency in German is required.		
Applicability	The course is particularly appropriate for exchange students and for international students. Prerequisite for the module German Basic Level 1 B		
Frequency	The course is taught in the winter term.		
Requirements for	Successful participation in class (attendance of at least 80%)		
Credit Points	Passed written exam (90 minutes) at the end of the term.		
Credit Points	4		
Grade	The grade earned in the written exam determines the overall grade.		
Workload	The total time budgeted for the course is set at 120 hours, of which 60 hours (4 SWS) are spent in class and the remaining 60 hours are spent on self-studies. Self-studies include preparing before and after the lessons as well as preparing for examination.		

Code/Dates	IHPC. MA.Nr. 3210	Version: 02.12.10 Start: WS 2012	
Name	Introduction to High Performance Computing and Optimization		
Responsible	Last Name Ernst First Name	e Oliver Title Prof. Dr.	
Lecturer(s)	Last Name Ernst First Nam	e Oliver Title Prof. Dr. (every other	
	year)		
	Last Name Knuepfer First N	ame Andreas Title Dr. (TU DD)	
Institute(s)	Numerical Analysis and Optir	nization	
Duration	1 semester		
Competencies	The purpose of this course is to provide an introduction to parallel numerical algorithms and to parallel computing on shared and		
	distributed memory multiprocessor systems.		
Contents	Most important ingredients are:		
	Design and Analysis of Algorithms,		
	Message Passing Interface)		
	Code profiling and tracing (VAMPIRE) and optimization methods.		
	BLAS (Basic Linear Algebra Subprograms),		
	Parallel Equation Solution (dense/sparse systems),		
	LU-Decomposition, Tridiagonal Solvers, Iterative Methods.		
Literature			
Types of Teaching	Lecture (2 SWS); Exercise English.	s (1 SWS). Lectures are given in	
Pre-requisites	Basics of numerical anal	ysis and knowledge in scientific	
	programming.		
Applicability	Master students of the Computational Materials Science program.		
Frequency	Every winter semester.		
Requirements for	Written exam (120 min), if more than 20 students are present;		
Credit Points	alternative oral exam (30 minutes).		
	Precondition of the exam will be a Programming Project.		
Credit Points	The course has a value of 4 of		
Grade	I ne corresponding mark is th	e result of the exam.	
Workload	The work time needed is 120 hours, consisting of 45 hours of		
	iectures, 75 hours self	controlled study including exam	
	preparations and 50 hours to	or the programming project including	

Code/Dates	ISP. MA .Nr. 3211	Version: 07.02	2.11	Start: WS 2011	
Name	Introduction to Scientific	Introduction to Scientific Programming			
Responsible	Last Name Steinbach F	First Name Bern	d Title Prof.	Dr.	
Institute(s)	Informatics	Informatics			
Duration	1 Semester	1 Semester			
Competencies	Students will get familiar with the syntax and semantic of a procedural programming language, an object oriented programming language and the approach of interactive programming. Based on this knowledge, the students must be able to implement interactive programs having a graphical user interface that can be executed in the environment of several operating systems.				
Contents	Most important ingredie with regard to procedura data types and varia operators, control struct library, with regard to object ori objects and classes, er overloading of functions standard library, and with regard to interactive signal, slot, event, proper	nts are: al programming: bles, pointer al ctures, functions ented programm ncapsulation, acc s an operators, f e programming: erty, graphical us	nd arrays, s, structures ing: cess rights, i type casting ser interface.	expressions, statements, , functions of a standard nheritance, polymorphism, , templates, functions of a	
Literature	Kernighan, Ritchie: The – ANSI C, ISBN 01311 Stroustrup: The C++ 0201700735; Blanchette, Summerfiel official C++/Qt book, IS	C Programming 103628; Programming d: C++ GUI Prog BN 0132354160;	Language (Language: gramming wi	2nd Edition) Special Edition, ISBN th Qt 4 (2nd Edition) - The	
Types of Teaching	Lecture (2 SWS); Exercingiven in English.	sise (2 SWS); Pra	actical Exerc	sise (0 SWS). Lectures are	
Pre-requisites	Basic knowledge in mat	hematics for an	university st	udy	
Applicability	Study courses that need	d a basic knowle	dge in progr	amming	
Frequency	Every winter semester				
Requirements for Credit Points	Written exam (120 minu	ites) or programi	ming projects	S.	
Credit Points	The course has a value	of 6 credit points	S.		
Grade	The corresponding map rogramming projects.	ark is the resul	It of the w	ritten examination or the	
Workload	The course requires 18 120 hours of private stu	0 hours split into dv.	60 hours o	f personal attendance and	

