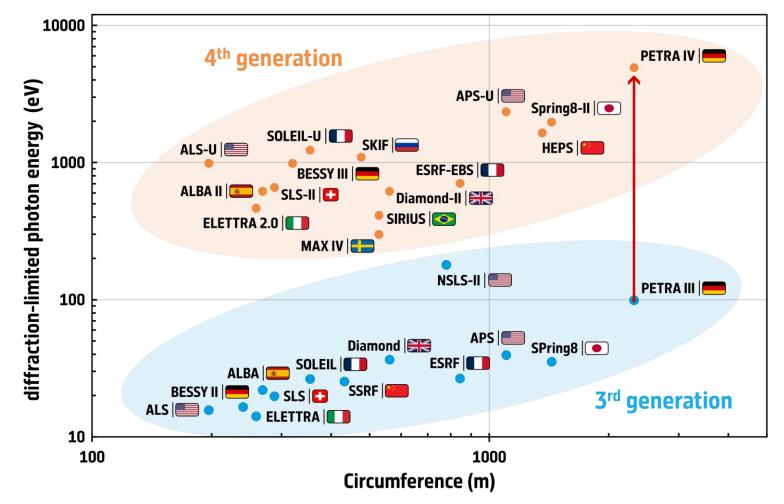

PETRA IV. The Ultimate 3D X-ray Microscope

PETRA III and PETRA IV. in Numbers

PETRAIV.

A New X-ray Beam for PETRA Users


PETRA IV Brightness at 100 keV higher than for 10 keV at PETRA III today!! → 500 x (hard X-rays)

→ 1000 x (high-energy X-rays)

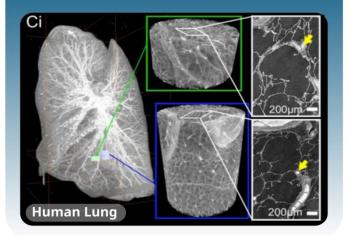
Global Competitors

Multi-Bend Achromat (MBA) technology underpins the development of diffraction-limited light sources

In an international comparison, the project will be the last to finish, but will have by far the best performance

ESRF-EBS 120 pm·rad (2020); APS-U 42 pm·rad (2024); HEPS <60 pm·rad (2025); SPring8-II ~50 pm·rad (2028); PETRA IV 20 pm·rad (2029)

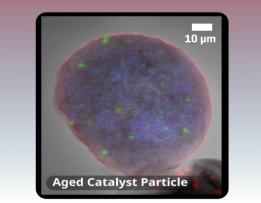
Comparison – Sources around the World


The Ultimate 3D X-ray Microscope for Physical, Chemical, and Biological Processes

Brightness

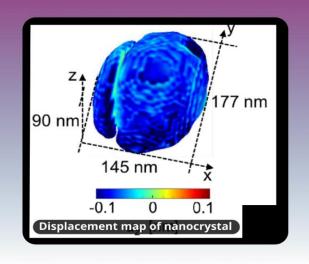
Macroscopic field of view with nanometer resolution

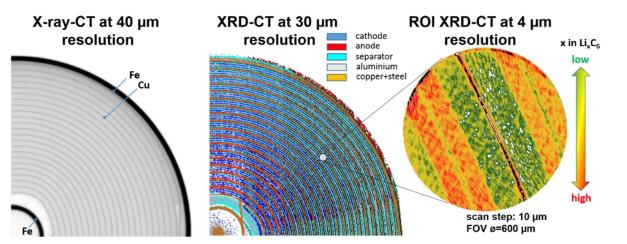
Multi-scale imaging connecting nanometer features
 across macroscopic dimensions


> Fast sampling with chemical, structural, electronic sensitivity

Coherence

Non-periodic materials with highest spatial resolution

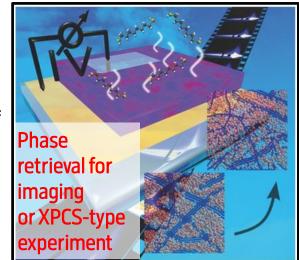

- Imaging with
 spatial resolution down to < 1 nm,
 localising atoms and molecules
- > Improved phase contrast for fast full-field imaging
- Correlation methods improvedby 10.000 250.000x


High Energy

Penetrating bulk materials and operating systems

- > Enabling coherent techniques well beyond 50 keV
- > 3D mapping deep inside bulk materials

Selected Science/Technology Examples – Material and Process Development



D. Petz, et al., Energy Storage Materials 41 (2021) 546-553d

Operando Co-µGISAXS:

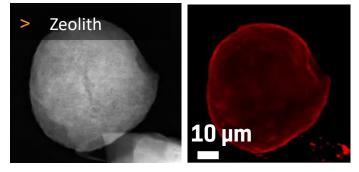
Morphological degradation of a running polymer solar cells with time (min).