Cade/Dates	MaaThaaia MA Nr. 2212	Varaian: 02 12 10	Start: SS 2012
Code/Dates	Mastriesis.MA.Nr. 3212	version. 02.12.10	Start. 55 2012
Name	Master Thesis Computatio	nal Science	
Responsible	All Professors from the CM	1S program	
Lecturer(s)	None		
Institute(s)	None		
Duration	1 semester		
Competencies	The objective of the ma	aster thesis is to gi	ve the students the
	opportunity to apply the kn	lowledge acquired du	ring their studies on a
	research project.		
Contents	Not Applicable		
Literature	Not Applicable		
Types of Teaching	Not Applicable		
Pre-requisites	all modules of the first and second semester except Research		
	Seminar and Journal Club		
Applicability	Students from the Master of Computational Materials Science		
Frequency	Not Applicable		
Requirements for	A written document, a de	efense of 20 minutes	s and 10 minutes of
Credit Points	questions		
	Approval of the examina	tion committee of C	MS that the master
	thesis is sufficient.		
Credit Points	The course has a value of	30 credit points.	
Grade	The corresponding mark is	s the result of the def	ence and the master
	thesis document weighted	with coefficient 1 and	3, respectively.
Workload	The total time budget for	this module is set at	900 hours and is all
	spent as an intern a resea	rch aroup.	

Code/Dates	MatProp.MA.Nr. 3213	Version: 03.02.11	Start: WS 2011	
Name	Material Properties			
Responsible	Last Name Biermann Fir	st Name Horst Title Pro	f. DrIng	
Lecturer(s)	Last Name Weidner Firs	t Name Anja Title Dr.Ing	g. (Metals)	
	Last Name Meyer First I	Name D.C. Title Prof. Dr	•	
	(Semiconductors)			
Institute(s)	Materials Engineering (M	etals)		
	Experimental Physics			
Duration	1 semester			
Competencies	Students will get familiar	with:		
	(i) metallic materials (fe	rrous materials, non-feri	rous metals, light	
	metals, high-temperature metals), their microstructure and			
	mechanical properties as well as heat treatment. Focus is given to			
	plastic deformation and failure. The module will enable the			
	students to differentiate the different groups of metallic			
	(ii) semiconductors (pr	ocesses within semicono	ductor devices	
	and the quantitative desc	ription of these processe	es as well as the	
	basis of application and o	lesign principles of semi	conductor	
	devices)			
Contents	Most important ingredients are:			
	Metallic Materials:			
	 renous metals (plain carbon steels, high-alloyed steels, cast irons); 			
	 Non-ferrous metals (e.g. copper_nickel) 			
	Light metals (aluminum, titanium, magnesium)			
	High-temperature alloys (superalloys, intermetallic alloys)			
	Semiconductors:			
	Density and transport	of charge carriers in	thermodynamic	
	equilibrium, doping, effects of impurities like traps, recombination			
	centers, lite-time of carriers, diffusion length, p-n-junctions and			
	applications, diodes, junction transistors, sensors, photovoltaic			
	elements, metal-semiconductor contacts and applications;			
Literature	Metallic Materials:			
Entoration	M. F. Ahby, D.R.H. Jo	nes, Engineering mate	rials 2, 2 nd ed.,	
	Butterworth-Heinemann,	Oxford, 1998		
	James F. Shackelford,	Introduction to Materi	als Science for	
	Engineers, 7 th ed. Addiso	n Wesley., 2009	atata nhusiaa far	
	Semiconductors: Stand	ard references of solid	state physics for	
	physicists (e. a. Ch. Kit	tel. Introduction to Soli	d State Physics	
	S.M.Sze: Semiconductor	Devices)		
Types of Teaching	Lecture (4 SWS); Exerci	se (0 SWS); Practical E	xercise (0 SWS)	
	decomposed as follow:			
	Metallic Materials: 2/0/0			
	Semiconductors: 2/0/0			
Pre-requisites	Basic fundamentals of ph	iysics, chemistry and sol		
Applicability	Students of Master in C	omputational Materials	Science or other	
	Autorials Engineering	CI. SIUDENIS OF MATERIA	als Science and	
Frequency	Every winter semester			

Requirements for	This module has 2 exams, one for each materials class.		
Credit Points	Metallic Materials:		
	Written exam, 90 – 120 min, if more than 5 students are present.		
	Otherwise oral exam of 30 min.		
	Semiconductors: Oral exam (45-60 minutes, up to ten		
	participants) or written exam (90-120 minutes).		
Credit Points	The course has a value of 6 credit points.		
Grade	The corresponding mark is the result of two examinations		
	averaged with the weights 1/2 and 1/2.		
Workload	The course requires 180 hours split into 60 hours of personal		
	attendance and 120 hours of private study.		

Codo/Datas	WERKMEC BA Nr 253	Varsion: 02 12 10	Start: W/S 2011
Coue/Dales	Mashaniaa af Matariala	VEI3IUII. UZ. 12. 10	
Name	Mechanics of Materials		
Responsible	Last Name Kuna First Name Meinhard Title Prof. Dr.		
Lecturer(s)	Last Name Kuna First Name	e Meinhard Title Pro	f. Dr.
Institute(s)	Mechanics and Fluid-Dynami	ics	
Duration	1 semester		
Competencies	Development of an understanding of the deformation and failure mechanisms of technological materials; students will get familiar with elastic, plastic, viscous, viscoelastic and viscoplastic behaviors of materials; development of the ability to assess the behavior of materials and to design structures accordingly.		
Contents	Most important ingredients are: continuum mechanics foundations of deformation and failure, rheological models for elastic, plastic, viscous, viscoelastic, and viscoplastic behavior; failure theories / criteria for multiaxial loading; introduction to fracture and damage mechanics		
Literature	J. Lemaitre and JL. Chaboche: Mechanics of Solid Materials, Cambridge University Press,2000		
Types of Teaching	Lecture (2 SWS); Exercise (2 SWS); Practical Exercise (0 SWS). Lectures are given in English		
Pre-requisites	Basic knowledge in theoretic	al mechanics	
Applicability	All programs that require sound knowledge of mechanics of materials, such as Materials Science, Materials Technology, Vehicle Construction and Mechanical Engineering.		
Frequency	Every winter semester		
Requirements for Credit Points	Written exam (120 minutes)		
Credit Points	The course has a value of 6 of	credit points.	
Grade	The corresponding mark is the result of the written examination.		
Workload	The course requires 180 hours split into 60 hours of personal attendance and 120 hours of private study.		

Code/Dates	NADE. MA .Nr. 3214	Version: 02.12.10	Start: SS 2012
Name	Numerical Analysis of Differe	ntial Equations	
Responsible	Last Name Ernst First Name	e Oliver Title Prof. D	r.
Lecturer(s)	Last Name Ernst First Name	e Oliver Title Prof. D	r.
Institute(s)	Numerical Analysis and Optir	nization	
Duration	1 semester		
Competencies	Students are introduced to fur numerical solution of ordinary	ndamental technique and partial different	es for the tial equations.
Contents	ODEs: Euler methods, Runge Rutta Methods, Linear Multistep Methods, Stability, Stiffness; PDEs: Finite Difference techniques, time stepping, von Neumann stability analysis		
Literature	Finite Difference Methods for Ordinary and Partial Differential Equations von Randy Levegue, University of Washington		
Types of Teaching	Lecture (2 SWS); Exercise (1 SWS) Practical Exercise (0 SWS). Lectures are given in English		
Pre-requisites	Advanced mathematics course for scientists and engineers. Some familiarity with the theory or applications of differential equations is helpful		
Applicability	Students of all Engineering programs requiring numerical methods for differential equations		
Frequency	Every summer semester.		
Requirements for Credit Points	Written exam (2 hours)		
Credit Points	The course has a value of 3 of	credit points.	
Grade	The corresponding mark is th	e result of the writte	n examination
Workload	The course requires 90 hours split into 45 hours of personal attendance and 45 hours of private study.		