PETRA IV enables to combine GISAXS with coherent techniques (Coherent-GISAXS)

C. J. Schaffer, et al., Adv. Energy Mater. 2016, 6, 1600712

XRD-CT:

Operando investigation of lithium distribution in Li-ion battery during charge/discharge. **PETRA III (1 x 1 mm² in 4 h) – 1 \mum resolution**


PETRA IV (1 x 1 cm² in 8 h) – 1 μ m resolution or 1 x 1 mm² with much higher spatial resolution

3D X-ray Fluorescence and XAFS:

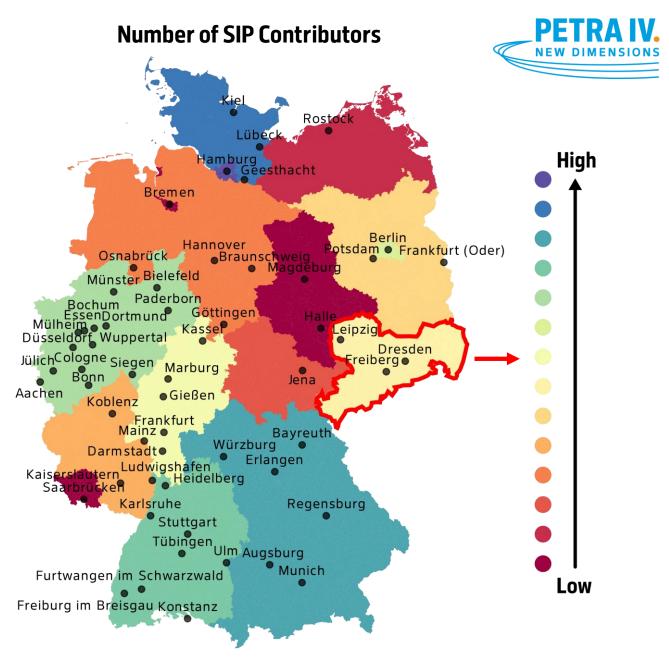
Imaging of Aged Catalyst Particle (FCC method) including chemical information

PETRA III (70 µm² in 1 day).

PETRA IV (70 µm² in 1.5 min). or longer times with much higher spatial resolution

J. Garrevoet, et al., unpublished

Electron Density (ED)


Fluorescence (Fe K_a)

Saxon Involvement in Science and Instrumentation

Scientific Instrumentation Proposals (SIPs):

- > Contributing to 16% of all SIPs !
- > Contribution from:
 - TU Bergakademie Freiberg
 - TU Dresden
 - ✤ University of Leipzig
 - Max Planck Institute for Chemical Physics of Solids
 - Fraunhofer IFW
 - Helmholtz-Zentrum Dresden-Rossendorf e. V.