Code/Dates	PP.MA.Nr. 3215	Version: 02.12.10	Start: WS 2012
Name	Personal Programming	g Project	
Responsible	Last Name Groh First	Name Sebastien Titl	e Prof. Dr.
Lecturer(s)	Last Name Groh First	Name Sebastien Titl	e Prof. Dr.
	Last Name Kortus First Name Jens Titel Pr Dr		
	Last Name Mühlich First Name Uwe Titel Dr		
Institute(s)	Mechanics and Fluid-D	Dynamics	
	Theoretical Physics		
Duration			
Competencies	I he students will deve	elop and document the	en own numerical tool
	Molecular Dynamics	Finite Flements Metho	d) Furthermore they
	will use it to calculate of	one material property of	of their choice.
Contents	Most important ingred	ients are: Developing	the tool, commenting
	the source file, documentation and example to calculate		
	mechanical behavior or physical properties.		
Literature	None		
Types of Teaching	By the end of the first semester, the students will have to decide		
	first serve, 1/3 of the students will work on FEM. 1/3 on MD and		
	the last 1/3 on DFT. A supervisor of the project will be assigned to		
	the students.		
	During the third semester, the students will have consultation		
	meetings with their supervisor to discuss the roadblocks and the		
	advancement of the pr	oject.	
Pre-requisites	None		
Applicability	Students from the Mas	ter of Computational I	Materials Science
Frequency	Every winter semester		
Requirements for	Two weeks before th	e end of the semes	ter, the students will
Credit Points	a oxample solved wi	ct (source code, docul	mentation, analysis of
	defended (20 minutes)		i). The project will be
Credit Points	The course has a value	e of 7 credit points.	
Grade	The corresponding ma	ark is the result of the	ne written documents
	and the defense.		
Workload	The course requires 2	10 hours of personal w	vork.

Code/Dates	PLAS. MA.Nr. 3216	Version: 02.12.10	Start: WS 2012
Name	Plasticity		
Responsible	Last Name Häusler First Na	me Christoph Title	Dr.
Lecturer(s)	Last Name Häusler First Na	me Christoph Title	Dr.
Institute(s)	Mechanics and Fluid-Dynami	CS	
Duration	1 semester		
Competencies	Students will get familiar with the principal formulation of in-elastic constitutive equations from the viewpoint of thermodynamics. Special emphasis is placed on the formulation of plastic and viscoplastic constitutive laws.		
Contents	Most important ingredients are: balance laws, thermodynamically motivated formulation of constitutive equations, plasticity, thermoplasticity, viscoplasticity		
Literature	Ottosen and Ristinmaa: "The Khan and Huang: "Continuun Lemaitre and Chaboche: "Me	Mechanics of Const n Theory of Plasticity chanics of Solid Ma	itutive Modeling" ″ terials"
Types of Teaching	Lecture (2 SWS); Exercise (Lecture will be given in Englis	1 SWS); Practical E sh.	xercise (0 SWS).
Pre-requisites	Contents of Continuum Mech	anics	
Applicability	Master students in Compu students in mechanical Engir	tational Materials	Science, Master
Frequency	Every winter semester.		
Requirements for Credit Points	Written exam, 90 – 120 min, if more than 5 students are present. Otherwise oral examination of 30 min.		
Credit Points	The course has a value of 4 of	credit points.	
Grade	The corresponding mark is th	e result of the exam	ination.
Workload	The course requires 120 ho attendance and 75 hours of p	ours split into 45 he	ours of personal

Code/Dates	PHTHQ1.BA.Nr. 175	Version: 02.12.10	Start: WS 2011	
Name	Quantum Theory I	Quantum Theory I		
Responsible	Last Name Kortus First Nan	ne Jens Title Prof. D	r. rer. Nat. habil.	
Lecturer(s)	Last Name Kortus First Nan	ne Jens Title Prof. D	r. rer. Nat. habil.	
Institute(s)	Theoretical Physics			
Duration	1 semester			
Competencies	Students will get familiar with basic physical relationships in the context of quantum theory, and will be qualified to formulate these mathematically.			
Contents	Starting with experimental results giving evidences of the need quantum mechanics to model the microscopic world, a brief introduction containing the Schrödinger equation, the theory of Hilbert space, linear and Hermitian operators, particles with spin and many-body systems (bosons, fermions) is given. A qualitative understanding of the chemical bond is taught. The infinite potential well, the potential barrier (tunneling), the harmonic oscillator and the hydrogen atom will be discussed. The angular momentum operators will be defined and their properties discussed. Approximation methods (variational calculus, perturbation theory) will be tackled by example. During the practical courses, after a short introduction on the use of Mathematica, this software will be used to solve mathematical and physics related problems.			
Literature	Claude Cohen-Tannoudji: Qu	antum Mechanics V	ol. 1	
Types of Teaching	Lecture (2 SWS); Exercise (2 SWS); Practical Exercise (2 SWS) Lectures are given in English			
Pre-requisites	Basic knowledge in theoretic	al mechanics and alo	gebra.	
Applicability	Master degree in Computational Materials Science, Geoinformatics and Geophysics, Electronic- and Sensor Materials, Diploma in Applied Mathematics and Bachelor degree Applied Natural Science			
Frequency	Every winter semester			
Requirements for Credit Points	The exam will be oral (duration 30 min) in case of less than 12 students. Otherwise it will be a written exam (duration 120 min). Precondition of the exam will be a certificate from the exercises.			
Credit Points	The course has a value of 6 credit points.			
Grade	The corresponding mark is the result of the oral examination.			
Workload	The course requires 180 hours split into 90 hours of personal attendance and 90 hours of private study.			

Code/Dates	ResSem.MA.Nr. 3217 Version: 03.02.11 Start: WS 2011		
Name	Research Seminar and Journal Club		
Responsible	Last Name Groh First Name Sebastien Title Prof. Dr.		
Lecturer(s)	None		
Institute(s)	Mechanics and Fluid-Dynamics		
Duration	4 semesters		
Competencies	The student will attend monthly research seminars.		
Contents	Most important ingredients are: Literature review on the seminar topic Attending the seminar Interacting with the speakers		
Literature	None		
Types of Teaching	One week before the seminar, the students will review the work carried by the speaker on seminar topic. A list of questions will be prepared. That should make the students confident, and it will help the shiest students to interact with the speakers.		
Pre-requisites	None		
Applicability	Students from the Master of Computational Materials Science		
Frequency	Every winter semester		
Requirements for Credit Points	Interaction with the speakers		
Credit Points	The course has a value of 3 credit points (1 credit point per semester). During the 4 th semester, students will attend research seminar in their master thesis' institute.		
Grade	The corresponding mark is the evaluation of the interaction with the speakers.		
Workload	Reading and analysing research paper, which will require approximately 90 hours.		

Code/Dates	STSSP Ma. Nr. 3218	Version: 02.12.10	Start: SS 2012
Name	Selected Topics of Solid Stat	e Physics	·
Responsible	Last Name Rafaja First Nan	ne David Title Prof. I	Dr. rer. nat. habil.
Lecturer(s)	Last Name Rafaja First Nan	ne David Title Prof. I	Dr. rer. nat. habil.
Institute(s)	Materials Science		
Duration	1 semester		
Competencies	Basic principles of solid state physics, correlation between the crystal and real structure and the electronic, magnetic, optical and thermal properties of solids. Absolving the course, the students should be able to recognise the effect of the structure on materials properties and to apply their knowledge in materials design		
Contents	Drude model of electrical conductivity; temperature dependence of electrical resistivity in metals and semiconductors; Schottky contact; p-n contact; superconductivity (Landau theory); magnetic susceptibility; dia-, para-, ferro-, antiferro- and ferrimagnetism; optical properties of solids; complex index of refraction; dispersion curves for systems with free and bound electrons; Kramers- Kronig relationship; colour of metals; optical theory of reflection for multilayer systems; thermal expansion; specific heat (Einstein and Debye models); beat conductivity		
Literature	R.E. Hummel: Electronic properties of materials, Springer-Verlag C. Kittel: Introduction in solid state physics, Wiley		
Types of Teaching	Lectures (3 SWS). Lecture will be given in English.		
Pre-requisites	Knowledge in the fields of advanced mathematics, physics for scientists, general organic and inorganic chemistry, crystallography.		
Applicability			
Frequency	Every summer semester. This module corresponds to the second semester of the existing AFKP BA. Nr. 221 module starting every winter semester.		
Requirements for Credit Points	Oral exam (30 minutes)		
Credit Points	The course has a value of 5	credit points.	
Grade	The corresponding mark is the	ne result of the oral e	xamination.
Workload	The course required 150 hours split in 45 hours of personal attendance and 105 hours of private study. The latter includes courses and exam preparation.		