Saxony is already a major contributor to PETRA IV Science and Developments

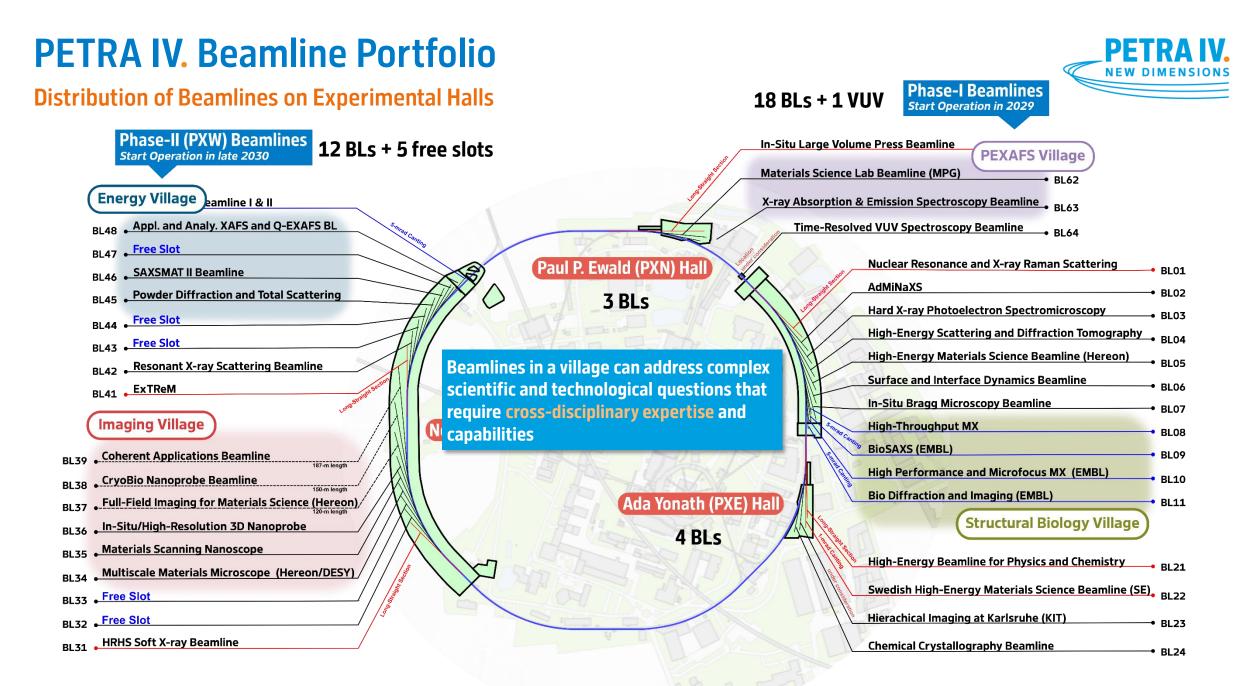
PETRA IV. Photon Science Project

A User-Tailored Beamline Portfolio

31 PETRA IV Beamlines:

- Large set of experimental capabilities and analytical methodologies (multi-scale)
- Wide range of contrasts, sensitivities, and resolutions (multi-modal)
- > Balanced high-brightness and high-throughput experiments
- > Extended imaging capabilities
- > Unique opportunities for users
- > Beamlines for targeted use (science & industry)!

Further continuous exchange with the users and partners will take place to adapt/shape the portfolio to the evolving requirements!



Saxon Collaboration as a strong partner to shape Science and Opportunities at PETRA IV !!

PETRA IV Beamline Portfolio:

Beamline	Techniques	Energy range
Max von Laue (MvL) Experimental Hall:		
BL01 Nuclear Resonance and X-ray Raman Scattering	NFS, NIS, SMS, XRS, (R)XES	6.5 - 73 keV
BL02 AdMiNaXS Beamline	GI/T/SAXS/WAXS, CoGISAXS	7 - 30 keV
BL03 Hard X-ray Photoelectron Spectromicroscopy	HAXPES(ARPES, PEEM, XPD), CDI	2.1 - 15 keV
BL04 High-Energy Scatt. and Diff. Tomography	GI-/XRD/-CT, SAXS, TS, CDI	40 - 120 keV
BL05 High-Energy Mater. Sci. Beamline (HEREON)	XRD/-CT, SAXS	50 - 150 keV
BL06 Surface and Interface Dynamics Beamline	GI-XRD, GI-SAXS, XRR, GI-XPCS	5 - 40 keV
BL07 In-situ Bragg Microscopy Beamline	(GI-)XRD, BCDI	7 - 40 keV
BL08 High-Thru. MX	MX, SSX	6 - 30 keV
BL09 BioSAXS Beamline (EMBL)	BioSAXS, TR-SAXS, HT-SAXS	6 - 20 keV
BL10 High Performance and Microfocus MX (EMBL)	SSX,TR-MX,HT-MX	11 - 35 keV
BL11 Bio Diffraction and Imaging (EMBL)	HT-MX, HITT	6 - 35 keV
Ada Yonath (PXE) Experimental Hall:		
BL21 High-Energy Beamline for Phys. and Chem.	XRD, TS	50, 85, 100 keV
BL22 Swedish High-Energy Mater. Sci. Beamline (SE)	WAXS/3DXRD, SAXS, Imaging	38 - 100 keV
BL23 HIKA Beamline (KIT)	Tomography, Laminography	8 - 60 keV
BL24 Chemical Crystallography Beamline	PXRD, Crystallography	8 - 66 keV
New PXW Experimental Hall:		
BL31 HRHS Soft X-ray Beamline	ARPES, CDI, STXM-XRF, REMI	0.25 - 4 keV
BL34 Multiscale Mater. Microscope (DESY/HEREON)	Holotomo., Radiography	50 - 200 keV
BL35 Materials Scanning Nanoscope	XRF, XRD, XBIC, XEOL, Ptycho.	2.4 - 40 keV
BL36 In-Situ/High-Resolution 3D Nanoprobe	XRF, XRD, XBIC, XANES, Ptycho.	5 - 34 keV
BL37 Full-Field Imaging for Mater. Sci. (HEREON)	Tomography, Radiography	5 - 50 keV
BL38 CryoBio Nanoprobe Beamline	Compton Micro., Holotomo., XRF	17 - 60 keV
BL39 Coherent Applications Beamline	XPCS, XCCA, Holotomo.	7 - 25 keV
BL41 ExTReM	XRD, PDF, PCI, CDI	8 - 71 keV
BL42 Resonant X-ray Scattering Beamline	RIXS, REXS	2.4 - 14 keV
BL45 Powder Diffraction and Total Scattering	PXRD, TS	20 - 80 keV
BL46 SAXSMAT II Beamline	(Anom./U)SAXS/WAXS, Tens. Tomo.	3.5 - 35 keV
BL48 Applied Analytical XAFS and Q-EXAFS Beamline	XAS, EXAFS, XANES, Q-XAFS	4 - 45 keV
Paul P. Ewald (PXN) Experimental Hall:		
BL61 In-situ Large Volume Press Beamline	AD-/ED-XRD, PXRD, A/PCI	30 - 130 keV
BL62 Materials Science Lab Beamline (MPG)	XAFS, XRD/PDF, Tomography	4 - 60 keV
BL63 X-ray Absorption & Emission Spec. Beamline	HR-XES/XAS, TR-XES/XAS	4 - 35 keV
BL64 Time-Resolved VUV Spectroscopy Beamline	IR-Vis, VUV spectroscopy	0.004 - 0.04 keV

Extension of Services at PETRA IV.

Attract a broader User Community from Academia and Industry

1 Beamlines and Instrumentation:

- > New generation of photon beamlines (31 x BLs)
- > Cutting-edge instrumentation
- > High level of automation and high-throughput

6 Access Model:

- > Prompt access on demand
- > Reliable long-term projects

5 Sample Environment:

- > Provision and support of in-situ/operando sample environments (nanoreactors, pressure cells)
- > Development of customised equipment

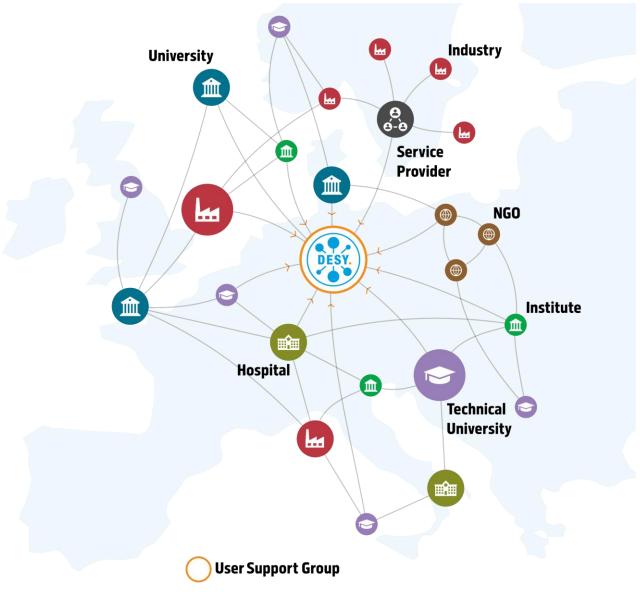
2 Data Management:

- > Deal with the expected large amount of data
- > User friendly analysis pipelines
- Rapid feedback for agile decision making