Code/Dates	STFEM. MA .Nr. 3219	Version: 02.12.10	Start: SS 2012
Name	Selected Topics of the Finite	Element Method	
Responsible	Last Name Mühlich First Na	me Uwe Title Dr	
Lecturer(s)	Last Name Mühlich First Na	me Uwe Title Dr	
Institute(s)	Mechanics and Fluid-Dynam	ics	
Duration	1 semester		
Competencies	Students will get familiar with the theoretical fundamentals of the FEM related to geometrically and physically nonlinear problems. They should be able to program Finite-Element-solutions for simple physically nonlinear applications. Based on the knowledge provided by the module, students should be able to select appropriate Finite-Element-tools for specific problems and to evaluate the numerical results properly.		
Contents	Most important ingredients are: Weak form of the equilibrium conditions, FEM for physically nonlinear problems, Coupled problems with FEM, FEM for linear dynamic problems, Programming of FEM-solutions with MATLB and optional: FEM for large deformations and specific structural elements.		
Literature	Wriggers: Nichtlineare Finite-Element-Methoden, Springer 2001 Bonet, Wood: Nonlinear continuum mechanics for finite element analysis		
Types of Teaching	Lecture (2 SWS); Exercise (1 SWS); Practical Exercise (1SWS). Lectures are given in English		
Pre-requisites	Basic knowledge in theoretical mechanics; Module Numerical Methods for Mechanics or Introductory Lecture FEM or comparable		
Applicability	Students of Master in Compu	utational Materials So	cience
Frequency	Every summer semester.		
Requirements for Credit Points	Oral exam (35-50 minutes) The successful preparation of a FEM solution with MATLAB is required to be examined.		
Credit Points	The course has a value of 6	credit points.	
Grade	The corresponding mark is the	ne result of the oral e	xamination.
Workload	The course requires 180 hours split into 60 hours of personal attendance and 120 hours of private study. The amount of time needed for the preparation and reworking of lectures and exercises is rather large due to the complexity of the topics treated within this course and because of the programming exercises involved.		

Code/Dates	MD. MA .Nr. 3220 Version: 02.12.10 Start: SS 2012		
Name	Selected Topics of the Molecular Dynamics Method		
Responsible	Last Name Groh First Name Sebastien Title Prof. Dr.		
Lecturer(s)	Last Name Groh First Name Sebastien Title Prof. Dr.		
Institute(s)	Mechanics and Fluid-Dynamics		
Duration	1 semester		
Competencies	The student will get familiar with Molecular Dynamics and		
	they will be able to implement new functionality in existing MD		
	codes and to develop interatomic potentials for diverse elements.		
Contents	wost important ingredients are: Newton's equation of Motion,		
	integrator, conservation laws of Hamiltonian systems, Interatomic interactions, Energy minimization (conjugate gradient, steepest descent method), Periodic boundary conditions, microcanonical ensemble, constant pressure method, Parrinello-Rahman's method, Nose-Hoover thermostat and others.		
Literature	Computer simulations of dislocations (Oxford Series on Materials		
	Modelling): Bulatov and Cai		
	Undestanding molecular simulation. From Algorithms to		
Types of Teaching	Lecture (2 SWS) Exercise (1 SWS) Practical Exercise (1 SWS)		
	Lectures are given in English.		
Pre-requisites	Knowledge in the fields of metals; Introduction to Scientific		
	Programming and Fundamental of Microstructures, Quantum Mechanics		
Applicability	Master students in Computational Materials Science.		
Frequency	Every summer semester.		
Requirements for	Oral examination if less than 5 students. Written examination		
	2 weeks before the examination a research article will be given to		
	the students. It will give them enough time to analyze the paper (re-demonstrate formula, how the presented data play a role in a multiscale modelling, weaknesses of the model)		
	If oral exam: The student will have 30 minutes to present the research article.		
	If written exam: 120 minutes to answer questions related to the research paper. Programming project		
Credit Points	The course has a value of 6 credit points.		
Grade	The corresponding mark is the result of the average between the oral/written examination and the programming project weighted with the coefficient 1 and 1, respectively. Both examinations will have to be passed.		
Workload	The course required 180 hours split in 60 hours of personal attendance and 120 hours of personal work. The amount of time needed for the preparation and reworking of lectures and exercises is rather large due to the complexity of the topics treated within this course and because of the programing exercises involved.		

Code/Dates	STOMATE. MA.Nr. 3221 Version: 02.12.10 Start: WS 2012
Name	Stochastic Methods for Materials Science
Responsible	Last Name van den Boogaart First Name Gerald Title Prof. Dr.
Lecturer(s)	Last Name van den Boogaart First Name Gerald Title Prof. Dr.
Institute(s)	Stochastic
Duration	2 semester
Competencies	The student will understand the role of stochastic modelling and stochastic algorithms for computational material sciences. He/she will learn to select, implement and test stochastic algorithms and models in an applied context.
Contents	The lecture introduces examples of stochastic methods of material modeling, analysis and simulations: e.q. models and algorithms for the simulation of random structures (random mosaics, random composites, packing,) and random behavior (crack initiation, random loads, random fatigue,), statistical and stereological analysis of structural data and EBSD-crystal orientation measurements, Monte-Carle algorithms for material simulation, Markov-Chain-Monte-Carlo/Metropolis-Hastings algorithms for parameter estimation and structure reconstruction.
Literature	e.g. Stoyan, Kendall, Mecke: Stochastic geometry and its
Types of Teaching	Lecture (2 SWS); 0.5 SWS consulting for the programming project, Lectures are given in English
Pre-requisites	Basic knowledge of stochastic, statistic, geometry, continuum mechanics, computer programming, and either crystallography or basic group theory.
Applicability	Master and postgraduate studies in mathematics, engineering or physics. The module is especially designed for the international master program in computational materials science and PhD students working in material modeling.
Frequency	Every winter semester.
Requirements for Credit Points	The examination of the module consists of a 30-minutes oral exam and a marked programming project. The project has to be finished in the semester following the lectures.
Credit Points	The course has a value of 4 credit points.
Grade	The mark is computed as the arithmetic average of the marks of the exam and the programming project. Both need to be passed.
Workload	The work time needed is 120 hours, consisting of 30 hours of lectures, 40 hours self controlled study including exam preparations and 50 hours for the programming project including the consultations.

Code/Dates	TM.MA.Nr.3222	Version: 02.12.10	Start: WS 2011
Name	Thermodynamics of Materials		
Responsible	Surname Masset First Name Patrick Title Dr. HDR		
Lecturer(s)	Surname Masset First Name Patrick Title Dr. HDR		
Institute(s)	Energy Process and Chemical Engineering		
Duration	1 semester		
Competencies	Students will get familiar with thermodynamic properties of		
	materials and phase di	agram calculation me	thods.
Contents	Most important ingredients are:		
	Thermodynamic laws and quantities		
	Thermodynamic properties of materials		
	Calculation of complex equilibriums in multiphase and		
	multi component systems		
	 Optimization of 	phase diagrams	
Literature	Mats Hillert, "Phase equilibria, phase diagrams and phase		
	transformations", 2 nd E	d., Cambridge (2009)	nd
	Robert de Hoff, "Thern	nodynamics in Materi	als Science2, 2 nd Ed.,
	Taylor&Francis (2006)		
	Hans Leo Lukas, Suz	ana Fries, Bo Sund	Iman, "Computational
	I hermodynamics, the (CALPHAD method", C	ambridge (2007).
Type of Teaching	Lecture (2 SWS); Exercise (0 SWS); Practical Exercise (1 SWS).		
Duene sudaite e	Lectures are given in E	ngiisn.	internet en en
Prerequisites	Background in physica	I chemistry and mater	
Applocability	Students of Master in Computational Materials Science or other		
	Students as minor su	bject. Students of IV	laterials Science and
Fraguanav	Evenus Engineering.		
Prequency Requirements for	Every winter semester	utaa) if mara than E	atudanta Oral avam
Credit Points	(20 minutes) otherwise	iules) il more than 5	students. Orai exam
Credit Points		Iuc. of 2 oradit point	The corresponding
	mark is the result of the	e oral/written examina	tion.
Grade	The corresponding r	nark is the result	of the oral/written
	examination.		
Workload	The course requires 90 hours split into 45 hours of personal		
	attendance and 45 hou	irs of private study.	•

Freiberg, den 23.06.2011

gez.

Prof. Dr.-Ing. Bernd Meyer

Herausgeber:	Der Rektor der TU Bergakademie Freiberg
Redaktion:	Prorektor für Bildung
Anschrift:	TU Bergakademie Freiberg 09596 Freiberg
Druck:	Medienzentrum der TU Bergakademie Freiberg