3 Laboratories and Technical Infrastructure:

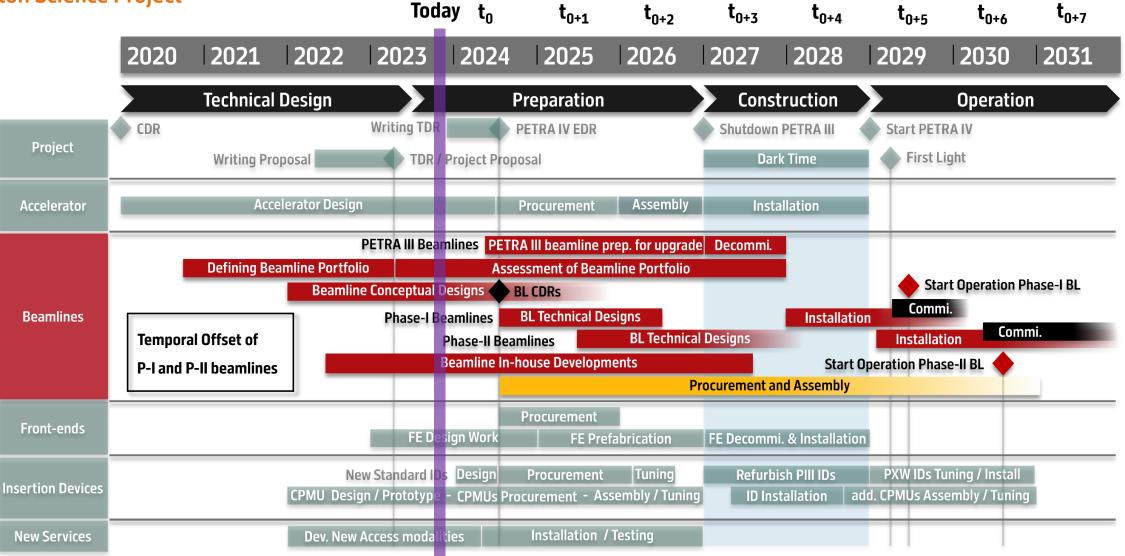
- > User-tailored lab layout
- > Extended laboratory services
- > Dedicated lab areas (special equipment)

4 Organisation and User Support Group:


- > Projects instead of beamtime
- Single-entry point to an easy-to-use and customised interface
- > User support group (USG)

PETRA IV. – User Support Group

Scientific and administrative support


Extended support services especially for non-SR experts (problem formulation, project planning, data analysis)

- > Acts as a gateway/bridging element between users and the facility
- Central instance to coordinate the entire access and service process (for all users)
- Combines the existing user office with an additional operational service unit.
- > Operative team carries out projects independently
- Supplemented by external service providers (start-ups, academic partners, ...)

PETRA IV. Timeline

Photon Science Project

DESY. | Sachsen-DESY-Kooperationszentrum, November 2023 | PETRA IV – The Ultimate 3D X-ray Microscope | Kai Bagschik

PETRA NEW DIME

Thank you

• Browse Volumes & Issues

Search within this journal

The European Physical Journal Plus All Volumes & Issues

Focus Point on Accelerator-based Photon Science Strategy, Prospects and Roadmap in Europe: a Forward View to 2030.

ISSN: 2190-5444 (Online)

In this topical collection

https://doi.org/10.1140/epjp/s13360-022-03517-6

Regular Article

The synchrotron radiation source PET upgrade PETRA IV Christian G. Schroer, Hans-Christian Wille... » Download PDF (1154KB) » View Article

Regular Article

Metrology with synchrotron radiation a Alexander Gottwald, Michael Krumrey, Frank S » Download PDF (783KB) » View Article

Regular Article

Questions?

THE EUROPEAN **PHYSICAL JOURNAL PLUS**

The synchrotron radiation source PETRA III and its future ultra-low-emittance upgrade PETRA IV

Q

Christian G. Schroer^{1,2,a}, Hans-Christian Wille^{1,b}, Oliver H. Seeck^{1,c}, Kai Bagschik^{1,d}, Hor Markus Tischer^{1,f}, Heinz Graafsma^{1,g}, Wiebke Laasch^{1,h}, Karolin Baev^{1,i}, Stephan Klumpp¹ Harald Reichert^{1,1}, Wim Leemans^{1,m}, Edgar Weckert^{1,n}

¹ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ² Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Received: 27 August 2022 / Accepted: 19 November 2022 © The Author(s) 2022

